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1. Introduction 

The theorem that,  if Px be the greatest prime factor of 

1-[ (n 2 + 1), 
n~x 

then P* - -  ---~ qy:)  

X 

as x ~ ~ ,  for which as for many  other interesting results in the theory of numbers we are 

indebted to Chebyshev, has a t t racted the interest of several mathematicians. Revealed 

posthumously as little more than a fragment in one of Chebyshev's manuscripts, the theo- 

rem was first published and fully proved in a memoir by  Markov in 1895 [6], while later 

in the same year a generalisation by  Ivanov  [4] appeared in which the polynomial n2§ 1 

was replaced by n2+A for any positive A (an account of both Markov's and Ivanov ' s  

work is to be found in Paragraphs 147 and 149 of Landau's  Primzahlen [5]). In  1921 Nagell 

[7] improved and further generalised Chebyshev's theorem by  shewing that  for any e < 1 

and for all sufficiently large x 

Px > log~ x, 
X 

where Px is the largest prime factor in the product obtained by  replacing ne+  1 by  any  

irreducible integral non-linear polynomial ](n). The final result is due to Erd6s [1], who 

in 1952 improved Nagell's result by shewing tha t  

Px > (log x)~ los log log x 
~g  

by  a method which he stated could be developed further to yield 
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P~ > elo~, x (c 2 < 1). 
X 

Chebyshev's theorem and the generalisations of it tha t  appertain to quadratic poly- 

nomials are evidently closely connected with the celebrated problem of whether or not 

there be an infinitude of primes of the form n 2 + A. There is, however, a considerable diver- 

gence between the results described above and the inequality 

Pz > Bx2, 

which for the polynomial n 2 + A  would be implied by the t ruth of long standing conjec- 

tures about  the distribution of the prime values taken by  this polynomial. The purpose 

of the present memoir  is to narrow this divergence by  shewing how Chebyshev's method 

can be combined with both the sieve method and a method involving exponential sums in 

order to obtain a result of the form 

Px > B x  1+~ (~ >0)  

for any  irreducible polynomial n2+A, where A may  be positive or negative. Since the 

problem appears to be of some importance, it has been considered to be worthwhile at  

the cost of some brevity to derive as accurate a result as possible, the value of :r actually 

obtained being 
1 

~=]-0" 

Although any irreducible quadratic polynomial may  be considered in a similar way, the 

method is not applicable at  least in its present form to polynomials of higher degree. 

2. Notat ion and conventions 

The quadratic polynomial will be written as n ~ -  D in order that  D may  be the deter- 

minant  of a binary quadratic form associated with the polynomial, D not being a perfect 

square since the polynomial is irreducible. The proof will only be given for the case in 

which D is negative, since the proof in the other case is similar although rather  harder; 

accordingly it will be assumed throughout until the Statement of the final theorem that  

D < 0 (and thus not a perfect square). 

The letters d, k, l, m, n, fl, 2, and v are positive integers; h, r, ~,/z, and v are integers; 

s is an integer except where it is the argument in a Dirichlet's series; p is a positive prime 

number; e = exp 1. 
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The meaning of x and y, when no t  occurring as indeterminates in a quadrat ic  form, 

is as follows: x is a continuous real variable t ha t  is to be regarded as tending to infinity, 

all appropriate  inequalities t ha t  are t rue for sufficiently large x being therefore assumed 

to  hold; y is a real number  not  less than  1. The letter u indicates a real variable, which 

will be related to x in such a way  tha t  x and  u tend to infinity simultaneously. 

The positive highest common factor  and lowest common multiple of r and  s are de- 

noted by  (r, s) and  [r, s], respectively; d(h) is the number  of positive divisors of h; s?(h) 

is the  sum of the 7 th  powers of the  positive divisors of h; moduli  of congruences m a y  

be either positive or negative; It] is the greatest  integer no t  exceeding t. 

The letters e, ~, ~1, and  ~2 indicate arbi trar i ly small positive constants  t ha t  are not  

necessarily the same at  each occurrence. The equat ion ] = o(Igl) denotes an  inequal i ty  

of the form ]]]<~AIg I tha t  is t rue for all values of the variables consistent with s ta ted 

conditions, where A is a positive constant  t h a t  depends at  mos t  on e and  D. 

The author ' s  paper  [3], to  which we shall have recourse on several occasions, will 

be referred to as I. 

