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1. Introduction

The theorem that, if P, be the greatest prime factor of

[I(»*+1),

n<T

then —fs o
x

as x —+ oo, for which as for many other interesting results in the theory of numbers we are
indebted to Chebyshev, has attracted the interest of several mathematicians. Revealed
posthumously as little more than a fragment in one of Chebyshev’s manuscripts, the theo-
rem was first published and fully proved in a memoir by Markov in 1895 [6], while later
in the same year a generalisation by Ivanov [4] appeared in which the polynomial »2+41
was replaced by n?+A4 for any positive 4 (an account of both Markov’s and Ivanov’s
work is to be found in Paragraphs 147 and 149 of Landau’s Primzahlen [5]). In 1921 Nagell
[7] improved and further generalised Chebyshev’s theorem by shewing that for any ¢<1

and for all sufficiently large x

P,
— >log®
- og’ x,

where P, is the largest prime factor in the product obtained by replacing »2+1 by any
irreducible integral non-linear polynomial f(n). The final result is due to Erdds [1], who

in 1952 improved Nagell’s result by shewing that

P
Tz > (IOg x)cl log log log x
x

by a method which he stated could be developed further to yield
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% > (e, < 1).

Chebyshev’s theorem and the generalisations of it that appertain to quadratic poly-
nomials are evidently closely connected with the celebrated problem of whether or not
there be an infinitude of primes of the form n2+ 4. There is, however, a considerable diver-

gence between the results described above and the inequality
P> Ba?,

which for the polynomial n?+ 4 would be implied by the truth of long standing conjec-
tures about the distribution of the prime values taken by this polynomial. The purpose
of the present memoir is to narrow this divergence by shewing how Chebyshev’s method
can be combined with both the sieve method and a method involving exponential sums in

order to obtain a result of the form
P,>Bz'"* (0>0)

for any irreducible polynomial n2+ 4, where A may be positive or negative. Since the
problem appears to be of some importance, it has been considered to be worthwhile at
the cost of some brevity to derive as accurate a result as possible, the value of « actually

obtained being

Although any irreducible quadratic polynomial may be considered in a similar way, the

method is not applicable at least in its present form to polynomials of higher degree.

2. Notation and conventions

The quadratic polynomial will be written as n2— D in order that D may be the deter-
mivant of a binary quadratic form associated with the polynomial, D not being a perfect
square since the polynomial is irreducible. The proof will only be given for the case in
which D is negative, since the proof in the other case is similar although rather harder;
accordingly it will be assumed throughout until the statement of the final theorem that
D <0 (and thus not a perfect square).

The letters d, k, [, m, n, §, 4, and v are positive integers; %, r, a, u, and » are integers;
s is an integer except where it is the argument in a Dirichlet’s series; p is a positive prime

number; e=exp 1.
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The meaning of x and y, when not occurring as indeterminates in a quadratic form,
is as follows: z is a continuous real variable that is to be regarded as tending to infinity,
all appropriate inequalities that are true for sufficiently large x being therefore assumed
to hold; y is a real number not less than 1. The letter « indicates a real variable, which
will be related to x in such a way that « and u tend to infinity simultaneously.

The positive highest common factor and lowest common multiple of r and s are de-
noted by (r, s) and [r, s], respectively; d(h) is the number of positive divisors of A; ¢, (k)
is the sum of the yth powers of the positive divisors of h; moduli of congruences may
be either positive or negative; {t] is the greatest integer not exceeding ¢.

The letters ¢, %, 1,, and 7, indicate arbitrarily small positive constants that are not
necessarily the same at each occurrence. The equation f=0(|g|) denotes an inequality
of the form |f| <A|g| that is true for all values of the variables consistent with stated
conditions, where 4 is a positive constant that depends at most on ¢ and D.

The author’s paper [3], to which we shall have recourse on several occasions, will

be referred to as I.

