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ON THE GREATEST PRIME FACTORS
OF DECOMPOSABLE FORMS AT INTEGER POINTS

K. GYORY

1. Introduction

Let f€Z[x, y] be a binary form and assume that among the linear factors in
the factorization of f at least three are distinct. Mahler [12] proved that P(f(x, y)) — oo
if X=max (|x], |y]) > with x, y€Z, (x,y)=1, where P(n) denotes the greatest
prime factor of n. Mahler’s work was generalized by Parry [14]. For irreducible
forms f Coates [4] improved Mahler’s result by showing that if «=1/4, then for any
coprime integers x, y

() P(f(x, ) = ci(loglog X', X = X,

where ¢;>0 and X;>0 depend only on f and can be given explicitly. Sprindzuk
[21], [22] established (1) with a=1 for all such forms of degree at least 5 and for
so-called non-exceptional forms of degree 4. Kotov [11] generalized SprindZuk’s
result to binary forms with algebraic integer coefficients. Shorey, van der Poorten,
Tijdeman and Schinzel [20) proved that if f¢Z[x, y] has at least three distinct
linear factors in its factorization and «=1, then (1) holds for any x, yc¢Z with
(x, y)=d, where d is a fixed positive integer.

Schlickewei [17], [18] proved that for a large class of norm forms F¢Z[xy, ..., x,]
in m=2 variables and for x=(x,, ..., x,,)€Z™ with relatively prime components,
P(F(x))—~< as [x|=max (|x{, ..., |x,})>e. For index forms FE€Z[x,, ..., x,]
Trelina [24] showed that

P(F(x)) > cy(loglog x| logloglog [x)'2, |x]| = X,.
Independently, for discriminant forms and index forms Fe€Z[x, ..., x,]
@ P(F(%) = ¢;loglog [x|, [x| = X,,

have been established by Papp and the author [8]. Here x€Z™ with (xy, ..., x,,)=1
and ¢,, ¢3, X, X, are effectively computable positive numbers depending only on F.
Recently the author [10] proved (2) for a wide class of irreducible norm forms F(x)
in m=2 variables (including all binary forms). In [8] and [10] our estimates are
established for forms F(x)€Z,[x,, ..., x,] at integer points x€Z¥, where Z,
denotes the ring of integers of an arbitrary but fixed algebraic number field L.
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In this paper we give a common generalization of our results mentioned above
and compute an explicit value of the constant corresponding to ¢;. Our main result
implies the above-quoted theorems of Sprindzuk [21], [22], Kotov [11], Shorey,
van der Poorten, Tijdeman and Schinzel [20], Trelina [24], Gy&ry and Papp [8] and
Gyéry [10].

2. Results

Before we state our theorem, we establish our notation and introduce some
definitions.

A system &£ of n=2 linear forms L,(x), ..., L,(X) in x=(x;,...,X,) with
algebraic coefficients will be called triangularly connected or, more briefly,
A-connected (cf. [7]) if for any distinct 7, j with 1=i, j=n there is a sequence
L=L,,..,L;,=L; in £ such that for each u with l=u=v-1, L, , L,  have
a linear combination with non-zero algebraic coefficients which belongs to 2Z.
If in particular m=2, then every system % which contains at least three pairwise
non-proportional linear forms is 4-connected.

Throughout the paper, L will denote a fixed algebraic number field of degree
[=1 with ring of integers Z;, and U, will be the group of units in L. We denote by
w (o)) the number of distinct prime ideal divisors p of a non-zero integer « in L and
by 2 (x) the greatest of the norms N(p) of these prime ideals. For a€ U, we take
P(@)=1 and w(x)=0.