3. Development of the method 

We shew first t ha t  it suffices to consider the problem when D is square-free. This is 

the case of least complexity,  since the expression required in the proof for the number  

of roots (incongruent solutions) of the congruence 

v~ ~- D(mod l) 

can be formulated most  easily when D has no square factor. Le t  D = A~2, where A is 

square-free. Then by  restricting n to be a multiple of ~ we can reduce the problem to the 

consideration of a polynomial  with constant  term A in place of D; writing n = n l ~ ,  we 

obtain  
n ~ - D = ~ ( n ~  - A) 

so tha t  the prime factors of n 2 - D for n ~< x include the prime factors of n~ - A for n 1 <~ x /~ .  

We therefore assume th roughout  t ha t  D is square-free (and negative) except in the state- 

men t  of the  final result. 

The residue class to which D belongs, modulo 4, affects the proof in some minor 

details. We therefore only give the proof in detail for the simpler case in which D~_2, 3 

(rood 4), reserving until  the end a brief discussion of the modifications tha t  are necessary 

for the other  relevant case D ~ I  (rood 4). Accordingly we make  the  addit ional assump- 

t ion tha t  D is congruent  to 2 or 3 (mod 4) until  the end of the proof. 
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In  the very beginning the method follows that  of Chebyshev and Markov. Let  P~ be 

the greatest prime factor of 
1-I (n 2 -  D). 

n ~ x  

Then, defilfing N~:(1) to be the number  of positive integers n not exceeding x with the 

property tha t  n 2 -  D is divisible by  l, we have 

I-[ p~('~)= 1] ('r~-D)>([x]!) ~, 
P ~ P x  I ~ X  

pO:~ x~_ D 

where the sinister product is taken over p and positive values of ~. Consequently, by 

Stirling's theorem, 
N~:(p~) log p > 2 x log x + O(x). (1) 

P~ Px 

pa:~ x~_ D 

Next 

N~(p~)logp = ~ N~(p) logp+ ~N~(p)logp+ ~ N~(p~)logp 
P~Px  X<D~Px p ~ x  p~ ~ x ~ - D  

lar D ~ > 1  

= EA + Zz + Ev, say, (2) 

the condition Io ~<Px being omitted from Ec since it is in reality superfluous. Tile lower 

bound for ZA required for the application of our method can be obtained from (1) and (2) 

through upper bounds we now derive for ZB and Zc. 

The estimates for ZB and ]g c are formed by  considering an expression for Nx(I). We 

have 

N.(/) = ~ 1 = ~ ~ 1 = ~ (Ix~-ff-]-I-~l], (3) 
n~-D~O(mod!)  v ~ D ( m o d l )  n~v(raodl) v ~ D ( m o d l )  \ L  t , J  L t, J l  

n ~  x 0 < ~ /  n ~  x O <v<~l 

which is a formula that  will be used later to develop another expression for Nx(1). Here 

it is enough to deduce tha t  

Nx (t) = x~(t) + o{e(z)}, (4) 
b 

where ~(1) is the number  of roots of the congruence 

v ~ D ( m o d  1). 

Now 

2, if ( D I p ) = l  , 

= O, (Dip)  1, e ( p )  i f  = - 

1, if either ( D i p ) = 0  or p = 2 ,  
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while ~(p~) = 0(1) 

always. Therefore, by  (2) and (4), 
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z .  = �9 ~ e(p) log p e o( 5 e(p) log p) = 2 ~ Y log p + z y log v + o( Y log p) 
V<~X ~9 p<~X p ~ x  ~ pl2D ~9 p<~X 

(D I P) ~1 

Furthermore 
-- x log x + O(x). (5) 

~<(x,-~).~ ~ + 1  = 0  x p ( p _ l ) ]  +O(logxv<.~'~ 1)=O(x).  
2~<:r {10g (X ~- D)}/log p 

The lower bound 

(6) 

ZA > x log x + O(x) (7) 

is obtained immediately from (1), (2), (5), and (6). On the other hand Y~A is a particular 

example of sums of the form 

T x(y)=  ~ hrz(p) l ogp ,  
X<p~y 

for which we shall shew that  an upper bound can be derived by  a complicated procedure 

involving the use of Selberg's sieve method. The comparison of this upper bound with 

the lower bound given by  (7) will yield the required lower estimate for Px. I t  is in this 

determination of the upper bound and in the subsequent comparison tha t  the more indi- 

vidual aspects of the memoir are presented. 

