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Abstract

In 1980, Gross conjectured a formula for the expected leading term at s = 0 of the
Deligne–Ribet p-adic L-function associated to a totally even character ψ of a totally
real field F . The conjecture states that after scaling by L(ψω−1, 0), this value is equal
to a p-adic regulator of units in the abelian extension of F cut out by ψω−1. In this
paper, we prove Gross’s conjecture.
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1 Introduction

In 1980, Gross stated a beautiful and precise analog of Stark’s conjecture for the behavior

of p-adic L-functions at s = 0 ([11]). Let F be a totally real field and let

χ : GF −→ Q
∗

(1)

be a totally odd character of the absolute Galois group of F . Let H denote the CM, cyclic

extension of F cut out by χ, i.e. the subfield of F fixed by the kernel of χ. Let p be a prime

integer. We fix once and for all embeddings Q →֒ C and Q →֒ Cp, so χ may be viewed as

taking values in C or Cp. Here Cp denotes the completion of an algebraic closure of Qp.

Consider the L-function associated to χ with Euler factors at primes above p removed:

L∗(χ, s) = L(χ, s) ·
∏

p|p

(1− χ(p)(Np)−s). (2)

Here and throughout, we adopt the convention that χ(p) = 0 if p is ramified in H/F ,

whereas χ(p) = χ(Frob(p, H/F )) if p is unramifed in H/F . Let

ω : GF −→ µp−1 (or µ2, if p = 2)

denote the Teichmüller character. There is a unique meromorphic (and as long as χ 6= ω−1,

analytic) p-adic L-function

Lp(χω, s) : Zp −→ Cp

determined by the interpolation property

Lp(χω, n) = L∗(χωn, n) for n ∈ Z≤0. (3)

A classical theorem of Siegel implies that the values L∗(χωn, n) for n ∈ Z≤0 are algebraic.

Hence by our fixed embedding Q →֒ Cp, we can view these values as p-adic numbers.

The existence of the p-adic L-function satisfying the interpolation property (3) was proved

independently by Deligne–Ribet [7] and Cassou-Noguès [3] in the 1970s, and new approaches

have been considered recently in [4], [20] and [1].
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We partition the set of primes above p in F as R ∪R′, where

R = {p | p : χ(p) = 1}, R′ = {p | p : χ(p) 6= 1}.

Since χ is totally odd, we have L(χ, 0) 6= 0, as can be proven from the functional equation

for L(χ, s) and the well-known fact that L(χ−1, 1) 6= 0. It follows that

ords=0 L
∗(χ, s) = rp(χ),

since rp(χ) = #R is precisely the number of Euler factors above p in (2) that vanish at

s = 0. Motivated by this and the fact that Lp(χω, s) and L∗(χ, s) agree on a dense set of

integers p-adically approaching 0, Gross stated the following conjecture regarding the order

of vanishing of Lp(χω, s) at s = 0.

Conjecture 1 (Gross). We have

ords=0 Lp(χω, s) = rp(χ).

The inequality

ords=0 Lp(χω, s) ≥ rp(χ) (4)

can be shown to follow from Wiles’s proof of the Main Conjecture of Iwasawa theory, at

least for p 6= 2 (for example, see [22, §2.1]). Recently a more direct analytic proof of (4) that

holds for all p was given in [4, Theorem 3] and [20]. Note that both of these latter papers

use Spiess’s results on cohomological p-adic L-functions proved in [19].

Even more strikingly, Gross stated a p-adic analog of Stark’s conjecture that gives an

exact formula for the leading term of Lp(χω, s) at s = 0. To state this conjecture, we first

recall Gross’s p-adic regulator Rp(χ).

Let c denote the unique complex conjugation of H. Let

logp : Q
∗
p −→ Zp

denote Iwasawa’s p-adic logarithm, normalized such that logp(p) = 0. If P is a prime ideal

of OH lying above p, we consider two continuous homomorphisms

oP = ordP : H∗
P −→ Z,

ℓP = logp ◦NormHP/Qp
: H∗

P −→ Zp.

Let U = OH [1/p]
∗ denote the group of p-units of H and let X be the free abelian group

on the set Sp of prime ideals of OH lying above p. The abelian groups U and X are naturally

modules for the group G = Gal(H/F ). We consider the minus subspaces of these modules

for the action of complex conjugation:

U− = {u ∈ U : c(u) = u−1}, X− = {x ∈ X : c(x) = −x}.
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Consider the two G-module homomorphisms

op : U
− −→ X− op(u) = (oP(u))P∈Sp

,

ℓp : U
− −→ X− ⊗ Zp ℓp(u) = (−ℓP(u))P∈Sp

.

One verifies that after tensoring with Q, the map op induces a Q[G]-module isomorphism

U− ⊗Q ∼
// X− ⊗Q (5)

(see for example [21, I.4]). Denote by E the finite extension of Qp generated by the values

of the character χ. We consider the χ−1-components of U− and X−:

Uχ = {u ∈ U− ⊗ E : σ(u) = uχ
−1(σ)}, Xχ = {x ∈ X− ⊗ E : σ(x) = χ−1(σ)x}.

The E-vector space Xχ has dimension rp(χ), and by (5) the same is true for Uχ. After

tensoring with E (over Z and Zp respectively), the maps op and ℓp induce E[G]-module

homomorphisms

oχp , ℓ
χ
p : Uχ −→ Xχ,

with oχp an isomorphism. In parallel with the classical Stark regulator (see [21, I.4.5]), Gross’s

regulator is defined by1

Rp(χ) = det(ℓχp ◦ (o
χ
p )

−1) ∈ E.

The following is often referred to as the Gross–Stark Conjecture. For simplicity we write

r for rp(χ).

Conjecture 2 (Gross). We have:

L
(r)
p (χω, 0)

r!L(χ, 0)
= Rp(χ)

∏

p∈R′

(1− χ(p)). (6)

The equality (6) takes place in the field E. The statement of Conjecture 2 does not rely

on Conjecture 1.

Gross proved both Conjectures 1 and 2 in the case F = Q; the proof of Conjecture 2

follows by combining the formula of Gross–Koblitz [12], which relates Gauss sums to the

special values of the p-adic Gamma function, with the theorem of Ferrero–Greenberg [9],

which relates the derivative of Kubota–Leopoldt p-adic L-functions to special values of the p-

adic Gamma function. This special case served as the motivation for the general formulation

of Conjecture 2.

1This definition of Rp(χ) differs from the regulator Rp(χ) defined in [11] by the simple factor
(−1)rp(χ)

∏
p|p fp, with notation as in loc. cit. We have chosen our conventions to agree with [5] in or-

der to make the statement of Theorem 1 as clean as possible.
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There has been further work on Conjecture 2. Federer and Gross proved that when the

order of χ divides p − 1, the p-adic valuations of the two sides in Conjecture 2 are equal

using the Iwasawa Main Conjecture [8, Proposition 3.10]; in particular it follows that under

this restrictive condition Conjecture 1 is equivalent to the statement Rp(χ) 6= 0.2 Further

partial evidence has been discovered recently; see for instance [2, Theorems 3.1 and 5.2].

For notational simplicity, define

Lan(χ) =
L
(r)
p (χω, 0)

r!L(χ, 0)
∏

p∈R′(1− χ(p))
.

The main result of this paper is a proof of the Gross–Stark Conjecture (Conjecture 2):

Theorem 1. We have Lan(χ) = Rp(χ).