If F(X1, .vn» Xm)€Z1[Xy5 ..., Xp) isaformin m=2 variables, then F(xy, ..., X,
and F(exy, ..., £x,,) have the same prime ideal decomposition for any x=
(%1, ..., X, )€Z} and € U;. It will be useful to introduce the notation x| defined by")

] = sréllljn max (lexy), ..., [ex,), m =2,
L

where x=(xy, ..., X, )EZT. $o]X| can be effectively determined and clearly

3) N =Tx] = max (X1, .. [%m))

m

for any x€ZP, where N=max,_;., (IN;,o(x)]). Further, it is clear that in the
special case L= Jx] coincides with [x|.
Our main result is the following

Theorem. Let F(X)=F(xy, ..., Xp)€Z[xy, ..., X,] be a decomposable form
of degree ®=3 in m=2 variables with splitting field G over L, and let [G: Q]=g,
[G: L)=f. Suppose that the linear factors Ly(X), ..., L,(X) in the factorization of

1) 17] denotes the maximum absolute value of the conjugates of an algebraic number y.
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F form a A-connected system and that there is no 0=xEL™ for which L;(x)=0,
J=1,...,n. Let d be a positive integer. Then there exists an effectively computable
number X, depending only on F, d and L, such that

4) (13f+Dslog (s+1)+(g+1) log Z > loglog x|
and
(3) 2 = ((13f+1)1)~*(log log [x|)*

Sor any x€Z7 with N((x;,....x,))=d and [X|=X,, where P=2(F(x)),
s=w(F(x)), =P and P is the maximal rational prime for which (F(x), P)s=1.

It is easily seen that under the conditions and notations of the theorem we
have 1=a=/,

) (13f+1)slog(s+1)+(g+1)log? > loglog N
and
(5) 2 = ((13f+1))~*(log log N)*

for any x€Z} with N((x, ..., x,))=d and N=max, ., (IN,o(x)])=N;. For
small values of s the estimates (4) and (4") are obviously much better than (5) and (5°).

Our theorem has several consequences. We first mention an application to
diophantine equations. Let F(x) and d be as in the theorem and let f, =, ..., 7,
be fixed non-zero algebraic integers in L. Consider the equation

6) F(x) = frir... n%
in x€Zp, z;, ..., 2,6 Z with N((x, ..., x,))=d and 2z, ...,z=0. Then (4) gives
max (K” emaxk(zk)) e

for all solutions x, zj, ..., z, of (6), where C is an effectively computable number?)
depending only on F, d, Z(fn; ... n,), w(fn, ... n,) and L. This result can be regarded
as a p-adic analogue of our Theorem I in [7]. (In [7] it is not assumed F<Z,[x];
however, in the applications of Theorem 1 of [7] FEZ, [x] is always supposed. Thus
this is not an essential restriction.)

The following corollary enables us to obtain some information about the arith-

metical structure of those algebraic integers of L which can be represented by a
decomposable form of the above type.

Corollary 1. Suppose F(xy, ..., x,) and d are as in the Theorem. Let F be

any algebraic integer in L represented by F(xy, ..., x,), where x,, ..., X, € Z, with
N((xy, ..., x,))=d. Then
@) (13f+ D w(F)log(o(F)+1)+(g+1) log 2(F) > loglog N

%) We could easily obtain an explicit expression for C by computing each constant in the
proof of our theorem. Added in proof: In my paper ,,Explicit upper bounds for the solutions of
some diophantine equations™ (to appear) I explicitly evaluated C in terms of each constant,
(generalizing many earlier effective results on norm form, discriminant form and index form
equations).
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and
®) P(F) > (13/+1)])"*loglog N

if N=|N,o(F)|=N,, where N, is an effectively computable positive number depend-
ing only on d, L and the form F(x, ..., X,).

Our Corollary 1 generalizes and improves SprindZuk’s theorems [22], [23] con-
cerning rational integers represented by a binary form feZ[x, y].

Corollary 2. Let F(x)€Z,[x,, ..., x,] be a decomposable form with the prop-
erties specified in the Theorem. Let d and A be positive numbers with d=1 and
A=<1/(g+1). Then there exists an effectively computable number X depending only
on F, d, L and A such that if

P(F(x)) = (log x4, x€Zp, |x|= X,
and N((x, ..., x,))=d, then .
©) O(F) > oy 28108 x|

! loglog logm’
where c,=(1—A(g+1))/(13/+1).