3. Development of the method

We shew first that it suffices to consider the problem when D is square-free, This is
the case of least complexity, since the expression required in the proof for the number

of roots (incongruent solutions) of the congruence
v2= D(mod I)

can be formulated most easily when D has no square factor. Let D =AQ?, where A is
square-free. Then by restricting # to be a multiple of ) we can reduce the problem to the
consideration of a polynomial with constant term A in place of D; writing n=n,Q, we

obtain
12~ D =Q2(n]—A)

so that the prime factors of #2— D for n <z include the prime factors of nf — A for », <z/Q.
We therefore assume throughout that D is square-free (and negative) except in the state-
ment of the final result.

The residue class to which D belongs, modulo 4, affects the proof in some minor
details. We therefore only give the proof in detail for the simpler case in which D=2, 3
(mod 4), reserving until the end a brief discussion of the modifications that are necessary
for the other relevant case D=1 (mod 4). Accordingly we make the additional assump-
tion that D is congruent to 2 or 3 (mod 4) until the end of the proof.
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In the very beginning the method follows that of Chebyshev and Markov. Let P, be
the greatest prime factor of

[1 (»*— D).

n<T
Then, defining N, {I) to be the number of positive integers n not exceeding x with the
property that n2 — D is divisible by [, we have
[T #"0% =[] (v~ D)> (=1,

PP, n<e

p%<2?- D

where the sinister product is taken over p and positive values of «. Consequently, by

Stirling’s theorem,

> N (p%)log p>2=zlog z+ O(x). (1)
<P,
p¥*<x?~D
Next
2, NpMlogp= 3 Nyp)logp+ 2 Np)logp+ 2 N, (p")logp
PPy T<D Py L P2 La?—D
p4<a?-D &>1

=24+ Zp T2 say, (2)

the condition p <P, being omitted from Z; since it is in reality superfluous. The lower
bound for 24 required for the application of our method can be obtained from (1) and (2)
through upper bounds we now derive for X5 and X.

The estimates for Xz and X, are formed by considering an expression for N, (I). We

have

x— ¥
va- s1- s o s1i- s (EP-[-]]) e
n2—D=0(mod ) w’sﬂD<(1x,n<o;1 15) nzv(énzod D vzsog(rgzd 5] l l

n<z

which is a formula that will be used later to develop another expression for N,(I). Here

it is enough to deduce that
xo(l
¥, ="+ ofeu), @

where p(l) is the number of roots of the congruence
»2=D(mod I).
if (D]p)=1,

2,
Now o(p)=10, if (D|p)= -1,
1, if either (D]p)=0 or p=2,
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while o(p) =0(1)

always. Therefore, by (2) and (4),
1 1
=23 PP o5 o) logp) =22 3 8Py S B2 oS 104
T P < (Dpﬁnﬁl Y 22D P <

=g log z + O(x). (5}
Furthermore

ZC=O( > logp Z{%ﬁ— 1})=0(x S log p )+0(logac > 1)=0(x). (8)
p<(zt-D)¥ p p-2 P(p—1) <2z
= 2<ag{log (23— D)}/log D

The lower bound
2 >zlogz+O) (7)

is obtained immediately from (1), (2), (5), and (6). On the other hand X, is a particular

example of sums of the form
T:(y)= 2. N.(p)logp,
T<PLY

for which we shall shew that an upper bound can be derived by a complicated procedure
involving the use of Selberg’s sieve method. The comparison of this upper bound with
the lower bound given by (7) will yield the required lower estimate for P,. It is in this
determination of the upper bound and in the subsequent comparison that the more indi-
vidual aspects of the memoir are presented.