In view of (4) and Theorem 1, it now follows unconditionally that Conjecture 1 is equiv-

alent to Rp(χ) 6= 0. This fact is known for r ≤ 1 (see [11, Prop. 2.13]; this observation leads

to the proof of Conjecture 1 when F = Q, as mentioned above).

Theorem 1 was proved in the case r = 1 under certain assumptions by the first author

in joint work with H. Darmon and R. Pollack [5]. These assumptions were later removed

by the third author [22]. At the time of publication of [5], the first author believed the

higher rank case to be unapproachable using the methods of loc. cit. In the remainder of

this introduction, we present a detailed summary of the proof of Theorem 1, highlighting the

obstacles that appear when trying to generalize from r = 1 and describing the techniques

used to overcome them.

Remark 1.1. The fact that the endomorphism ℓχp ◦ (o
χ
p )

−1 of Uχ is canonically defined

suggests the possibility that one can study its characteristic polynomial and not just its

determinant. In [6], the first author and M. Spiess state a conjectural formula for this

characteristic polynomial in terms of the Eisenstein cocycle, generalizing the Gross–Stark

Conjecture. This more general conjecture remains open.

It is a pleasure to acknowledge the encouragement and suggestions of a number of col-

leagues with whom we have discussed this problem over the last decade. We are extremely

grateful to Jöel Bellaiche, David Burns, Pierre Charollois, Henri Darmon, Matthew Emerton,

Ralph Greenberg, Haruzo Hida, Chandrashekhar Khare, Masato Kurihara, Robert Pollack,

Cristian Popescu, and Michael Spiess for their advice and support.

2We thank John Coates for informing us about this paper.
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1.1 Explicit Formula for the Regulator

As noted above, we have dimE Uχ = r. Let u1, . . . , ur be an E-basis for Uχ. Write R =

{p1, . . . , pr}. For each pi ∈ R, consider the continuous homomorphisms

oi = ordpi : F ∗
pi
−→ Z,

ℓi = logp ◦NormFpi
/Qp

: F ∗
pi
−→ Zp.

For each pi ∈ R choose a prime Pi of H lying above pi. Then via

OH [1/p] ⊂ H ⊂ HPi
∼= Fpi , (7)

we can evaluate oi and ℓi on elements of OH [1/p]
∗, and extend by linearity to maps

oi, ℓi : OH [1/p]
∗ ⊗ E −→ E.

Gross’s regulator is equal to the following ratio of determinants:

Rp(χ) =
det(−ℓi(uj))i,j=1...r

det(oi(uj))i,j=1...r

∈ E. (8)

It is clear that this ratio is independent of the chosen basis {ui}. Furthermore, the ratio is

independent of the choice of Pi since replacing Pi by σ(Pi) has the effect of scaling the ith

row of both matrices in (8) by χ(σ). Finally, one sees that det(oi(uj)) 6= 0 since the Dirichlet

unit theorem implies that the χ−1-component of the group of pi-units of H is 1-dimensional

for each pi ∈ R, and hence for the appropriate basis {ui} the matrix (oi(uj)) can be made

to equal the identity.

1.2 Cohomological Study of the Conjecture

For each place v of F , choose a decomposition group Gv ⊂ GF and let Iv ⊂ Gv be the

associated inertia group. This choice corresponds to an embedding F ⊂ F v for each place

v and in particular specifies a prime of H ⊂ F above v. We assume in the sequel that the

specified prime above pi for pi ∈ R is equal to the prime Pi used in (7).

If V is an E-vector space, we let V (χ−1) denote the E[GF ]-module in which σ ∈ GF acts

by multiplication by χ−1(σ). Let

H1
R(GF , E(χ

−1)) ⊂ H1(GF , E(χ
−1))

denote the subspace of continuous Galois cohomology classes κ unramified outside R, i.e.

those classes κ such that resIv κ ∈ H
1(Iv, E(χ

−1)) is trivial for all v 6∈ R. Note that for each

prime pi ∈ R we have χ(Gpi) = 1 and hence

H1(Gpi , E(χ
−1)) = H1(Gpi , E) = Homcts(Gpi , E)

∼= Homcts(F̂ ∗
pi
, E),
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where the last isomorphism invokes the reciprocity isomorphism of local class field theory3

recpi : F̂
∗
pi
−→ Gab

pi
. (9)

Here F̂ ∗
pi
= lim
←−m

F ∗
pi
/(F ∗

pi
)m denotes the profinite completion of F ∗

pi
. Since oi and ℓi are con-

tinuous maps for the topology on F ∗
pi
defined by the subgroups (F ∗

pi
)m, we obtain continuous

homomorphisms.

oi : F̂ ∗
pi
−→ Ẑ −→ Zp,

ℓi : F̂ ∗
pi
−→ Zp.

Define the subspace of “cyclotomic classes”

H1
cyc(χ) ⊂ H1

R(GF , E(χ
−1))

to be the set of κ such that for pi ∈ R, the restriction respi κ ∈ H
1(Gpi , E) lies in the E-span

of oi and ℓi, viewing these as continuous homomorphisms F̂ ∗
pi
−→ E. Then dimE H

1
cyc(χ) = r

(this is a straightforward generalization of [5, Lemma 1.5]). Let κ1, . . . , κr be a basis, and

for each pj ∈ R write

respj κi = xijoj + yijℓj,

where xij, yij ∈ E. Inspired by R. Greenberg’s study of exceptional zeroes [10], we define

Lalg(χ) =
det(xij)i,j=1...r

det(yij)i,j=1...r

.

Using the above mentioned generalization and the fact that κ1, . . . , κr are linearly indepen-

dent, it can be shown that det(yij)i,j=1...r 6= 0.

We now relate this algebraic L -invariant to the unit group Uχ. Let κ ∈ H
1
R(GF , E(χ

−1)).

Extending by E-linearity, we can view respi κ as a continuous homomorphism

respi κ : F̂
∗
pi
⊗ E −→ E.

In §2, we prove the following orthogonality result regarding H1
R(GF , E(χ

−1)) and Uχ.

Proposition 1. Let κ ∈ H1
R(GF , E(χ

−1)) and u ∈ Uχ. Viewing u as an element of F̂ ∗
pi
⊗E

via (7), we have
r∑

i=1

(respi κ)(u) = 0. (10)

3Throughout this article, we adopt Serre’s conventions [17] for the local reciprocity map. Therefore, if
u ∈ O∗

Fp
, then ǫcyc(rec(u)) = NormOFp

/Zp
u, where ǫcyc is the usual cyclotomic character defined in (26), and

rec(̟−1) is a lifting to Gab
p of the Frobenius element on the maximal unramified extension of Fp if ̟ ∈ F ∗

p

is a uniformizer.
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Using Proposition 1, one readily proves that

Lalg(χ) = Rp(χ).

When r = 1 (say R = {p}), Conjecture 2 is therefore equivalent to the existence of a nonzero

class κ ∈ H1
cyc(χ) such that resp κ = Lan(χ)op+ℓp. The construction of such a class is carried

out in [5] and [22]. The natural generalization of this strategy for r > 1 is to construct r

linearly independent classes inH1
cyc(χ) and to use them to compute Lalg(χ). However, despite

much effort, we do not in fact know how to construct even a single cyclotomic cohomology

class in the general case. The construction for r = 1 relies crucially on the injectivity of the

local restriction

H1
R(GF , E(χ

−1)) −→ H1(Gp, E) (11)

when R = {p}, which in general fails for fixed p ∈ R if r > 1.