Let  us prepare the sum Tz(y ) for the application of the sieve method, assumingQ) 

throughout tha t  y is subject to the r6striction x12nl< y < x 2. A single application of the sieve 

method to estimate the complete sum directly does not yield the opt imum result, since 

the sum can be divided into a series of 'segments for which we can derive individual upper 

estimates which, while being of a common order of magnitude, are nevertheless of variable 

precision. Each such segment can be estimated by  two different methods, the position 

of the segment in the sum determining which method is the more favourable. Firstly then, 

dividing the sum into two  parts  that  correspond to the methods to be applied, we write 

Tx(y) = ~ Nx (p) log p + 5 N,(p) log p = T,~ (xX) + T'~ (y), say, (8) 
X < p ~ x X  x X < p ~ y  

where X = x  lm. The sums Tx(xX) and T'x(y) are now each to be split up into segments. 

To consider the first let 

(1) This restriction on y is only to apply in the context of Tx(y ). 
19- 662903. Acta mathematica. 117. Imprim6 le 16 f6vrier 1967. 
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v=(v) = ~ N=(p). 
v .<p~ev  

Then T~ (xX) <~ ~ Z Nx (p) log p ~< ~ log (xe ~+~) V~ (xe~). (9) 
0 ~ r  X xe~ g + l  0 ~ < l o g  X 

To effect the corresponding division of T'~(y) it is necessary to transform the sum. By 

the definition of N~:(p) we have 

T'~(y) = ~ log p = ~ + ~ = T~(y) + Tx"(y), say. (10) 
x X ' < D ~ y  m > x a l Y l o g ' x  m ~ x  l y l og6x  

pm =n~-- D 
n ~ x  

The conditions of summation for T'~"(y) imply that  n < pV~m ~<x/log 3 x. Therefore 

/ \  

(y).~21ogx ~. l = 2 1 o g x  ~ d(n2-D)=O , (11) 
\log x/ lm = n ~ -  D n <x/loga x 

n < x / l o g  a x 

by Theorem 2 in I. Next, since the conditions of summation in T"(y) imply that  m <~ex/X, 
we have 

e x  2 

T ;  (y) ~< Z log - - .  x2/ylog6x<m~ex/X m 
p m ~ n 2 - - D  
n<~x; p>~x 

Therefore, letting Wx(w) be defined by 

we deduce that  

Wx(w) = Y. 1, 
w . < m ~ e w  

p m = n Z - - D  

T~(y) <~o<~<logr ~ log (xXe ~+I)W~ ( ~ ) ,  

where Y=ey log s x/xX. Hence, by  this, (10), and (11), 

, <  ~ + j / x e - ~ \ (  x ) 
T~ (y) ~0<~<~o~r~ log (xXe )W~ I::~- ) + 0 ~ . (12) 

In  accordance with the familiar principle of the sieve method the estimations of 

Vx(v) and Wz(w) depend on explicit formulae for the associated sums that  are obtained 

by replacing p in the conditions of summation by multiples of a given square-flee integer 

4. The sum corresponding to Vz(v ) is evidently of the form 

Y(u; 4) = ~ Nx(~) ,  
u<~k<~eu 

while as will be seen later the sum corresponding to Wx(w) is actually of the same type. 
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The derivation of the formula for "l~(u; 4) in the next sections depends in part on 

ideas that  were developed in I. For convenience it will be assumed throughout that  u and 

satisfy the conditions 
X "tl5 < ~ < X ~ 

l 
A square-free [ (13) 

2<ra in  (u~ x -~, xu-~), J 

which imply moreover that  
2<x~<u �89 (14) 

Here it is useful to note that  u~x -1 ~xu  - t  according as u ~x.  

4. Transformation of Y(u; 2) 

A formula for ~(1)  can be obtained from (3) by using the methods of Sections 3 

and 5 of I. Writing as in I ~ ( t ) = [ t ] - t - � 8 9  for any real t, and writing also 

v~-- -- D (mod l) 
O<v<~l 

v ~ D ( m o d  l) 
0<~,~/ 

we have 

0<u~</ 

Then, since Ot(x ) is zero unless l [D in which case it is 0(1), we deduce that  

Y(u;4)=-~ ~ e(zk) ~<~k<eu ~ ZD+EE+0(1) ,  say. (15) 