Let us prepare the sum 7', (y) for the application of the sieve method, assuming(1)
throughout that y is subject to the restriction ™" <y <22, A single application of the sieve
method to estimate the complete sum directly does not yield the optimum result, since
the sum can be divided into a series of segments for which we can derive individual upper
estimates which, while being of a common order of magnitude, are nevertheless of variable
precision. Each such segment can be estimated by two different methods, the position
of the segment in the sum determining which method is the more favourable. Firstly then,
dividing the sum into two parts that correspond to the methods to be applied, we write

Ty)= 2 Ny (p)logp+ > N(p)logp=T,xX)+T.(y), say, (8)
r<pgzX zX<pLY

where X =2"". The sums 7,(xX) and T, (y) are now each to be split up into segments.
To consider the first let

(1) This restriction on y is only to apply in the context of 7'.(y).
19— 662903. Acta mathematica. 117. Imprimé le 16 février 1967.
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V.w)= > N.(p)

v<p<ev

Then T, (xX)< > > HN,(p) logp<s > log (xe*™) V, (we®). 9)

Oga<log X ze¥<p<<ze® O<a<log X

To effect the corresponding division of T';(y) it is necessary to transform the sum. By

the definition of N, (p) we have

T:y)= > logp= > + 5  =Tiy)+T,(y), say. (10)
;rf:};’ég_) m>zt/ylogtz m<xd/ylogts

n<e

The conditions of summation for 7;”'(y) imply that n <Vpm <w/log? x. Therefore

T (y)<2logz S 1=2logz 3 d(nZ—D)=0( x) (11)

2
im=n®—D n<z/log?z log z
n<z/log®x

by Theorem 2 in I. Next, since the conditions of summation in 7"(y) imply that m <ex/X,

we have
2
ex
T (y) < log—.
%y logtz<m<er/X m
pm=nt-D
nET P

Therefore, letting W, (w) be defined by

W, (w)= Z 1,
w<mew
pm=n?-D
n<T; p2T

we deduce that

Ti< 3 log @Xe)W, (";} )

O0<a<logY

where Y =ey log® x/xX. Hence, by this, (10), and (11),

i< S Iog(xXe~+l)W,(f§)+0( "”) 12)

0ga<logY IOg x

In accordance with the familiar principle of the sieve method the estimations of
V.(v) and W, (w) depend on explicit formulae for the associated sums that are obtained
by replacing p in the conditions of summation by multiples of a given square-free integer
A. The sum corresponding to V,(v) is evidently of the form

Yw; )= > N, (Ak),

u<ik<eu

while as will be seen later the sum corresponding to W (w) is actually of the same type.
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The derivation of the formula for Y(u; 4) in the next sections depends in part on
ideas that were developed in I. For convenience it will be assumed throughout that » and

A satisfy the conditions
2 <u<at

A square-free (13)
A<min (ufzx?, zu?),
which imply moreover that
A<zt<aul, (14)

Here it is useful to note that uiz-1 Sau~* according as u S 2.
= =

4. Transformation of Y(u; 1)

A formula for N,() can be obtained from (3) by using the methods of Sections 3
and 5 of I. Writing as in I ¢(t)=[t] —f—1 for any real ¢, and writing also

x —_—
Fi(@) :vﬁsugnodz)q) ( { )

0<r<l

v
and (@) —vzzDgnod l)w ( B i) ’

0<v<i

= l
Nx (l) =v%zD%:nodl) {‘zl: + b4 (xT,‘j) Y (_1—2)} :?gl(_)_!_ ‘Fl (x) B (D[(x)
O<v<l

Then, since @,(x) is zero unless | D in which case it is O(1), we deduce that

we have

Y(u,;l):ic > —Q—%@-i- <%<e 1I";k(ar:)-i-O(l)=%CED+ZE+O(1), say. (15)

2. u<ik<eu U

The sum X; must itself be transformed by the method of Section 5 in I. Equations
(24), (25), and (26) in I give the formula

¥, (2) =Y, 0(x) + 0{0,, (@)}, (16)
in which, writing o(h, 1) = 2L
1 1
we have Y, w(@)== —o(h, 1) Sinzn}m, 17)
T igh<w h {
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& 2 7eh
01.0(@) =} Col) o) + 3. Culw)elh, ) cos =7~ 18)