As described below, in the general case we are still able to construct a class

κ ∈ H1
R(GF , B(χ−1))

for some E-vector space B with partial knowledge about the local restrictions respi κ. Our

method of proof involves abandoning the hope of constructing cyclotomic classes and cal-

culating Lalg(χ). Instead, we directly use the orthogonality (10) with κ and a basis of Uχ.

We describe below how the resulting equations can be used to prove that Lan(χ) = Rp(χ).

First we describe the mechanism through which the analytic L -invariant Lan(χ) appears in

our work and the construction of the cohomology class κ.

1.3 An Infinitesimal Eigenform

Our technique for constructing a cohomology class related to p-adic L-functions is Ribet’s

method, which first appeared in [16] and was later used to great effect by Mazur and Wiles

to prove the Main Conjecture of Iwasawa theory [15], [24]. We consider the space of cuspidal

Hida families of Hilbert modular forms for F with tame level n = cond(χ), and let T denote

its Hecke algebra over Λ = OE[[T ]].

In [5], a certain linear combination of products of Eisenstein series was used to construct

a cuspidal Hida Family F that specializes in weight 1 to the Eisenstein series E1(1, χS).

Here χS denotes the character χ viewed with modulus divisible by all primes in S, so the

Eisenstein series E1(1, χS) is the stabilization of the classical weight 1 form E1(1, χ) at all

primes p above p with Up-eigenvalue equal to 1. In the case r = 1 considered in loc. cit.,

the form F remains an eigenform in an infinitesimal neighborhood of weight 1, yielding a

Λ-algebra homomorphism

ϕ : T −→ E[T ]/T 2 (12)

t 7−→ a1(t ·F ) (mod T 2).

8



We fix a topological generator u ∈ 1+2pZp and normalize our conventions so that for k ∈ Zp,

setting T = uk−1−1 corresponds to specializing in weight k; in particular, T = 0 corresponds

to weight k = 1. The explicit nature of the construction of F allows us to calculate

ϕ(Tl) = 1 + χ(l) logp〈Nl〉π, where π :=
1

logp(u)
T, (13)

for primes l of F such that l ∤ np. (Here and throughout, 〈x〉 = x/ω(x) for x ∈ Z∗
p.) The

p-adic L-function Lp(χω, 1 − k) occurs as the constant term of one of the Eisenstein series

used in the construction of F , and as a result an explicit computation shows that

ϕ(Up) = 1 + Lan(χ)π. (14)

(Equations (13) and (14) hold if R′ is nonempty; if R′ is empty then slightly modified

equations hold.)

In the general case, it is natural to attempt to construct a Λ-algebra homomorphism

T −→ E[T ]/T r+1 analogous to (12). However, the form F constructed in [5] is not an

eigenform modulo T r+1, and it is unclear if the construction can be modified to define such

an eigenform. The key idea to circumvent this problem, drawn from [22], is to simply study

the Hecke orbit of the form F . Modulo T r+1, this orbit is not 1-dimensional over Λ/T r+1, but

it is still finite dimensional and explicitly computable. Therefore we obtain a representation

of T into a finite-dimensional E-algebra, namely the endomorphism ring over E of the space

of Fourier expansions modulo T r+1 of the forms in the Hecke orbit of F . These arguments

are explained in detail in §3, culminating with the proof of the following theorem and its

generalizations needed to handle all cases.

Let ǫ : GF −→ Λ∗ denote the Λ-adic cyclotomic character (see (27) below). Write

ran = ran(χ) = ords=0 Lp(χω, s), L
∗
an(χ) =

L
(ran)
p (χ, 0)

ran!L(χ, 0)
∏

p∈R′(1− χ(p))
.

(Of course, Conjecture 1 states that ran = r and hence L ∗
an(χ) = Lan(χ), but we are not

assuming this conjecture.)

Theorem 2. Suppose R′ is nonempty and write R = {p1, . . . , pr}. There exists a Λ-algebra

homomorphism

ϕ : T −→ W = E[π, ǫ1, . . . , ǫr]/(π
ran+1, ǫ2i , ǫiπ, ǫ1ǫ2 · · · ǫr + (−1)ranL ∗

an(χ)π
ran)

such that Tl 7→ 1 + χǫ(l) for l ∤ np, Ul 7→ 1 for l | n or l ∈ R′, and Upi 7→ 1 + ǫi.

If R′ is empty, we construct a slightly more complicated homomorphism. Note that W

is a local ring with maximal ideal mW = (T, ǫ1, . . . , ǫr).
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1.4 Construction of a Cohomology Class

Let m ⊂ T denote the kernel of the composition of ϕ with the canonical projection

W −→ W/mW
∼= E.

Let L = Frac(T(m)) denote the total ring of fractions of the localization of T at the prime

ideal m. Theorems of Wiles and Hida imply the existence of a continuous irreducible Galois

representation

ρ : GF −→ GL2(L)

σ 7→

(
a(σ) b(σ)
c(σ) d(σ)

)

that is unramified outside np and such that for primes l ∤ np, the characteristic polynomial

of ρ(Frobl) is

char(ρ(Frobl))(x) = x2 − T lx+ χǫ(l), (15)

where T l denotes the image of Tl in L.

Let B denote the T-module generated by the b(σ). Using the fact that ϕ(Tl) = 1+χǫ(l)

together with (15), we show that after choosing an appropriate basis for ρ the map

κ : GF −→ B = B/mB

given by κ(σ) = b(σ) · χ−1(σ) is a cocycle yielding a cohomology class in H1(GF , B(χ−1)).

For all q | p, the representation ρ|Gq
is known to be reducible with a certain specified semi-

simplification. This can be used to show that κ is unramified outside R.

In the case r = 1, the injectivity of the restriction map (11) can be used to show that

after rescaling by a certain element of L, we have B ⊂ m. Applying the homomorphism

ϕ to the cocycle κ yields a class κϕ ∈ H1
p (GF , E(χ

−1)). The known shape of the local

representation ρ|Gp
can be used to prove that κϕ is cyclotomic. Using equation (14), one

shows that resp κ = Lan(χ) · op + ℓp, giving the desired result Lalg(χ) = Lan(χ).

In the case r > 1, there is an unknown constant xi ∈ L for each place pi such that we have

a formula for the restriction of the function xib(σ) to Gpi . In particular we can show that

xib(Gpi) ⊂ m. However, the failure of the injectivity of (11) appears to make it impossible

to deduce that xiB ⊂ m. In fact, for r ≥ 3, we believe that this is false.4 In particular, we

are unable to show that the cohomology class κ is cyclotomic.

As mentioned above, our new method is to apply the orthogonality (21) with κ and a

basis {ui} of Uχ. We obtain r equations

r∑

j=1

(respj κ)(ui) = 0

4If r = 2 and Fpi
∼= Qp for i = 1, 2, then the injectivity of (11) does hold, and one can give a proof of

Theorem 1 in this special case using Theorem 2 and methods analogous to those of [5].
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in B. This implies that

det((respj κ)(ui)) = 0 (16)

in BR/mBR since it is the determinant of a matrix whose rows all sum to 0, where BR is the

T-module generated by products b(σ1) · · · b(σr) with σi ∈ Gpi . The fact that xib(Gpi) ⊂ m

implies that (
∏r

i=1 xi)BR ⊂ mr, and scaling (16) by
∏r

i=1 xi yields an equation in mr/mr+1.