The sum EE must itself be transformed by the method of Section 5 in I. Equations 

(24), (25), and (26) in I give the formula 

iF,  (x) = ~Fz. ~ (x) + 0 { 0 , .  ~ (x)}, (16) 

in which, writing ~(h, l) = ~ e 2=~h~ll, 
v~------ D (rood l) 

O<v<~l 

1 2 ghx 
we have qPz.~(x) = l<h<~ ~ ~(h, l) s i n - - i  ' (17) 
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2 ~hx 
Ot,~(x) = �89 Co((o) e(1) + ~ Ch(w)o(h, l) c o s  ~ , 

h = l  
(18) 

= (19) 

where eo =~o(x, u, 2) ~>2. We deduce from (15), (16), (17), and (18) that  

I 1 Ez = -  ~ ~ ~ Q(h, M~) sin 2 ~hx 
:7"~ l<<h<~ u<).k<~eu 1~]~ 

2 zhx]  
+ 0  �89 ) ~ q (~k )+~Ch(co )  Z e(h,~k) cos �9 (20) 

u <~k< eu h=l u <atc< eu ~ - - ]  

Next let P~(h, u) and Pz(y) be given by 

P~ (h, u) = P~ (h, u, x) = ~ ~(h, 2k) e ~ ~=th~/a~ 
u <:2k~ e u 

and P~(y)= ~ ~(~k), 
O<hk<~y 

so that,  since ~(h, 2k )=~( -h ,  2k), we have the properties 

I P ~ ( h , u ) l = I P ~ ( h , u ) l = S ~ ( h , u ) ,  say, (21) 

and 

Then, by (19) and (20), 

S~(h, u) <~ P~(eu). 

\ 0,) l<~h<~m O<h<~o)" h 2 ~ h . . . .  f t~]  

= O ( l o g o E E ) + ~ / c o  z ) + O  , say. (22) 

A formula for Z~ will be obtained in the next section, while the estimate for E~ will 

flow from the upper bound to be derived later for P~ (h, u). 
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5. Estimation of Y'D 

We express the Dirichlet series 

k = l  

for general square-free t in terms of the special series g(s) obtained by  taking 2 = 1, in 

order to avail ourselves of results already obtained in Section 4 of I. 

We have, by Euler 's identity, for a > 1 

= e(p~) 1 = e(p~+:)\ 

~Tow, if p)~2D, then ~(p)=e(p  ~) for f l > l ;  also, if p [2D,  then 9 ( p ) = l  but  ~(p~)=0 for 

fl > 1, since(1) D ~ 2 ,  3 (mod 4). Therefore 

_ l - [  ~ @(P ~) (1 1 : l  ~ Q ( P ~ ) ( 1  1 -1 

p I 2 D  p I 2 D  

Consequently, dividing this equation by  the special equation derived from it by  setting 

i = 1, we obtain 0 - I-1 
I - p z 

v I 2 D  

To evaluate this let us 'consider the case ~(2)> 0. Here the value of Q(pa) for ~ > 0 in the 

first product is 2 unless p l2D in which event its value is 1 for ~ = 1 and is 0 for a > 1. 

Therefore the first product is 

vl~ vl~ pSI 
P X2D Pl2D P X2D 

( Consequently 91 (s) = ~(1) g(s) 1-[ 1 + , (23) 

which result still clearly holds when ~(2)=0. In  the subsequent application of (23) it will 

be convenient to write 

1 - I 1 +  
~1.~ = ~i -1;-" 

0) This hypothesis is necessary for the statement to be true for p = 2. 
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The next stage is to evaluate Px(y). Using (23) we have 

P-~(Y)=e('it) 2 a, ze(m)=e(~)<~a,z ~ e(m) �9 
I m ~ y l , ~  " I ~ y /  " r n ~ y l ~ l  

The inner sum can be evaluated by both equation (7) and Lemma 2 in I, which give when 
D is square-free and congruent to 2, 3 (mod 4) 

zL(I) e(m) = ~ -  + O(zt), (24) 
m<~z 

where L(s)= ~ ~ ~. 
This yields 

Pa (y) ~(2) yL(1)~(2) ~ aLa-l- § 0 (~ (~-))tYt ~ -  - -  I az'al] 

~'~)yL(1)r~(1 -I+O(~()~)Y : ~)+O(~('~)Y~ <2 lal.al~. 