0 (log w) , always,
w

and Crw)= {19)
0 (—Z%) it h>0,
where w =w(z, u, A) >2. We deduce from (15), (16), (17), and (18) that
1 1 2 nha
ZE B 7_I IKh<o 7b u<ik<eu Q(h’ }‘k) sin ZIC
= 2 mhx
+0(3Co(@) 3 ok)+ 3. C@) 3 olh, Ak) cos : (20)
u<ikeu h=1 u<ik<eu ]JC
Next let Pf(h, ) and P;(y) be given by
Pr(h,u)=Pf(hu, @)= > olh, M) et 2treit
u<lk<seu
and Pay)= > oldk),
0<ir<y
so that, since g(h, Ak) =g( -k, Ak), we have the properties
| PF (h, w)|=|P1 (B, w)| = Si(h,w), say, (21)
and Sa(h, u) <Pj(ew).
Then, by (19) and (20),
5.—0 ( S, (h, u)) +0 (log wPA(eu))
1<k R w
log w . Si(h, u) 1
+0 ( P Si(h, u)) +0 (w a)<hz<w2 0 ) +0 (a)Pl (eu)hgwthz)
Si(h, u) ( S.(R, u)) (log ) P,l(eu))
=0f1 P vl 2R T p o (eI
o ( og wlghéw 7 ) +0 ww<nz<wz 2 -0 p
—0(log » =) + O(wZy) +0 (W} say. (22)

A formula for X, will be obtained in the next section, while the estimate for X will

flow from the upper bound to be derived later for P#(h, u).
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5. Estimation of X,

We express the Dirichlet series

(- 3 200

for general square-free 4 in terms of the special series g(s) obtained by taking A=1, in
order to avail ourselves of results already obtained in Section 4 of T.

We have, by Euler’s identity, for ¢ >1

s p“(z o(p” )) m(z 9(10““))

a=0 P a=0 P

Now, if p[2D, then o(p)=p(p’) for f>1; also, if p|2D, then o(p)=1 but o(p?) =0 for
f>1, since(!) D=2, 3 (mod 4). Therefore

EE) geol-2) on(E) g ()
9:(5) pl;[a (a=a 2 zl;g ep) |1 »° pn Eo ) W ! »’)
p}/2D 2D

Consequently, dividing this equation by the special equation derived from it by setting

gals) _ ( 9@“))-1 ( _1)‘1
g AL 2= p%pl 7

A=1, we obtain

To evaluate this let us consider the case p(1) >0. Here the value of p(p?) for «>0 in the
first product is 2 unless p|2D in which event its value is 1 for =1 and is 0 for a>1.
Therefore the first product is

g g 02 )

|2 p|A p|A ol ps
p)2D p|2D p|2D
1 -1
Consequently g.(8) =o(4) g(s) 1;[ (1 + I?) s (23)
P2

which result still clearly holds when g(4) =0. In the subsequent application of (23) it will
be convenient to write

1\t Za
1+=) =324
%( ps) 2 e

(1) This hypothesis is necessary for the statement to be true for p =2.
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The next stage is to evaluate P,(y). Using (23) we have

Pr(y)=0(Ad) 2 a;i0(m)= Za > o(m).

lm\yll LA m<y/ll

The inner sum can be evaluated by both equation (7) and Lemma 2 in I, which give when

D is square-free and congruent to 2, 3 (mod 4)

_zL(1)

mzze(m)— Q) +0(2%), (24)
where L(s)= § (2) 1
=\
This yields
_eMyL(l) < aua ( eyt Ia,,zl)
e 2 O 2 e
_o(4) yL(1) ( l)‘l (9(7~)y laz.AI) (@(l |am|)
e w\'Te) O ) 2 )
. fana 2% < lawal,
In this W 1 yil>y//'t l* 3
_o(A) yL(Q) ( 1)“1 ( o)yt 2 |¢m|)
therefore Pi(y) @) z])g 1+p +0 1221
_e(A) yL() Nt (@(l) 0-_g(4) y*)
22@) 11;1-111(1 +p) +0 = ) (25)

We pass from this to the required formula for X, by partial summation. Substituting

(25} in the formula
5 =,1f dP:(t): [ijz(t)] +lf Pl(ttz)dt’

U

we obtain after a short calculation

_ ) H [ o oy

since the contribution to the term in square brackets due to the explicit part in (25) vanishes.