We can apply the homomorphism ϕ to this equation to yield a formula in the 1-dimensional

E-vector space mr
W = E ·T r. An explicit computation shows that when ran = r, this equality

is

(−1)r+1
Lan(χ) · det(oi(uj)) + det(ℓi(uj)) = 0. (17)

Equation (17) is equivalent to the desired result Lan(χ) = Rp(χ). (When ran > r, we obtain

Rp(χ) = 0, which is the desired result in this conjecturally vacuous case.)

2 Orthogonality Between Cohomology and Units

Let V be an E-vector space. Recall that H1
R(GF , V (χ−1)) denotes the group of cohomology

classes unramified outside R. We begin by proving Proposition 1 stated in the introduction.

Proposition 2.1. Let κ ∈ H1
R(GF , V (χ−1)) and u ∈ Uχ. We have

r∑

i=1

(respi κ)(u) = 0.

We will provide two proofs. The first is more conceptual and invokes Poitou–Tate duality

and the Kummer isomorphism, though we state without proof certain identifications that

are needed. The second proof is rather more direct and relies only on class field theory.

Proof 1 of Proposition 2.1. As explained in [5, Prop. 1.4], Hilbert’s Theorem 90 yields iso-

morphisms5

δ : (H∗⊗̂E)χ
−1 ∼= H1(GF , E(χ)(1)), (18)

δv : (H
∗
w⊗̂E)

χ−1 ∼= H1(Gv, E(χ)(1)). (19)

Define

H1
R(GF , E(χ)(1)) ⊂ H1(GF , E(χ)(1))

to be the subspace of classes κ such that resv κ ∈ H1(Gv, E(χ)(1)) lies in the image of

(O∗
H,w⊗̂E)

χ−1
under δv for each v 6∈ R. It is then clear that (18) induces an isomorphism

δ : Uχ
∼= H1

R(GF , E(χ)(1)). (20)

5In (18), H∗⊗̂E = (lim
←−

(H∗ ⊗OE/p
n))⊗OE

E, and similarly in (19).
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Recall that for each place pi ∈ R there is a perfect Tate duality pairing

〈 , 〉pi : H
1(Gpi , E(χ)(1))×H

1(Gpi , E(χ
−1)) // E.

It follows from Poitou–Tate duality that the images ofH1
R(GF , V (χ−1)) andH1

R(GF , E(χ)(1))

under the product of the restriction maps respi are orthogonal under the local Tate duality

map

〈 , 〉R :
∏r

i=1H
1(Gpi , V (χ−1))×

∏r
i=1H

1(Gpi , E(χ)(1))
∑

〈 , 〉pi
// V. (21)

The desired result follows from this orthogonality and the fact that

〈κ, δ(u)〉pi = (respi κ)(u). (22)

We now present an alternate and more direct proof of (10) using only general facts from

class field theory.

Proof 2 of Proposition 2.1. Since H is the fixed field of χ, the restriction of κ to GH yields

a class

resH κ ∈ H
1(GH , V (χ−1))G = Homcts(GH , V )χ

−1

,

where the group on the right is the E-vector space of continuous group homomorphisms

f : GH → V such that

f(σhσ−1) = χ−1(σ)f(h) for σ ∈ GF , h ∈ GH . (23)

Since κ is unramified outside R, the homomorphism resH κ is trivial on the inertia group

Iw ⊂ Iv for each place v 6∈ R, where w is the place of H specified by the choice of Gv. From

(23), it follows that resH κ is trivial on the inertia group Iw for every place w 6∈ RH , where

RH denotes the set of places of H lying above those in R. Therefore the homomorphism

resH κ factors through the maximal abelian extension of H unramified outside RH , which

we denote by K. By class field theory, we have an isomorphism

rec : A∗
H/H

∗
∏

w 6∈RH

O∗
H,w −→ Gal(K/H), (24)

where AH is the ring of adeles of H and by convention O∗
H,w = C∗ if w is a complex place.

Let u ∈ O∗
RH

, the group of RH-units of H. The idèle

πu = (u, u, . . . , u, 1, 1, . . . )

with component 1 at each w 6∈ RH and component u at each w ∈ RH is clearly trivial in the

quotient (24). The fact that resH κ factors through Gal(K/H) therefore implies that

0 = (resH κ)(1) = (resH κ)(rec(πu)) =
∑

w∈RH

(resw κ)(u) =
r∑

i=1

∑

σ∈G

(resσ(Pi) κ)(u).

12



Equation (23) implies that

resσ(Pi)(u) = χ−1(σ) resPi
(σ−1(u)),

and noting that via (7) we have resPi
= respi , we obtain

r∑

i=1

(respi κ)(uχ) = 0 where uχ =
∑

σ∈G

σ(u)⊗ χ(σ).

Since elements of the form uχ for u ∈ O∗
RH

generate the E-vector space Uχ, the desired result

follows.

We conclude this section by proving a crucial injectivity result from global to local coho-

mology groups.

Proposition 2.2. Let V be an E-vector space. The restriction map

r∏

i=1

resIpi : H
1
R(GF , V (χ−1)) −→

r∏

i=1

H1(Ipi , V )

is injective.

As mentioned in the introduction, the fact that in the general case this injectivity fails

to hold when
∏r

i=1 resIpi is replaced by a single resIpi (or even a single respi) represents an

important distinction from the rank 1 setting.

Proof. The proposition states that there are no nonzero classes in the cohomology group

H1(GF , V (χ−1)) that are unramified everywhere. To see this, first note that the restriction

map

resH : H1(GF , V (χ−1)) −→ H1(GH , V )χ
−1

is an isomorphism, since the preceding and following terms in the inflation-restriction ex-

act sequence are the groups H i(G, V (χ−1)) for i = 1, 2. These groups vanish since G =

Gal(H/F ) is finite and the E-vector space V is torsion-free.

If κ is unramified everywhere, then as in the second proof of Proposition 2.1 we see that

resH κ factors through the maximal abelian unramified extension of H. Since this extension

(the Hilbert class field of H) is a finite extension of H, it follows that resH κ = 0 once again

using the fact that V is torsion-free. The fact that resH is an isomorphism then implies that

κ = 0 as desired.
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3 Homomorphism on the Hida Hecke Algebra

Our goal in this section is to prove Theorem 2 from the introduction and its various gener-

alizations that are needed to handle all cases. This involves rather technical computations

involving the Hecke action on certain explicitly defined Hida families. The reader who is

willing to take Theorem 2 as a black box and is interested in the deduction of the equality

Lan(χ) = Rp(χ) from this theorem can skip ahead to §4 without any loss of continuity.

We first recall the notation and conventions of [5, §2 and §3] and [22] for Hida families

of Hilbert modular forms for F .

3.1 Notation on Hida Families

Let Λ = OE[[T ]] where, as in the introduction, E is a finite extension of Qp containing the

values of the character χ. For each k ∈ Zp we have a “specialization to weight k” OE-algebra

homomorphism

νk : Λ −→ OE given by T 7→ uk−1 − 1, (25)

where u is a topological generator of 1 + 2pZp (for instance, we may choose u = 1+ p if p is

odd and u = 5 if p = 2). Under this convention, specialization to weight 1 corresponds to

the augmentation map T 7→ 0. Let Λ(1) = OE[[T ]](T ) denote the localization of Λ in weight

1, i.e. the localization of Λ with respect to the prime ideal (T ) = ker ν1. Note that p is

invertible in Λ(1), so in particular Λ(1) is an E-algebra. Furthermore Λ(1) is a DVR and we

choose the uniformizer

π =
1

logp u
T.