In this  Z [aLa[<~ Z [al'~]" 
t>v/~ 1 Y~l>vta It  ' 

_ ~()')yL(1)V[ (1 +l)-'+O[~('~)Yi ~ la,,~l~ therefore P~(Y) ~ ~[; [-~--,_~ ~ F ]  

We pass from this to the required formula for ZD by partial summation. Substituting 
(25) in the formula 

~" de~ (t) 

we obtain after a short calculation 

since the contribution to the term in square brackets due to the explicit part in (25) vanishes, 
Consequently 

ZD = ~)(It)~ ( 1 ,  I~- 'L(1) , 
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6. Estimation of Pa(h, u) 

In  general principle the method follows Section 6 in I although there is a considerable 

divergence in details owing to our different requirements here. Evidently it is enough to 

restrict our attention to the sum P+(h, u), from which for brevity it is now appropriate 

to omit the + symbol. 

Let  a x e +  2bxy + cye be a binary quadratic form of determinant D. Then, if 

~k = ar e + 2 brs + cs 2 

be a typical primitive representation of 2k by the form, a typical value of v/2k in ~(h, )&) 

is given for s # 0  by 
v ~ br + cs 

(27) 
~k  r r(are + 2 brs + cs2) ' 

where s~------1 (mod r), and is also given for r4:0 by 

~ ar  + b8 
2 k - - s  s ( a r e + 2 b r s + c s 2 )  ' (28) 

where r~--I  (mod s). Furthermore 

X gg 

).k ar e + 2 b r s + c s  e" 
(29) 

Therefore, defining 0r.s to be the expression for 

X 

2k 2k 

in terms of r, s given by (29) and one of (27) and (28), we have 

P~(h,~)= Z ~ e ~.h~ 
a, b, c u ~ a r 2 + 2 b r s + c s Z < ~ e u  

arZ+2 brs  + cs2~O(mod ~) 
(r, s)=l;  (M) 

where a, b, c in the outer sum indicates summation over a set of representative forms of 

determinant D, and where (M) indicates that  only one representation from each possible 

set of representations is to be included. Since u > 0 and D is negative, the forms will be 

positive and therefore a, c > 0. Also a, b, and c may be regarded as being bounded (choose, 

for example, the representative forms to be reduced forms). We deduce that  

P~(h,u)= ~ ,Sa.b. c x~ e2mhOr.s, (30) 
a, b, c u < a r 2 T 2 b r s + c s 2 < ~ e u  

z 2 ar  + 2 b r s + c s  ~0(rnod).) 
(r, s)=1 
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where ~.b,r is either �89 ~, or ~. The estimation is continued by expressing the inner sum as 

e 2~'h~ . . . .  18,<~i~i+i~i~i § ~ =Y,r+Y~o-~O(1), say, (31) u<ar2+2brs+cs2<eu Irl~lsl=l 
ar2+ 2 br8 + csS~0(mod20 

(r, s)=l 

and then considering ZF and Z~. 

An estimate for an exponential sum similar to Kloosterman's sum is required. This 

is obtained by proving successively a number of lemmata. 

LE1RMA 1, 1/ h, r=#O; 0~<~-~1~<21rl;  and h 1 be a given integer, then we have 

~,<~<~exp(2~i(hl/-h$!)=O[lr,�89189 

(r, 8)=1 

This result on an "incomplete sum", which may be inferred by a well known method 

from Lemma 2 of [2], depends essentially on Weil's estimate for the Kloosterman sum. 

LEMMA 2. The result o] Lemma 1 still holds i / h  I be any real number. 

This can be deduced from Lemma 1 by a method due to Estermann. Let h2 = [hi] 

so that  h 1 = h 2 § h 3 where 0 ~ h 8 < 1. Then, since 

we derive the result by applying partial summation and Lemma 1 with h~ in place of h~. 

L WMMA 3. I / h ,  r ~:O and 0 ~ < ~ - ~ 1 ~ 2 ] r l ,  then 

: exp(,2Z-irh~)=O[]r]�89189 

(r, s)=l 

The sinister side of the above equation is equal to 

, = 
(r, s)=l 

1 4 2 ~ 0 V  ) ( 2 Y ~ i ( ~ r ~ r x 8 - - h ~ ! )  

(r, s) = 1 

on applying Lemma 2 to the inner sum. 