_ 1) L) (w) 26
e 1(1+) 5o+ o (). 0

Consequently
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6. Estimation of P,(h,u)

In general principle the method follows Section 6 in I although there is a considerable
divergence in details owing to our different requirements here. Evidently it is enough to
restrict our attention to the sum P*(h, u), from which for brevity it is now appropriate
to omit the + symbol. ‘

Let ax?+2bxy +cy? be a binary quadratic form of determinant D. Then, if

Ak = ar? -2 brs 4-cs?

be a typical primitive representation of Ak by the form, a typical value of »/Ak in g(h, Ak)

is given for s =0 by

Y 5 brtecs
Z_k__;'+r(ar2+2brs+csz)’ @7)

where s5=1 (mod r), and is also given for r 40 by

v F ar +bs
L At 2
Ak s s(ar®*+2brs+cs?)’ (28)
where rF=1 (mod s). Furthermore
x z
A A— 2
Ak ar®4+2brs+cs’ 29)

Therefore, defining 6, ; to be the expression for

v x
kb

in terms of 7, s given by (29) and one of (27) and (28), we have

2nih
Pi(h, u)y= 3 > M0ns,
a,b,c u<ari+2brs+csigen
ar®+2brs+cs?=0(modA)
r, $)=1; (M)

where a, b, ¢ in the outer sum indicates summation over a set of representative forms of
determinant D, and where (M) indicates that only one representation from each possible
set of representations is to be included. Since »>0 and D is negative, the forms will be
positive and therefore a, ¢ >0. Also a, b, and ¢ may be regarded as being bounded (choose,

for example, the representative forms to be reduced forms). We deduce that

— 2nihb
Pl (h, u) = Z €a,b,c Z e A (30)
a, b, ¢ u<ar*+2brs+esigen
ar+2 br(s+c;s’f0(modl)
T, 8)=
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where ¢, ;. is either 1, 1, or 1. The estimation is continued by expressing the inner sum as

EM, = 3 4 + S =3p+3,+0(), say, (31)
u<ar:+2brs-tesigeun Isl<irl Irl<is| Ir]=[s|=1
ar?+2 brs+<,;s“150(modl)
o, =

and then considering X, and X.
An estimate for an exponential sum similar to Kloosterman’s sum is required. This

is obtained by proving successively a number of lemmata.

LemMa 1. If b, r40; 0<§2~§1<2|r|; and h; be a given integer, then we have

p (=) <ot {0y

&sghy
r, =1

This result on an “incomplete sum”, which may be inferred by a well known method
from Lemma 2 of [2], depends essentially on Weil’s estimate for the Kloosterman sum.

LemMMaA 2. The resull of Lemma 1 still holds if hy be any real number.

This can be deduced from 'Lemma 1 by a method due to Estermann. Let hy=[h,)
so that h; =h, +hy where 0<<h;<1. Then, since

2 7vi(h, s — h3) 2 77i(hy s — 1) 2 wihys
exp (**———-—r ) = exp (——‘T—‘——) exp (——/r ) N

we derive the result by applying partial summation and Lemma 1 with A, in place of k,.