Let f€Z,[x] be a polynomial with at least three distinct roots. Since [x[¥/=
max (Jex], [g)) for any x€Z, and ecU,, our estimates (4), (5), (7), (8) and (9)
remain obviously valid for 2(f(x)) and w(f(x)) with |x| instead of x|, where
x€Z; and [x[>X,;. We remark that for polynomials f(x) with rational integer
coeflicients Shorey and Tijdeman [19] obtained a much better result than our Corol-
lary 2; they proved w( f(x))>(loglog |x|)/(logloglog |x|) under the condition
P(f(x))=exp ((loglog |x|)*), where A is any positive number. As an immediate
consequence of this result they derived a good lower bound for max; ;< P(f (x+1)).

As a consequence of our theorem we obtain the following generalization and
improvement, respectively, of the theorems of Coates [4], SprindZuk [21], [22], Kotov
[11] and Shorey, van der Poorten, Tijdeman and Schinzel [20] on the maximal prime
factors of binary forms.

Corollary 3. Let f(x, »)€Z,[x, y] be a binary form with splitting field G over
L and suppose that among the linear factors in the factorization of f at least three are
distinct®). Let [G: Ql=g, [G: Ll=f and d=1. Then there exists an effectively
computable positive number X, depending only on d, L and the form f(x, y) such that
for all pairs x,ye€Z; with N((x,))=d and [x[=min ., max (fex], [ey)=X,,
4@ and (5) hold, where P=2(f(x, y)), s=w( f(x,1)), Z=P* and P is the maximal
rational prime with ( f(x,y), P)=1.

3) In other words fhas at least three pairwise nonproportional linear factors in its factorization.
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It follows from (5”) that
(10) 2(f(x, y)) > cs(loglog N)*

for all x,ycZ, with (x,»)=1 and N=max (|[Nyo )|, [Nyo(»)])=N;, where
es=((13f+1)])~* For irreducible forms f€Z,[x, y] of degree =5 (10) was earlier
proved by Kotov [11].

An important special case of Corollary 3 is when f(x, y)=(x—a; »)...(x —2,¥),
where «, ..., %,€Z; and at least three of them are distinct. This special case of
Corollary 3 can be used to obtain an effective result on the diophantine equation
az?=f(x, y) (cf. [20], pp. 63—65).

Corollary 4. Let K be an extension of degree n=3 of L and let F(x)=
9N yp (e + 0 X+ A0, X)) EZ L [X1, oo, Xp] be anorm formin m=2 variables such
that [L(x): Ll=m=3,i=2,...,m, and ny...n,=n. Then with the notations of the
Theorem we have (4) and (5).

Corollary 4 implies Corollary 2 of [10] and Theorem 3 of Kotov [11].

Corollary 5. Let K be as in Corollary 4. Let «, ..., a, be m=2 algebraic
integers in K with K=L(x, ..., a,) and suppose that 1, oy, ..., o, are linearly
independent over L. Let F(x) denote the discriminant form Discr,y, (0t X3+ ... 0y Xp)-
Under the notations of the Theorem, for F(x) (4) and (5) hold.

Corollary 5 improves Corollary 1 of our paper [8].

Let again K be an extension of degree n=3 of L and let G be the smallest
normal extension of L containing K. Write [G: Ql=g and [G: L]=f. Consider
an order O of the field extension K/L (i.e. a subring of Z containing Z that has
the full dimension n as a Z;-module) and suppose that O has a relative integral
basis 1, &, ..., ®,_, over L. (Such an integral basis exists for a number of orders of
K/L; see e.g. [2], [13] and [8].) Then we have (cf. [8])

an

Discrg (@ X1+ ... + 01X, —1) = [Indg (e X+ ... 0,1 X P Dgy (1, oy, o 0, 20)s

where I(x)=Indgy (0 X;+ ... + 0,1 X, )€ ZL[xy, ..., X,-1] is @ decomposable form
of degree n(n—1)/2. It is called the index form of the basis 1, «, ..., %,_; of
O over L.