Two other lemmata will also be needed. The first is similar to Lemma 1 in I but  

is easier to prove. 
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LEMMA 4. I/h=~O and y>~l, we have 

{(h, = (h)}. 
l~y  

L E M ~ A  5. Let (a, b, c) be one o] the ]orms that appear in equation (30). Then, i/, ]or 

any given r, ~ ( 2 )  be the number o/roots in v o/ the congruence 

we have 

/or any square-/tee number ,~. 

ar 2 + 2brv + cv ~ ~-- 0 (mod 2), 

~ (~ )  = O{d(~)} 

I f  p X c, then ~r  (P) is at  most  2, whereas, if p I c, then fir(P) is at  most  p and therefore 

a t  mos t  c. Since ~r(~t) is a multiplicative funct ion of ~ and since c has a bounded number  

of prime factors, the lemma follows. 

We direct our a t tent ion to 5] F. The condition at2+ 2brs +cs 2 <~eu implies t ha t  

Irl < EuL 

where E = ( -ce/D)�89 on the other hand  the condition ar ~ +2brs +cs a > u  in conjunct ion 

with Is I < I r ] implies t ha t  
Irl >SuL  

where G=(a+21b I Hence 

E F =  ~ ~ e 2~h~ . . . .  ~ Ep.~, say.  (32) 
Gu~<lr]~Eu~ u<ar~+2brs+vs~eu  Gu~<[r[~Eu~ 

ar~+2Ors+cs2~O(mod~) 
(r, s)=l; [sl<lrl 

Since in the inner sum the inequalities 

mus t  hold, we see tha t  for given r there are either no values of s or the values of s range 

through all the integer values in one or two intervals contained in the  interval  ( - r ,  r). 

To est imate F~F. ~ we are thus led to consider the sum 

�9 2 ~t hO r 
~ F , r =  X e ,*, 

ar 2 +2 br s + cs~=-O (rood2) 
(r, s )=l  

in which - r < ~1 ~< ~2 < r. 
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We have 

ar  + b r v + c v  =--O(mod2) &(r)<.s<~&(r) arZ+gOrv+cv'=--O(mod .1) , r , v ,  
O<v~<). s ~ v  (mod) . )  O < v ~ ) .  

( r ,  s ) = l  

Writing 

we have from (27), (29), and (33) 

Z'  = ~ exp ( - -  
F,  r .  v ~x(r)<~s<~r 

\ 
s ~ v  ( m o d  2) 

( r .  s) = 1 

( 2zdh(br+cs) + 2~ihx 
(r, 8) = exp ~r(ar~ T ~ 78~) ~r ~ + - ~ - ~ s  + c~/' 

2 ~ h ~ )  el(r, s), 

which when transformed by partial summation becomes 

where 

say. 

~-,  r, v = ~ g(/t) {~(r,/~) -- q~(r,/~ + 1)} + g([~2(r)])cp(r, [~2(r)] + 1), 

~(r)<<. s<~lz 
s ---v ( rood 2) 

( r ,  s ) ~ l  

qJ(r,l~)-q~(r, t t + l ) = O ( ~ ) ,  

(33) 

(34) 

In (34) 

since I/~ ] < I r I and ar 2 + 2brtt + ctt 2 >~ - Dr2/c. Therefore, by this and Lemma 3, 

I r: a) 
= O(x *+" [r[-~ [hi {(h, r)}~) + O([rl~+~{h,  r)}~), 

from which we infer through (33) and Lemma 5 the first part  of 

z~r/=o(* l+'lrl -~lhl {(h,r)?) +O(]r[~+'((h, r)}~). (35) 
ZF. rJ 

The second part follows from the first part by the discussion at the end of the previous 

paragraph. 
We can complete the estimation of Pa(h, u). Firstly, by (32) and (35), 

EF=O(xl+~lh[ 2 {(h-'/)}~-~+O( u~+~. 2 {(h,l)}�89 

and then, by Lemma 4, 
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x~ = o(x~+~ u -~ lh[ (~ �89 (h)) + O(u~§189 

Since we see in turn through (31) and (30) that  Za and P~(h, u) satisfy a similar inequality, 

we have finally that  

P~(h, u) = O(xl+~u-ilh]a_ �89 (h)) +O(ui+~a_�89 (36) 

7. Estimation of Z~ and Y(u; 2) 

The estimate for ZE follows from (21), (22), and (36). Firstly we have 

Z E =  o (x i+~u-~  ~ (T-�89 (h))-+O (?s ~ ~-�89 
l~<h~<o) \ 1~< h~<eo [b ] 

=O(o)xl +~ u-i) + O(u I+8 log ~o). (37) 

N e x t  Z~=O(x.i+eu-�89 ~ a - ~ h ) ) + o / ~ ' + ~ a - � 8 9  

=O(xl+~u-~ log co) + O(o~-lu~+~), (38) 

while, by (25), 

P:~(eu)=O(d(~)~u). (39) 

Therefore, by (22), (37), (38), and (39), 

(u 1+~ log ~o) 
ZB = O(oJ log co. xl§ + O(u ~+~ log ~ co) + 0 \ ~ . 