This uniformizer is normalized to have the following property making translation between

the k-variable and the π-variable straightforward. Suppose h ∈ Λ(1) can be written h = πnh′

where h′ ∈ Λ∗
(1), and let f : U → E be defined for a sufficiently small neighborhood U ⊂ Zp

containing 1 by f(k) = νk(h). Then f has a zero of order n at k = 1 and

f (n)(1)/n! = ν1(h
′).

Next we recall the Λ-adic cyclotomic character. This is the character ǫ : GF → Λ∗

satisfying νk(ǫ(σ)) = 〈ǫcyc(σ)〉
k−1 for any k ∈ Zp. Here

ǫcyc : GF −→ Z∗
p (26)

is the usual cyclotomic character defined by σ(ζ) = ζǫcyc(σ) for any p-power root of unity ζ.

The character ǫ is given explicitly by the formula

ǫ(σ) = (1 + T )logp〈ǫcyc(σ)〉/ logp u. (27)

Recall that n denotes the conductor of the character χ. We denote by M(n, χ) the Λ-

module of Λ-adic Hilbert modular forms for F with tame level n and character χ. For each

14



F ∈ M(n, χ) and integer k ≥ 2, the specialization νk(F ) lies in the space Mk(np, χω
1−k)

of Hilbert modular forms for F of weight k, level np, and character χω1−k. The subspace

of cusp forms in M(n, χ) is denoted S(n, χ). The Λ-module M(n, χ) is equipped with an

action of Hecke operators Tl for primes l ∤ np and Ul for l | p. Following Hida, we let

e = lim
n→∞


∏

p|p

Up




n!

be the ordinary projector and denote by

Mo(n, χ) = eM(n, χ), So(n, χ) = eS(n, χ)

the spaces of Hida families and cuspidal Hida families, respectively. We denote by T̃ and T

the Λ-algebras of Hecke operators acting onMo(n, χ) and So(n, χ), respectively.

Of particular interest to us will be the Eisenstein series. Let k ≥ 1 be an integer and

let η be a narrow ray class character of F such that η is totally odd or totally even, with

parity agreeing with k. Let b denote the modulus of η, which we do not assume to equal

the conductor of η (i.e. η need not be a primitive character). Excluding the exceptional

case where F = Q, k = 2, and b = 1, there is an Eisenstein series Ek(1, η) with normalized

Fourier coefficients given by

c(a, Ek(1, η)) =
∑

r|a,(r,b)=1

η(r)Nrk−1

for integral ideals a ⊂ OF and constant coefficients (assuming b 6= 1 or k 6= 1)6

cλ(0, Ek(1, η)) = 2−[F :Q]Lb(η, 1− k), λ ∈ Cl+(F ),

where the subscript b emphasizes that the Euler factors at primes dividing b are removed.

(For details regarding our conventions on Hilbert modular forms and their Fourier coeffi-

cients, see [5, §2].) These classical Hilbert modular forms interpolate p-adically in the sense

that there is an Eisenstein series E (1, χ) ∈ Mo(n, χ) such that νk(E (1, χ)) = Ek(1, χω
1−k)

for all k ≥ 1, where the character χω1−k is understood to always have modulus divisible by

all primes above p (even if k ≡ 1 (mod p− 1)). The constant coefficients of νk(E (1, χ)) can

be expressed as 2−[F :Q]Lp(χω, 1− k).

6If b = 1 and k = 1, the constant coeffcients are given by

cλ(0, E1(1, η)) = 2−[F :Q](L(χ, 0) + χ−1(λ)L(χ−1, 0)).
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3.2 Construction of a Cusp Form

We now recall the construction of a certain Hida family of cusp forms from [5] and [22]. For

any integer k, we let Λ(k) = Λ(T−uk−1+1) denote the localization of Λ in weight k, i.e. the

localization at the prime ideal (T −uk−1+1) = ker νk. Similarly we letMo(1, ω−1)(k) denote

the localization of the space of Hida families of modular forms with respect to weight k, i.e.

Mo(1, ω−1)(k) =M
o(1, ω−1)⊗Λ Λ(k).

Lemma 3.1 ([22], Theorem 2). There exists a Hida family G ∈ Mo(1, ω−1)(0) with the

property that ν0(G ) = 1 and cλ(0,G ) = 1 for all λ ∈ Cl+(F ).

Lemma 3.1 was proved in [5] under the assumption of Leopoldt’s conjecture using Eisen-

stein series, but it was demonstrated unconditionally in [22]. We write

Gk = νk(G ) ∈Mk(p, ω
−k).

Now, for each integer k ≥ 1, we define a modular form Fk ∈ Mk(np, χω
1−k). If R′ is not

empty (we call this case 1), let

Fk = Ek(1, χω
1−k)− E1(1, χR′) ·Gk−1 ·

Lp(χω, 1− k)

L(χR′ , 0)
. (28)

Here χR′ denotes the character χ viewed with modulus divisible by all primes in R′, so

L(χR′ , 0) = L(χ, 0)
∏

p∈R′

(1− χ(p))

is equal (up to the constant 2−[F :Q]) to the value of the constant terms of E1(1, χR′). By

construction, Fk has constant terms equal to 0. If R′ is empty (this setting will be subdivided

further into two cases, case 2 and case 3) we let

Fk = Ek(1, χω
1−k)− E1(1, χ) ·Gk−1 ·

Lp(χω, 1− k)

L(χ, 0)

+ Ek(χ, ω
1−k) ·

Lp(χω, 1− k)

L(χ, 0)
·

L(χ−1, 0)

Lp(χ−1ω, 1− k)
. (29)

Again Fk has constant terms equal to 0.

The forms Fk interpolate to Hida families. Note that

νk(G ((1 + T )u−1 − 1)) = νk−1(G (T )).

Therefore, in case 1 the Λ-adic family

F̃ = E (1, χ)− E1(1, χR′)G ((1 + T )u−1 − 1)) ·
L(χω)

L(χR′ , 0)
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satisfies νk(F̃ ) = Fk for all positive integers k in a neighborhood of 1 in Zp, where L(χω) ∈

Λ(1) is the element such that νk(L(χω)) = Lp(χω, 1− k). Similarly, if R′ = φ we define

F̃ = E (1, χ)− E1(1, χ) · G ((1 + T )u−1 − 1)) ·
L(χω)

L(χ, 0)
+ E (χ, 1) · W , (30)

where

W =
L(χω)

L(χ−1ω)
·
L(χ−1, 0)

L(χ, 0)
∈ Frac(Λ)

satisfies

νk(W) =
Lp(χω, 1− k)

L(χ, 0)
·

L(χ−1, 0)

Lp(χ−1ω, 1− k)
(31)

for all k ∈ Zp with Lp(χ
−1ω, 1− k) 6= 0. In our calculations, we will require that the Λ-adic

form F̃ is regular in weight 1, i.e. F̃ ∈ Mo(n, χ)(1). This will be the case unless W has a

pole in weight 1, i.e. if

ordπW = ran(χ)− ran(χ
−1) < 0.