In the special case L=Q Trelina [24] obtained lower bounds for P(I(x)).
Corollary 1 and Theorem 3 in our paper [8], established independently of Trelina,
give lower bounds for 2(I (x)) in the above general case. As a consequence of Corol-
lary 5 we obtain the following generalization and improvement of the estimates of
Trelina [24] and Gy6ry and Papp [8].
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Corollary 6. Let L, K, d and I(x) be defined as above. Then there exists an
effectively computable positive number Xy depending only on I1(x),d,L and
D1, 0, .., &, _3) such that (4) and (5) hold for any x € Z ™" with N((xy, ..., X,_y))=d
and [X|=X,, where P?=2(1(x)), s=w(I(x)Dg, (1, 0, ..., %, ), P=P* and P
is the maximal rational prime with (I(x), P)#1.

The proof of our theorem depends on itwo deep theorems, due to van der Poor-
ten and Loxton [16] and van der Poorten [15], which are essentially sharp inequalities
on linear forms in the complex and in the p-adic case.

3. Proof of the Theorem

We first show that we can make certain assumptions without loss of generality.
By using a well-known argument we can easily see that there exist algebraic integers
ay, ..., 4y in L such that F(l, ag, ..., a,) 0 (see e.g. [3], p. 77). It suffices to prove
the theorem for F(x;, ayx;+x,, ..., &, X;+x,), where the coeflicient of x] is non-
zero. Hence we may suppose that

Fx)=a,L,(x)...L,(x)
with O;“aOEZL and
Li(X) = X+ 0gjXot oo + 0%y, J=1,...,0,

where o;€G, 2=i=m, 1=j=n. Writing oj;=a,0,; for i=2 and aj;=g, for
i=1, we have «[;¢Z; for each i and j. We shall prove our theorem for

1) = A F 0 = [ L),

where Li(x)=o;;x,+ ... +a;,;X,. This will imply at once the assertion of the theo-
rem for F(x).

We suppose that there are r, real and 2r, complex conjugate fields to G and
that they are chosen in the usual manner: if 0 is in G, then 0% is real for 1=i=,
and 09+=00 for r-r1=i=r,+r,. Put r=r+r,—1. It is well-known that
there exist fundamental units #,,...,#, in G and constants ¢, ¢, such that
llog lii{|=c, for 1=h=r, 1=i=g and Rg>c,, where R; denotes the regulator
of G. Here, and below, ¢, ¢,, ... will denote effectively computable positive num-
bers which depend only on F(x), L and (some of them) on d.

Let x;, ..., X, be any m-tuple of algebraic integers in L with N((x,, ..., Xn)) =
d. Put
(12) Bi=ogx 4 tayx,, j=1,..,n
and

(13) (fx) = (By ... B) = pir... ps,
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where Py, ..., p, are distinct prime ideals in L. If X is sufficiently large and [x[= X,
then Theorem 1 of [7] implies s=>0 and P=>1. Let Py, ..., B, be all distinct prime
ideals in G lying above p;, ..., p,. Clearly ¢t=sf. Applying now the unique factoriza-
tion theorem to (13) we get in Z;

(14) B) =Y. B, j=1,...,n

where the U,; are non-negative rational integers. Denote by /g the class number of
G and write U;=hgu,;+r,; with 0=r;<hs. We have Phe =(w,) with some
wEZ;. Then from (14) we see that

(15) B) = () (o) .. (),
where (x;)="P... B} and

|Ngjo ()| = P, [Ny = Pe'.
So, following a well-known argument (see e.g. [1], p. 188), we may choose y, and
x; such that
(16) log |uf|| = ¢slog P, |log || = cgslogP, i=1,..,8,
and, by (15), we have

B =&ty wu, j=1,...,n,

for some unit ¢; of G.

Put #={L, ..., L)}). By hypothesis there are two forms in %, say L; and L,
such that A, L{(x)+4,L;(x)€.# with non-zero algebraic numbers 4,, 4,. Suppose,
for convenience, that

2 Li(X)+ 2, Ly(x)+ A5 Lg(x) = 0

with 2, A543 0. Further, we may assume that 4;, Ay, ;€ Zg and max AR E
¢y. We obtain now
a7 i it A BatAs B3 = 0.