Let eo be chosen so that  eoxu -~ =4Uo)-l~t  -1 with the consequence that 

eo = 2u~x-�89189 >2  

by (13). Substituting this value of ~ we obtain finally 

E E = O(x�89189 + O(u ~+~) = O(x�89189 (40) 

since ut<x�89 -�89 by (13). 

The estimate for Y(u; 2) is now immediate. Collecting together the results of (15), 

(26), and (40) we obtain 

~(~; ~) = ~e(~) [ I  {1 + 1~-'L(1) 
2 ~1~ \ p/  ~(2) + ~189189 (41) 

since (13) implies that  the error term due to (26) may be absorbed into that  of due to (40). 
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8. Application of the sieve method 

A suitable formula  for T(u; ~) having been obtained, Selberg's sieve method  [8] can 

be applied to the est imation of V~(v) and  W~:(w). 
Defining, as is cus tomary  in Selberg's method,  9,~=ga(z) by  

1, if d = 1, 

Qd = / a r b i t r a r y  real number,  if d be square-free (*) and 1 < d ~< z, 

[0, otherwise, 

we introduce the non-negat ive funct ion 

(~ e~)~, 

which is equal to 1 when n is a prime number  exceeding z. 

I n  the est imation of V~ (v) it will be assumed tha t  x < v <x~ and  z < x �89 v - t  so tha t  in 

part icular  v satisfies the first condition imposed on u by  (13). Then, because z <v,  

Vz(v) <~ ~ N ~ ( / ) ( ~ )  2= ~ ~a,e~. ~ N::(1)= ~ Q,~e~.Y(v;[d,,d2]). 
v < l ~ e v  d[l el,, d2~z v<l<~ev d,,  d2<~z 

l~-0 treed [d,, d~]) 

Therefore, since [dl, d~] does no t  exceed xv-~ and m a y  be regarded as being square-free, 

we have 

<~L(~) _ e~ ,~ ,  ~0(~+~ 2 l~lJ~l~ (42) 
Vz(v) ~2)  d,.~<.<z /([dl, d~)] d,.cl~<z [dl, d2]�89 ] ' 

by  (41), where / (n)  is the multiplicative funct ion defined by  

/(n) n ,j~ \ 

The first term in (42) is now minimized in the usual way. Sett ing 

]'~(m)=l(m) l-I ( 1 - ] - ~ ) ) ,  (>0) 
lolm 

we find tha t  V~(v)~< xL(1) +0/Ix�89 ~ ~ (43) 

z<~ /,(1) 

(1) Although the condition that d 1 be square-free is usually omitted (often incorrectly) at this stage 
of Selberg's sieve method, the condition is virtually implicit in the method. In a case such as this, where 
the function f(n) is not totally multiplieative, it is essential that the condition be imposed explicitly. 
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where 
1 ) - :  

lo l : =O{( log log  lOd)Z}=O(x'). 

To evaluate the first t e rm in the dexter  side of (43) let l: indicate, generally, either 1 

or any  number  composed entirely of pr ime factors t ha t  divide the square-flee number  l', 

t ha t  is to s ay  p ] l: implies p ] l'. I f  p X 2D and ~(p) > 0, then  

so tha t  
1 1) l 

1 1 
also, if p 12 D, then  

/I(P) P" 

Therefore, a s / : (m)  is a multiplicative function, we have for any  square-free number  t' 

h=l  ~"ll ' 
PX~D 

the ident i ty  being trivial if ~( l ' )=0.  We deduce tha t  as y-->~ 

~' ~" ~( 1) >~ ~(m) , L(1) log y 
=/ '~Y /1 ' ) l ' ~ Y l l = l V V i  ~]1) ~(2) ' z = "~ ~ '  ~ ~ ~ y - m -  ~ (1 - 

(44) 

by  (24) and part ial  summation.  