(Of course, Conjecture 1 implies that ran(χ) = r(χ) = rχ−1 = ran(χ), so it should be the case

that ordπW = 0; however we are proving Conjecture 2 without assuming Conjecture 1, so

we need to consider the possibility ordπW < 0.) Now, swapping χ and χ−1 has the effect

of inverting W . Therefore, in the case that W has a pole at k = 1, it suffices instead to

assume that W has a zero at k = 1 and to prove Conjecture 2 for χ−1 (i.e. to prove that

Lan(χ
−1) = Rp(χ

−1)). Therefore, we assume that ordπW ≥ 0 and subdivide the setting

R′ = φ into two cases:

• Case 2: ν1(W) 6= 0; we must prove Rp(χ) = Lan(χ).

• Case 3: ν1(W) = 0; we must prove Rp(χ) = Lan(χ) = 0 and Rp(χ
−1) = Lan(χ

−1).

Now, the Λ-adic family of modular forms F̃ has been constructed such that its constant

coefficients at∞ vanish—in the terminology of [16], F̃ is a “semi-cusp form.” The following

result was proved in [5, Corollary 2.10 and Proposition 3.4].

Theorem 3.2. There exists a Hecke operator t in the Hecke algebra T̃(1) such that ν1(t)(E1(1, χS)) =

E1(1, χS) and such that F = t · e · F̃ is a cuspidal Hida family, i.e. F ∈ So(n, χ)(1).

3.3 Hecke Action in Case 1 (R′ 6= φ)

We now study the action of the Hecke operators on the form F . The action of the Hecke

operators above p is more complicated than the setting r = 1 considered in [5], and our

methods here draw from those introduced in [22].

Any Hida family is determined by its Fourier expansion; there is a canonical Λ-algebra

embedding

c : So(n, χ)(1) −→
∏

a⊂OF

Λ(1), H 7→ (c(a,H ))a⊂OF
.
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Recall the definition of ran and L ∗
an(χ) given in (2).

We define H to be the image of the Hecke orbit of F under the reduction of c modulo

πran+1. This is a finitely-generated module over Λ(1)/π
ran+1 = E[π]/πran+1, and we obtain a

canonical Λ-algebra homomorphism

ϕ : T −→ EndE[π]/πran+1H. (32)

By identifying the image of (32), we can now prove Theorem 2 from the introduction.

Theorem 3.3. Suppose R′ is nonempty. There exists a Λ-algebra homomorphism

ϕ : T −→ W1 = E[π, ǫ1, . . . , ǫr]/(π
ran+1, ǫ2i , ǫiπ, ǫ1ǫ2 · · · ǫr + (−1)ranL ∗

an(χ)π
ran)

such that

Tl 7→ 1 + χǫ(l) for l ∤ np

Ul 7→ 1 for l | n or l ∈ R′, and

Upi 7→ 1 + ǫi, R = {p1, . . . , pr}.

Proof. By definition, πran fully divides L(χω) in Λ(1). Since ν0(G ) = 1, it follows that modulo

πran+1 we can write the second term appearing in the definition of F̃ more simply, namely:

F
′ = E1(1, χR′)G ((1 + T )u−1 − 1)) ·

L(χω)

L(χR′ , 0)

≡ (−1)ranE1(1, χR′)L ∗
an(χ)π

ran (mod πran+1). (33)

To be clear, this congruence means that the two sides have Fourier coefficients that are

congruent modulo πran+1. In particular, modulo πran+1 the Hecke action on F ′ depends only

on the action on the form E1(1, χR′). More precisely, if τ ∈ T̃ then we have

τF ′ ≡ (−1)ranν1(τ)(E1(1, χR′)) ·L ∗
an(χ)π

ran (mod πran+1). (34)

Let us therefore study the action of the Hecke operators on E1(1, χR′). We have

TlE1(1, χR′) = (1 + χ(l))E1(1, χR′), l ∤ np.

UlE1(1, χR′) = E1(1, χR′), l | n or l ∈ R′.

The action of the operators Up for p ∈ R is more subtle and leads to an interesting phe-

nomenon. A direct calculation shows that for p ∈ R, we have

UpE1(1, χR′) = E1(1, χR′) + E1(1, χR′∪{p}).

More generally, for R′ ⊂ J ⊂ Sp and p ∈ Sp, we have

(Up − 1)E1(1, χJ) =

{
E1(1, χJ∪{p}) if p 6∈ J,

0 if p ∈ J.
(35)
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Note that for l ∤ np, we have Tl(E (1, χ)) = (1 + χǫ(l))E (1, χ). Since

1 + χǫ(l) ≡ 1 + χ(l) (mod π),

it follows from (34) and the definition of F̃ that modulo πran+1, the Hecke operator Tl acts

as multiplication by the scalar 1 + χǫ(l) on F̃ . By the commutativity of the Hecke algebra,

the same is clearly true for F and its entire Hecke orbit H. The same argument shows that

Ul for l | n or l ∈ R′ acts as the identity on H. Therefore the homomorphism (32) satisfies

ϕ(Tl) = 1 + χǫ(l) for l ∤ np, (36)

ϕ(Ul) = 1 for l | n or l ∈ R′. (37)

Recall that R = {p1, . . . , pr}. For pi ∈ R, the operator Upi − 1 annihilates E (1, χ). It

follows from this along with (33) that π annihilates the image of (Upi − 1)F in H. Similarly

using (34) and (35), it follows that the image of (Upi − 1)2F is 0 in H. If we let ǫi denote

the image of Upi − 1 under the homomorphism ϕ given in (32), it is therefore clear that

ǫ2i = 0 and ǫi · π = 0 for all i. (38)

Finally, we consider the action of
∏r

i=1(Upi − 1). We have

r∏

i=1

(Upi − 1)F ≡ t · e((−1)ran+1E1(1, χS)L
∗
an(χ)π

ran) (mod πran+1)

≡ t · e((−1)ran+1
L

∗
an(χ)π

ranE (1, χ)) (mod πran+1)

≡ (−1)ran+1
L

∗
an(χ)π

ranF (mod πran+1).

Therefore we have

ǫ1 · · · ǫr + (−1)ranL ∗
an(χ)π

ran = 0 in EndE[π]/πran+1H. (39)

Combining (36)–(39), we have therefore proved that there is a surjective Λ(1)-algebra

homomorphism

W1 −→ ϕ(T)⊗OE
E

such that ǫi 7→ ǫi. To conclude the proof, we must show that this homomorphism is injective.