Put a,=min, u,, and wuy,=u,—a for g=1,2,3 and k=1,...,t. We may
suppose without loss of generality that U=max, ,u,,=u;; and uj;=0. Since
i, ..., 4, are fundamental units, we can write

&/63 = Q1NY1 .. PN, Eofey = Qamyre ... e,

where g;, 0, are toots of unity in G and wyy, ..., W, Wya, ..., W,, are rational inte-
gers. With the notation

(18) B, =006, O =gup... ki, 0y = XgQqM¥1a ... fyrapfia ... Uit
and wpz=...=w,;=0, g,=1 we get from (17)
(19) X S T

7a0s A0,
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We are now going to derive an upper bound for H=max (U, W), where
W=max; , |w,|. First suppose that c,,slog P- U> H with a sufficiently large c,,.
We may assume that U=cy;slog P with a sufficiently large c,,, for othetwise (21)
immediately follows. We see from (19) that

C1a

slogP "

oo ordg, A = U—cpyslogP = ¢ U =

Further, by (19) we have

(20) A= _lj—x)zfé’_z_ nye ... n'{”rzﬂgiz““ia 'u;‘;z_“;a— 1.
3 X3

Applying now Theorem 4 of van der Poorten [15] to A, we obtain by (16)
(21) H < 615(c16S)12(r+sf)+28Pg(10g P)sf+4.

Suppose now that cyos log P- U=H. Assume, for convenience, that W=|wy,|.
From (18) we conclude

Wi 10g 1501+ .. +wiy log 2| = log 10171 —log 11| = 2 uia log 1"
for each conjugate with i=1,...,r. So for some /2 we must have
W= c"(ilog |6{”)||+|log ix{"’|[+k2' Uy
Thus, by (16) we obtain
[log 6] = cysW—c195log P—cyyUslog P = ¢,y H,

log [u{|}).

provided that ¢, is sufficiently large. Further, by (16) and (18) we have
log [Ngq(d,)] = log ING/Q(Xl)IJrU'kZ’ log | Neq(m)] = ¢35 Uslog P.
Hence we get for some m
(22) log [6{™] = —c,3 H.
Formulae (16) and (18) imply
2. {m)

(23) log = oy +(g— 1) 1og [0,] = cp5Uslog P < %H.

We now omit the superscript (m). It then follows from (22) and (23) that

log |4] <—%.H.

Write 5,=—1. By taking the principal values of the logarithms we obtain from
(19) and (18)

(24) 0<

_ i25z)

log [ 71505

— . : ’ ’ '13)(3 —o*(r+t+1)H

= ij210gnj+ 2 (e —ugy) log g —log | ——=—]| < e s
j=0 k=1 A2 %200
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where 8% =(cye(r+t+1))™" and wy, is a rational integer satisfying
[Weo| = (r+t+ 1) H.

We can now apply Theorem 3 of van der Poorten and Loxton [16] to (24) and
obtain

(25) H < ¢g7(Cas S)IO(HSIH%(IO% Py +3,
So (21) and (25) imply
(26) H < ¢g9(Cgo8)'2 +5/+31 P(fog Py +4

and, by (16), (18) and (26), we have

@7 @ < exp {cg; s log P+cg H+cy3 Hslog P} <
= €Xp {C34(0305)12(r+sf)+32Pg(10g Pyi*}y =Ty, ¢=1,2,3.

n

there is a sequence f,=f;, ..., B; =p; such that for each u with I=u=v-1

bl —
AiBiit iy Brvirt iy i Bisyuir = 0

Consider now any f; with 3=j=n. By the assumption made on L, ..., L,

holds with some non-zero 4;,%; ., 4;, 1€ Zg satistying max ([/1 l, |A,u+1[ M,u mE
¢y5. Further, we may assume v=n. We can see in the same way as above that
(28) By = 066y, PBp= 00,
and
(29) ﬁiu - O-uéu, (9] ﬁiu+1 = o-uéu, i +1
for u=1,...,v—1, where ¢, , 5“ €Z; with
(30) 1snu12§ 1 (Iéu lu| |5u lu+1|) - Tl
and ¢,=9, ... uf« with units 9,€G and non-negative rational integers a,, ..., .
It follows from (28) and (29) that
(3D B; =B, = 09;ly;
with
v—1 . v—1 .
@; = 0y Q Oty and ;= l]l O i