The error term in (43) is 

\ dl, d2~z \ d~z  d~,cl~z/d 
( aL a'~) = 1 

1 

Choosing z to be x~-~v -~ (consistent with earlier conditions), we deduce the required 

est imate 

Vx (v) < (1 +~2) x 
log (x�89 - ~) (46) 

from (43), (44) and (45). 

The est imation of Wx(w) being very  similar to tha t  of Vx(v) after  the first stage, we 

suppress all but  the earlier details. Here  we assume x 4 / ~ < w < x  and z<x2 /Tw -3/:4. Then,  

since (1) z < x, 

(1) This relates to the condition p ~> x in the definition of Wx(w). 
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w<m~<ew cl}l d,, d~<~z w<m<~ ew 
lm ~n~- D m[d~, cl~]q=n~- D 

n<~x n<~x 

= ~ ~a~a~T([dl, d~]w; [d~,d~]). 
d~. d~<z 

The conditions on w and z shew tha t  in the above sum u = Ida, d~]w and ~ = [d~, d~] satisfy 

(13). Therefore,  by  (41), we obtain as an analogue of (42) 

~(2) 2 ~ 0 X~+eW ~ 2 [d i ,  d~]i ] 1([41 , d~]) ~1, d,<Z d~, ds~z 

xL(1) ~ ~a,~a, (1 + ~ ) x  
- ~(2) ~.X<~ ~ ] )  ~ O(x~+~w~z~4) < log ( x ~ w - ~ )  ' (47) 

on choosing z to be x2/~-'~w -~n~. 

9. The  greatest prime divisor 

We arrive at  our final result  by  using the estimates for V~(v) and W~(w) to obta in  

an upper  bound for T~(y) for y = x  11n~ To this end let 7 =log x. 

First  it  is necessary to est imate T~(xX). Since in (9) xe~<x ~, we have by  (9) and (46) 

+ 7 + 1 {uogx 
T~(xX)<~x(l+~le) Z Y~Z.--~ ~< 8x(1 + ~h)J0 (7+t )  dt 

o<~<lo~x ~ 7 - ~ ~ 7 -- 3 ~  + O(x) 

~o~x[ 471og 9(7-  3t!] = 8 x ( 1  +~2) 0 [ - � 8 9  - + O (x) 

= 8 x(1 + ~ )  ( - ~ + ~ log ~) log x + 0 (x) 

= (. 89010. . . )  (1 + ~ )  x log x + 0 (x) < �9 8902 x log x. (48) 

:Next, since xX  -1 e-~> x 4/~ in (12), equat ion (47) implies tha t  

T ~ ( y ) ~ x ( l + w )  ~, . . . . .  ~0  

for y = z 11/~~ Therefore 

~'~ (y) < 14 x(1 + ~ ) f l  ~  (1~ r + 1 i t )  dt 
1 4 7 + 3 3  ~ ~- O(x) 

lo~Y[ 2 7 log (147+ 330]  
= 14x(1 + ~%) o [�89 9 + O(x) 

= 14x(1 + ~7~) (~1 + ~ log I-4-3-~l~176 x ) ~ 4 o ,  

= (. 10808. . . )  (1 + ~]2) x log x + 0 (x log log x) 

�9 1081 x log x. (49) 
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Combining (48) and (49) we thus have from (8) tha t  

Tx(x 1~/1~ 4 . 9983x log x. 

I f  this be compared with (7), we obtain at  once tha t  

Px > x TM (50) 
for the case D-~2, 3 (mod 4). 

A few changes in detail are necessary when D ~ I  (mod 4) because Q(2 a) is no longer 

always zero for a > 1. The first variations appear  in Section 5, where new formulae must  

replace both (23) and (24) with incidental minor modifications in the remainder of the 

section. No changes are necessary in Sections 6 and 7 except in the main term of the final 

formula (41). The argument of Section 8, although affected by  the above modifications 

and in particular by  the consequent change in the form of the functions /(p) and / I (P) ,  

leads to the same final formulae (46) and (47) and thence to (50). 

We have thus arrived at  the following theorem for the case in which D is negative, 

the proof for D positive being similar in principle. 

THEOREM. I /  D be not a perfect square, then /or  all sufficiently large values o/ x the 

greatest pr ime/actor  o/ 
1-[ ( n ~ -  D) 

n<~ x 
n~> D 

exceeds x n]~~ 
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