This can be achieved by counting dimensions. The algebraW1 has dimension 2r+ran−1 over

E, and is generated as an E-vector space by 1, π, π2, . . . , πran−1 and the products
∏

j∈J ǫj for

all subsets J ⊂ R, J 6= φ. We must therefore show that the elements 1, π, π2, . . . , πran−1 and

the products
∏

j∈J ǫj are E-linearly independent in EndE[π]/πran+1H, and for this it suffices

to show that their images on F are E-linearly independent. It is clear that the coefficients

of F , πF , . . . , πran−1F in any putative linear combination must be zero, since these forms

all vanish to distinct orders less than ran at k = 1. We have already calculated that up to a

nonzero constant multiple, the forms
∏

j∈J ǫjF for J 6= φ are congruent to E1(1, χR′∪J)π
ran

modulo πran+1. These forms are easily seen to be linearly independent over E, and the result

follows.
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Remark 3.4. Consider the Λ-subalgebra T′ ⊂ T generated by the operators Tl for l ∤ np,

Ul for l | n or l ∈ R′, and

UJ = T r−#J
∏

p∈J

(Up − 1)

for nonempty subsets J ⊂ R. One checks that the images of these Hecke operators under ϕ

lie in the E-subalgebra of W1 generated by π. Therefore, restricting the homomorphism ϕ

to T′ and reducing modulo πr+1 (this reduction is only relevant if ran > r) yields a Λ-algebra

homomorphism

ϕ′ : T′ −→ E[π]/πr+1

satisfying

Tl 7→ 1 + χǫ(l) for l ∤ np,

Ul 7→ 1 for l | n or l ∈ R′,

UJ 7→ 0 for φ 6= J ( R,

UR 7→ (−1)r+1
Lan(χ)π

r.

This holds even if ran > r, in which case Lan(χ) = 0. The homomorphism ϕ′ can be

constructed directly and more simply than ϕ by considering the mod πr+1-eigenvalues of the

form F , i.e. for all τ ∈ T′ we have

τF ≡ ϕ′(τ)F (mod πr+1).

A careful study of the arguments of §5 reveals that the homomorphism ϕ′ is sufficient for

our applications; to be precise, only the images of the operators in T′ under ϕ are needed

to expand the determinant in (85) and to obtain (87). Nevertheless, we have included the

construction of the homomorphism ϕ on the full Hecke algebra T for completeness.

Remark 3.5. If r = 1, there is a natural Λ(1)-algebra homomorphism W1 −→ E[π]/π2

sending ǫ1 7→ Lan(χ)π. (Note that this holds even if ran > r = 1, in which case Lan(χ) = 0.)

The composition of ϕ with this homomorphism is precisely the homomorphism constructed

in case 1 in [5].

3.4 Hecke Action in Case 2: R′ = φ, ν1(W) 6= 0

In this section, we handle the more complicated setting where R′ = φ. Recall that we are

assuming that W ∈ Λ(1) so that the family F is regular in weight 1. Define the Λ(1)-algebra

W2 = E[π, ǫ1, . . . , ǫr, y]/IW2

where

IW2 =(πran+1, yran+1, y(π − y), πranW − yran(W + 1),

ǫ2i , ǫiπ, ǫiy, ǫ1ǫ2 · · · ǫr + (−1)ranL ∗
an(χ)(π

ran − yran)).
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Theorem 3.6. Suppose R′ is empty. If ν1(W) 6= 0, then there exists a Λ-algebra homomor-

phism

ϕ : T −→ W2

such that

Tl 7→ 1 + χǫ(l) + (χ(l)− 1)
1− ǫ(l)

π
y for l ∤ np

Ul 7→ 1 +
ǫ(l)− 1

π
y for l | n, and

Upi 7→ 1 + ǫi.

Proof. The proof follows that of Theorem 3.3. We again let H denote the image of the Hecke

span of F in the space of Fourier coefficients modulo πran+1, and consider the canonical Λ-

algebra homomorphism

ϕ : T −→ EndE[π]/πran+1H. (40)

Fix a prime q ∤ np such that χ(q) 6= 1. Define

Y =
Tq − 1− χǫ(q)

(χ(q)− 1)(1− ǫ(q))/π
∈ T̃(1).

An explicit computation shows that

Y F̃ ≡ πE (χ, 1)W (mod πran+1).

It therefore follows that

TlF ≡

(
1 + χǫ(l) + (χ(l)− 1)

1− ǫ(l)

π
Y

)
F (mod πran + 1), l ∤ np (41)

UlF ≡

(
1 +

ǫ(l)− 1

π
Y

)
F (mod πran + 1), l | n. (42)

One also computes Y E (χ, 1) = πE (χ, 1) and hence:

(πY − Y 2)F ≡ 0 (mod πran+1), (43)

Y ran+1
F ≡ 0 (mod πran+1), (44)

(πranW − Y ran(W + 1))F ≡ 0 (mod πran+1). (45)

In computing (45), one uses E (1, χ) ≡ E (χ, 1) ≡ E1(1, χS) (mod π). Now we consider the

action of the Hecke operators above p on F modulo πran+1. As in Theorem 3.3, we have

(Up − 1)2F ≡ π(Up − 1)F ≡ 0 (mod πran+1), (46)

and clearly also

(Up − 1)YF ≡ 0 (mod πran+1). (47)
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We furthermore compute:

r∏

i=1

(Up − 1)F̃ ≡ (−1)ran+1E1(1, χS)L
∗
an(χ)π

ran (mod πran+1)

≡ (−1)ran+1
L

∗
an(χ)(π

ran − Y ran)F̃ (mod πran+1),

hence
r∏

i=1

(Up − 1)F ≡ (−1)ran+1
L

∗
an(χ)(π

ran − Y ran)F (mod πran+1). (48)

Combining (41)–(48), we see that there is a surjective Λ(1)-algebra homomorphism

W2 −→ ϕ(T)⊗OE
E (49)

such that y maps to the image of Y in EndE[π]/πran+1H and ǫi maps to the image of Upi − 1.

For future reference, we note that we have not yet used the condition ν1(W) 6= 0 in this

proof.

To conclude the proof, we must demonstrate that the homomorphism (49) is an injection,

which we again accomplish by counting dimensions. The algebra W2 has dimension 2ran +

2ran − 2 as an E-vector space and is generated by the images of

1, π, π2, . . . , πran−1, y, y2, · · · , yran ,

and the products ǫJ =
∏

j∈J ǫi for all subsets J ⊂ R, J 6= φ,R.

First suppose ν1(W) 6= −1 (in addition to the assumption ν1(W) 6= 0 of the theorem)

and suppose we have an E-linear combination of the forms

{πi
F}ran−1

i=0 ∪ {Y i
F}rani=1 ∪

{∏

j∈J

(Upj − 1)F

}

J 6=φ,R

⊂ H

that vanishes. We must show that each of the coefficients in this linear combination is zero.

Now F does not vanish at k = 1, i.e. ν1(F ) = (1 + ν1(W))E1(1, χS) 6= 0, and it is the

only form in our list with this property; therefore its coefficient in our linear combination

must be zero. Next we consider the two order 1 terms in our list, namely πF and Y F .

Suppose the coefficients of these two terms in our linear combination are α and β. Then by

considering leading terms, we must have α(1 + ν1(W)) + βν1(W) = 0. However by applying

Y and then considering leading terms, we also find α + β = 0. These two equations imply

that α = β = 0. Continuing in this fashion, we see that all the coefficients of the terms in

our linear combination with order less than ran must vanish. It remains to prove that the

image of the forms Y ranF and
{∏

j∈J(Upj − 1)F
}

J 6=φ,R
in H are linearly independent over

E. However, modulo πran+1, these forms are congruent up to non-zero scalars to the forms

πranE1(1, χJ) for J ⊂ R, J 6= φ. As noted earlier, these forms are linearly independent.
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If ν1(W) = −1, a similar argument goes through. The minimal order forms in our

list are F and YF ; these each have order 1 and their leading terms (i.e. their images in

H modulo π2) are linearly independent. This implies that their coefficients in our linear

combination are zero. The next minimal order forms are πF and Y 2F , which each have

order 2 and have leading terms that are linearly independent. Continuing in this way, we are

reduced to proving that the order ran forms πran−1F , Y ranF , and
{∏

j∈J(Upj − 1)F
}
J 6=φ,R

are linearly independent modulo πran+1. The linear independence of all but the first of these

forms follows exactly as in the previous case. We must therefore prove that πran−1F cannot

be written as a linear combination of Y ranF and
{∏

j∈J(Upj − 1)F
}
J 6=φ,R

modulo πran+1.