Write y;=¢,=1 and ¢;=0; for j=1,2. It is clear that

(32) max (o, ;) <75 j=1,..,n

We recall that o=g;uft...u%. Denote by ul« the highest power of p, with

t
b,=a, that divides at least one of the ¥, ...,¢,. By taking norms we see that

by = ¢cgglogTy, k=1,..,1
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Putting

bf = min(ay, b,+1), d,=a,—b;, k=1, ..,1,
and

1= ﬂI{T-n .u?:(Pj/'ubj’

we get
(33) B;=%uh ...y, j=1,..,n,
where 8=¢; is a unit and 7; are algebraic integers in G satisfying
(39 [a < exp{cg;slog Plog Ty} = Ts.
Further, by (13) we have
(35) pi e = By ) = (O ' my . 3.

Let k, 1=k=s, be an arbitrary but fixed subscript, and let ‘B denote an arbitrary
prime ideal in G lying above p,. If PB|p,, e, does not depend on the choice of .
Moreover, P divides only one of the p, ..., #,. We shall now follow an argument
used in the proof of Theorem 1 of [5] (cf. the deduction (36)=(41) of [5]). Let y, be
the greatest rational integer for which

n

(36) min [vkek—ordgp( 1 1:]-), vkek) = nhy y.ex

J=1
holds for each P with B|p,, where /i, denotes the class number of L. From (35)
it follows that y,=0. By the definition of the y, there is a B, lying above p,, such
that
(37 nhy(y.+1)e, > min (vkek—ord‘p[ Il ‘L‘j], vkek].

j=1
Since (34) implies

a

ordm( ]]rj] = ¢ log Ty,
j=1

we get from (36) and (37)

(38) 0=ve,—nhpy,e, = cylogTs,.

If now P is an arbitrary prime ideal in G lying above p, and P|(r,), then (35),
(36) and (38) give

(39) 0=d,ordg p,—hyyre, = cyologT.
Let now piroi. .ple¥s=(x), where x€Z;, and choose ¢ in such a way that
(40) Wl = .

In view of (39) ¢ is an algebraic integer in G and

41 | Ngio(E)] = exp {cy slog Plog T,}.
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It follows from (33) and (40) that
o= ... .1,€Z;.

Further, Lemma 3 of [6] together with (34) and (41) imply that there is a unit 0,€L
and an w’€Z, such that

=0l
and
42) "] < exp {c4ss log Plog T,}.
Thus by (34) and (42) we have
(43) |0779¢| < exp {cayslog Plog T}.

Finally, writing &;=07"8¢t; we get
(44) Bi=0%,, j=1,..,n,
and, by (34) and (43),
(45) €| < exp {cy slog Plog Ty} = Ts.
By hypothesis there is no 0#xcL™ for which L)(x)=0, j=I,...,n. Con-
sequently, the only solution in L of the system of equations
(46) Lix)y=8;, j=1,...,n,

is the x=(x,, ..., x,) considered above. Since f(x)/a} is a product of irreducible
norm forms over L, (46) contains all conjugates of each equation over L. Following
now an argument of the proof of Lemma 2 of [7], we can easily see that (46) has no
other solutions in the complex field. So m=nf, and by Cramer’s rule we have

47 X =0xvfv, i=1,..,m,

where v, v,€Z;, v, ..., v, are not all zero,

(48) V| = ¢y5
and, by (45),
(49) Vil = cTs, i=1,...,m.

In view of (47) we obtain in Z,

[NG/ ()| N((vi5 - » ) = | Naiq) N (%1, .. s X))
Hence, by (48),
(50) [NLig()| = |Noio [ d = ¢y

Thus we can write 6;%=0;"%" with a unit 6,c¢L and an algebraic integer »’€L
satisfying

(5D ] = cys.
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It follows now from (47) that

xl=0,x; =3x'vfv, i=1,..,m,
and this implies

xff = NG/L(X;) = NG/L(%/VE)/NG/L(V): i=1,..,m

By the inequality (24) of [7] we have

X[ = [Nop )] [N 0 = vl [v[0-D,
whence, by (48), (49), (51), (45), (34) and (27) we obtain

(52) max |;C?l < €49 Ty = exp {e50(c5, )" 2"+ +2 P9 (log Py +7}.