Lemma 3. If b, r +0 and 0<§,— &, <2]|r|, then

2 th§

) — OfJr [+ {(h, M),

ex -
Elgési p ( ‘

s=v(modA)
@, 8)=1

The sinister side of the above equation is equal to

gy 2 . _
exp (_ 27!:’%) S exp (@%&ﬂ)

e=1

3 . . -1, _7= ,
=%Zexp(—2m9”) 3 exp(w)=0[lr|%“{(h,r)}*],

3>
Z. &i<s<éy
r,H=1

on applying Lemma 2 to the inner sum.
Two other lemmata will also be needed. The first is similar to Lemma 1 in I but

is easier to prove.
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LemMma 4. If 230 and y =1, we have
3 {0 =0lyo_y ().

LrmMma 5. Let (a, b, ¢) be one of the forms that appear in equation (30). Then, if, for

any given r, Q. (1) be the number of rools in v of the congruence
ar?+2brv +cv? =0 (mod 1),

we have Q,(4) = 0{d(A)}

for any square-free number A.

If p f ¢, then Q. (p) is at most 2, whereas, if p|c, then Q,(p) is at most p and therefore
at most ¢. Since (1) is a multiplicative function of A and since ¢ has a bounded number
of prime factors, the lemma follows.

We direct our attention to X. The condition ar?+2brs +cs?<eu implies that
|7] < Bu?,

where E =(—ce/D)*; on the other hand the condition ar?+2brs-+cs?>u in conjunction
with |s| <|r| implies that ‘
|| >Qu?,

where G =(a+2|b| +¢)”*. Hence

Yp= > > €2y s — > Xpe sSay. (32)

3 u<ar*+2brst+esi<en
Gu <|r|<Eu’} a73+2brs+cs’50(xﬁodl) Gué<|r|<Eui‘

(r, $)=1; |s|<|r|

Since in the inner sum the inequalities

—r<s<r
1 2
2 (cu+ Dr*y< (s + b%) < clz (ceu + Dr?)

must hold, we see that for given r there are either no values of s or the values of s range
through all the integer values in one or two intervals contained in the interval (—r, »).
To estimate X , we are thus led to consider the sum

’
ZF, , = e2nih0,’s,

& (<)
ar?+2 brf+cisﬁ510 (mod2)
,8)=

in which —r <& <&, <r.
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We have
.= 20, = > e v, SayY. (33)
ar?+2 brv+cvi=0modAd) &(M<s<&(T) ar®+2 bro+cvt=0(mod )
O<ogh szv(n)m(}l) o<v<d
r,s8)=
2 7ih(br + cs) 27tih %
Writin, r,8)=ex
g ¢(r.s) P rlar®+ 2brs+cs®)  ar?+ 2brs+cst)’

we have from (27), (29), and (33)

’
ZF.T.u:“

2 mhs
& ) o(r, 5),

ox (—
ENsE(D) r
s=v(modi)
(r.s)=1

which when transformed by partial summation becomes

DI =£l(r)<ﬂz<&(r)9(/t) {or, ) — @(r, p+ 1)} + g([E:(r)De(r, (211 +1), (34)
where g(p) = . > exp (— 2m'h§) .
\(I<s<
b
|2| 2
In (34) (p(r,‘u)—(p(r,y-l-l)=0('r|3),

since |u| <|r| and @r?+2bru +cu?> — Dr¥/c. Therefore, by this and Lemma 3,

canl IR (CS0) 1)+oqr|%+s{(h,r)}%)

I"% EO<pu<EM

2;’«'.7,0 =0 (
= 0@ |r[ ¥R {(&, r)}}) + O r[F**{h, }}),

from which we infer through (33) and Lemma 5 the first part of

’
2F.r

5 } =0 |r| ¥R {(h, )}}) + O(|r[F T {(B, r)}}). (35)

The second part follows from the first part by the discussion at the end of the previous
paragraph.
We can complete the estimation of Py(k, ). Firstly, by (32) and (35),
b3
3p=0 (x 2] > M) +0@t* 3 {(h, D},

3
1>Gut Z I<Eu

and then, by Lemma 4,
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Te=0(" u k|0 (R) + Ot o_y(h)).