From (52) we deduce
(53) loglog |x| =< log cso+(12(r+sf) +34) log (c5y8)+ g log P+(sf+7) log log P.

If X, is sufficiently large, then P is also sufficiently large and s> (log P)*/®/**
implies

log e5o+(12(r +sf)+34) log ¢ +(12r + 34) log (s+ 1) + (sf+ 7) log log P

= (f—l—%) slog (s+1).

On the other hand, for s=(log P)*®*D we have

log cso+(12(r+sf)+34) log c5 +(12r+34) log (s + 1) +(sf +7) log log P = log P.
Hence (53) gives
(61)) loglog [x]| < [13f+—;‘—}slog G+1+(g+1)log P,

whence (4) follows.
By prime number theory we can choose X, such that even n(P)=(149J)P/log P
holds with §=1/(2(26/+1)). Then s=In(P)=(14-6)/P/log P and thus

(55) [13f+%]slog(s+1)+(g+l) log P=(13f+1)IP.

Finally, in consequence of (54), (55) and #=P* we obtain (5).
In order to prove (4') and (5”) it suffices to observe that (53) and (3) imply
loglog N < log (lese) +(12(r+sf)+34) log (c5,5) + g log P+ (sf+7) log log P.

If N is sufficiently large, we get (4) and (5") in the same way as we deduced (4) and
(5) from (53).
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4. Proofs of the Corollaries

Proof of Corollary 1. Let ¢ be a unit in L such that X[=max (|exy), ..., [eX,]).
Then

(56) N =|Nyo(F)| = |Nyo(Fex))] = c5[x]™

Therefore, for sufficiently large N, (4) implies (7), but only with log log N—log (2In)
in place of log log N. Following the argument applied at the end of the above proof,
we obtain (7) and (8) from (53) and (56).

Proof of Corollary 2. Suppose

w(F() = ¢ 221021

: loglog logT;f-

for some x€Z7 with [x[=X; and N((x, ..., X,))=d. Then by our theorem
we have

loglog [x] = (13f+ 1) (F(¥)) log (@(F(x))+1)+ (g +1) log 2(F (x))
= (13f+1)c, loglog x|+ 4 (g + 1) log log [x],

provided that X is sufficiently large. Since (13f+1)c,-~A(g+1)=1, we have arrived
at a contradiction and thus (9) is proved.

Proof of Corollary 3. By assumption there are at least three pairwise non-
proportional linear factors in the factorization

n
f(x,y) :.]Z (0% 2 3)-
i=
Consequently, the linear factors o, x+a,y, i=1, ..., n, form a 4-connected system
and the system of equations
anx+o,y=0, i=1,..,n,

has no non-trivial solution x, y in L. So the assertion of Corollary 3 follows at once
from our theorem.

Proof of Corollary 4. F(x) can be written in the form
F(x) = ay [] (it x+ .. +aldx,),
i=1

where ocg.l’, ooy ocﬁ.") denote the conjugates of «; over L. As we showed in [7] (see
also [9]), the conjugates x;+o¥x,+...+aPx, of x;+oyx,+...+a,x, over L
form a A-connected system. Further, by virtue of the assumption [L(x): L]...
{L(a,): L]=n, the only solution of the system of equations

X +adx,+ . FoPx, =0, i=1,..,n,



354 K. GYORrRY

in Lis x;=...=x,=0. So our theorem implies the required assertion.

Proof of Corollary 5. Let L(X)=o0yx,+...4a,x, and let LW(x), ..., L”(x)
be the conjugates of L(x) over L. Put

l;(x) = LW (x)— LY (x).
In proving Theorem 4 in [7] we showed that

F(x) = Discryp (% + ... +04,%,) = (= D""=D2 T 1:(x)
i j=1
i=j

satisfies all conditions made in our theorem. Thus (4) and (5) clearly foliow.

Proof of Corollary 6. If X, is sufficiently large and [x|=X,, by Corollary 5 and
(11) we have 2(D(x))=2(I(x)), where D(x)=Discrg,z, (#;x;+ ... +0t,-1X,-1). Thus
Corollary 5 proves the assertion of Corollary 6.
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