Since we see in turn through (31) and (30) that X, and P (%, u) satisfy a similar inequality,
we have finally that

P (h, ‘u) =0« "u"[h|a_y (B)) + O o_(R)). (36)

7. Estimation of 3; and Y(u; 2)
The estimate for Xy follows from (21), (22), and (36). Firstly we have

, _1(h
S5-0@ut 3 ooy (W) +0 (“*” = ))
1ghgo Ihgow h
=O0(wz'**u~ ) +O@ui**log w). (37)
Next = O(x”su‘* > G—-—‘*(h)) + O(u*” > -——O‘—*Z(h))
w<hgwt h h>w h v
=0('"*u "t log w) + O(w *ul*), (38)
while, by (25),
Pi(eu)=0 (d(i) u) . (39)
Therefore, by (22), (37), (38), and (39),
1+e
3r=0(wlog w-z'"*u~¥)+ O(ut* log? w) + O (u_a};&o) .
Let w be chosen so that wzu™t=4uw-14-1 with the consequence that
o=2ubz ) 7t>2
by (13). Substituting this value of © we obtain finally
Te=O0@ w17 + 0@utt) = Ot eut 1Y), (40)

since u? <xtu¥i ! by (13).
The estimate for Y(u; 4) is now immediate. Collecting together the results of (15),
(26), and (40) we obtain

M =x9(l) l _1@ +e -3
Y(u; 1) 2 21}(1 +p) 5(2)4—0(%% ubl ), (41)

since (13) implies that the error term due to (26) may be absorbed into that of due to (40).



206 C. HOOLEY

8. Application of the sieve method

A suitable formula for Y(u; ) having been obtained, Selberg’s sieve method [8] can
be applied to the estimation of V,(v) and W _(w).
Defining, as is customary in Selberg’s method, g;=p4(z) by

1,if d=1,
04 = jarbitrary real number, if d be square-free (1) and 1 <d <z,

0, otherwise,

we introduce the non-negative function
(z Qd)zy
din

which is equal to 1 when « is a prime number exceeding z.
In the estimation of V,(v) it will be assumed that z<v<a? and z<a*v~ ¥ so that in
particular v satisfies the first condition imposed on « by (13). Then, because z <v,

Vx (’U) < z Nz (l) (dlzl Qd)z = Z Od Ods Z Nz (l) = Z Qa, Oa» T(?); [dl’ d2])

v<iger a1, da<? v<iger dy, da<2
1=0mod [d1, d2])

Therefore, since [d,, d,] does not exceed zv~% and may be regarded as being square-free,

we have

V. () <acL(l)

de de 3+e, B ‘del IQd ‘) 42
) a2 FUdn ] T O(w Nl dy)’ (#2)

by (41), where f(n) is the multiplicative function defined by

)

The first term in (42) is now minimized in the usual way. Setting

1
him) = fom TT (1 —}—(—p)), (>0)

we find that 7. )<Y __ o (z%“v% S '&J—)Q—ﬁl), (43)
TN
i€z /1

(1) Although the condition that d, be square-free is usually omitted (often incorrectly) at this stage
of Selberg’s sieve method, the condition is virtually implicit in the method. In a case such as this, where
the function f(n) is not totally multiplicative, it is essential that the condition be imposed explicitly.
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1 -1
where |oal <£1 (1 - m) = 0{(log log 10 d)?} = O(").

To evaluate the first term in the dexter side of (43) let [, indicate, generally, either 1
or any number composed entirely of prime factors that divide the square-free number 7',
that is to say p|l, implies p|I'. If p | 2D and o(p) >0, then

Pl N _op(, L
po=5(1+)-1-5(1-)

1 2 1\t
so that =—<1 ——) ;
hip) » P
1 1
also, if p|2 D, then =—.
7| hip) »

Therefore, as f,(m) is a multiplicative function, we have for any square-free number I

L=n (s _1)-; S o't
R A S B T

pJ2D

the identity being trivial if o(I')=0. We deduce that as y—-co

2 0 !
w0 1 ol 5 elm) L(1) log y
= = e > 21— — 44
SR AR AT, T2 w T )
by (24) and partial summation.
The error term in (43) is
O(x%”v% > —“-1—) =0 (:c%“vg DR ——L—,)
di, da<2 [dl, dz]é d<<z di.d;<z/d d%dl-%df}
(a1, dy)=1
=0(at**t 5 Lz Ozt ot 2). (45)
i d¥d
Choosing z to be x* ™~ ¥ (consistent with earlier conditions), we deduce the required
estimate
(I+ny)2
46
V)< ety (46)

from (43), (44) and (45).
The estimation of W, (w) being very similar to that of V,(v) after the first stage, we
suppress all but the earlier details. Here we assume z*°<w <z and z <2 w™*", Then,

since (1) z<wz,

(*) This relates to the condition p >z in the definition of W(w).
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Wz(w)<w<;<ew (‘%Qdf: Z 0a: Oa» Z 1

di, da<2 w<m<ew
lm=n2-D mldy, dele=ns—D
nsr

= 2 Qa, O, Y([d,, dx] w; [dy, d5]).

dy, dz<2

The conditions on w and z shew that in the above sum u =[d,, dy}w and A =[d,, d;] satisfy
(13). Therefore, by (41), we obtain as an analogue of (42)

Wx(w)<f£@ S _ 84 Ca, +O(x*+€w% S !961”@%')

T UR) a5 [[dy, d)) i s Ldy, dgl?
_xLQ1)

— deeda Y+e, B 7/4 < (1+772)x 47
2@ e Fldn dad) T OF ) Stog @y 47

on choosing z to be ™" ™,

9. The greatest prime divisor

We arrive at our final result by using the estimates for V,(v) and W, (w) to obtain
an upper bound for 7',(y) for y==2"". To this end let y =log z.

First it is necessary to estimate T',(xX). Since in (9) xe*<z*, we have by (9) and (46)

+ log X
T, (@X)<a(l+7n) 3 i‘——ﬂ;l<sx(1+n2)f (y+o)di

Oga<iogXx §Y T § & 0 y--3¢

=8m1+n5@i[—%t—5195§:fﬁq+4um

+ O(x)

~82(1+17;) (—g+$log P)log z+0(2)

={(-89010...) (1 +,) 2 log x+ O (x) < - 8902 x log x. (48)

Next, since X' e *>z"" in (12), equation (47) implies that

, o+ 1~2y +1 x

T (y) <a(l+ - + ( )
2 (¥) < 2 ”]z)ogzogy Ey+ia log z

for y =", Therefore

. losY (12 +11¢) d¢
<14 T T
T:(y) (1 +15) . 147 + 33

logY + i
“a(ry [y 2R EBO] g,
0

+ 0 (x)

=14 (1 +n,) (555 +& log 148) log « + O (x log log )

=(-10808...) (1 +%,) x log x + O(x log log x)

< - 1081 « log «. {49)
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Combining (48) and (49) we thus have from (8) that
7,2y < - 9983z log .
If this be compared with (7), we obtain at once that

Pz = glh10 (50)
for the case D=2, 3 (mod 4).

A few changes in detail are necessary when D=1 (mod 4) because g(2%) is no longer
always zero for «>1. The first variations appear in Section 5, where new formulae must
replace both (23) and (24) with incidental minor modifications in the remainder of the
section. No changes are necessary in Sections 6 and 7 except in the main term of the final
formula (41). The argument of Section 8, although affected by the above modifications
and in particular by the consequent change in the form of the functions f(p) and f,(p),
leads to the same final formulae (46) and (47) and thence to (50).

We have thus arrived at the following theorem for the case in which D is negative,

the proof for D positive being similar in principle.

THEOREM. If D be not a perfect square, then for all sufficiently large values of x the

greatest prime factor of

[1 »*-D)
nLT
n?>D
exceeds ™,
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