However, applying Y to such a putative linear combination, we would find that πran−1YF ≡

0 (mod πran+1) since Y annihilates all of the forms Y ranF and
{∏

j∈J(Upj − 1)F
}
J 6=φ,R

modulo πran+1. But

πran−1YF ≡ πranE1(1, χS)ν1(W) 6≡ 0 (mod πran+1).

This concludes the proof.

Remark 3.7. Note that when r = 1 and w = ν1(W ) 6= 0,−1, there is a natural Λ(1)-algebra

homomorphism W2 −→ E[π]/π2 given by

y 7→ π · w/(w + 1), ǫ 7→ Lan(χ)π/(w + 1).

We therefore obtain a Λ-algebra homomorphism T→ E[π]/π2 such that:

Tl 7→ 1 + χ(l) +
χ(l) + w

1 + w
(log〈Nl〉)T, l ∤ np

Ul 7→ 1, l | n

Up 7→ 1 +
Lan

1 + w
T, R = Sp = {p}.

This is exactly the homomorphism constructed in case 2 in [5].

3.5 Hecke Action in Case 3: R′ = φ, ν1(W) = 0

Suppose that W has a zero at k = 1, i.e. ran(χ) > ran(χ
−1). For notational simplicity we

write s = ran(χ) and t = ran(χ
−1). Define the Λ(1)-algebra

W3 = E[π, ǫ1, . . . , ǫr, y]/IW3

where

IW3 =(πs+1, yt+1, y(π − y), πtW − yt,

ǫ2i , ǫiπ, ǫiy, ǫ1ǫ2 · · · ǫr + (−1)sL ∗
an(χ)π

s).
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Theorem 3.8. Suppose R′ is empty and that W has a zero of order s− t ≥ 1. There exists

a Λ-algebra homomorphism

ϕ : T −→ W3

such that

Tl 7→ 1 + χǫ(l) + (χ(l)− 1)
1− ǫ(l)

π
y for l ∤ np

Ul 7→ 1 +
ǫ(l)− 1

π
y for l | n, and

Upi 7→ 1 + ǫi.

Proof. As noted earlier, the proof of Theorem 3.6 carries through without the use of the

assumption ν1(W) 6= 0 up through the construction of the homomorphism (49). It is the

injectivity of this homomorphism that used the condition ν1(W) 6= 0. Indeed, if ν1(W) = 0

as we are currently assuming, then (49) is not injective. We have

Y t+1
F̃ ≡ πt+1

E (χ, 1)W ≡ 0 (mod πs+1)

since πs−t | W , hence Y t+1F ≡ 0 (mod πs+1). Furthermore

Y t
F̃ ≡ πt

E (χ, 1)W ≡ πtWF̃ (mod πs+1).

It follows that the homomorphism (49) factors through the quotient W3 of W2, and to

conclude the proof it remains to show that the induced mapW3 −→ ϕ(T)⊗OE
E is injective.

For this it suffices to show that the forms

{πi
F}si=0 ∪ {Y

i
F}t−1

i=1 ∪

{∏

j∈J

(Upj − 1)F

}

J⊂R,J 6=φ,R

are E-linearly independent modulo πs+1. The demonstration of this fact is similar to the

previous cases and left to the reader.

4 Construction of a Cohomology Class

We write

ϕ : T −→ W

where W = W1,W2, or W3 in cases 1, 2, and 3, respectively, for the homomorphism ϕ given

in Theorems 3.3, 3.6, and 3.8. We write mW for the maximal ideal of W and m ⊂ T for the

kernel of the composition

T
ϕ

//W //W/mW
∼= E.

The height 1 prime ideal m is generated by T ∈ Λ, Tl − (1 + χǫ(l)) for l ∤ np and Ul − 1 for

l | np.
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Let T(m) denote the localization of T at the prime ideal m. Let L = Frac(T(m)) denote

the total ring of fractions of the local ring T(m). Since the tame character χ in our space of

Hida families has conductor equal to the tame level n of our families, there are no n-old forms

and therefore T(m) is reduced. This simple yet crucial observation was not mentioned in [5];

we thank H. Hida for pointing it out to us and refer the reader to [13, Proof of Theorem 3.6

and Corollary 3.7, pp. 381–382] for further details. As a result, we have a canonical injection

T(m) → L where L is isomorphic to a product of fields

L =
t∏

i=1

LHi
. (50)

Each LHi
is a finite extension of Frac(Λ) and corresponds to a cuspidal Hida eigenfamily

Hi. For an integral ideal a ⊂ OF , the normalized Fourier coefficient c(a,Hi) is equal to the

image in LHi
of the Hecke operator Ta. These coefficients generate a finite local Λ-subalgebra

of LHi
that we denote ΛHi

and call the Hecke algebra of Hi. The image of T(m) in LHi
is

the localization of ΛHi
at a height 1 prime ideal mHi

lying above (T ) ⊂ Λ, and the explicit

description of the homomorphism ϕ implies that for prime ideals l ⊂ OF we have

c(l,Hi) ≡ 1 + χ(l) (mod mHi
) for l ∤ np,

c(l,Hi) ≡ 1 (mod mHi
) for l | np.

(51)

These congruences simply state that the specialization of Hi at the prime ideal mHi
is the

weight 1 form E1(1, χS).

4.1 Representations Associated to Hida Families

As above, let H denote a cuspidal Hida eigenfamily specializing at a weight 1 prime ideal

mH ⊂ ΛH to the form E1(1, χS) (i.e. satisfying (51)). Let LH = Frac(ΛH ) denote the

fraction field of ΛH . The following theorem ([23, Theorems 2 and 4]) of Hida and Wiles is

crucial for the construction of our cohomology class.

Theorem 4.1 (Hida, Wiles). There exists a continuous irreducible Galois representation

ρH : GF −→ GL2(LH )

where LH is endowed with the Λ-adic topology (i.e. the topology induced by the maximal ideal

(πE, T ) of Λ, where πE is a uniformizer for E), such that:

1. ρH is unramified outside np;

2. for primes l ∤ np, the characteristic polynomial of ρH (Frobl) is

char(ρH (Frobl))(x) = x2 − c(l,H )x+ χǫ(l); (52)
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3. for all p | p, we have

ρH |Gp
∼

(
χǫη−1

p,H ∗

0 ηp,H

)
, (53)

where ηp,H : Gp −→ Λ∗
H

is unramified and ηp,H (rec(̟−1)) = c(p,H ). Here ̟ ∈ F ∗
p

is a uniformizer and rec : F ∗
p −→ Gab

p is the local Artin reciprocity map.

Note that by (52) we have char(ρH (Frobλ))(x) ∈ ΛH [x], and hence by Cebotarev we

have

char(ρH (σ))(x) ∈ ΛH [x] (54)

for all σ ∈ GF . Moreover by (51), (52), and another application of Cebotarev we have

char(ρH (σ))(x) ≡ (x− 1)(x− χ(σ)) (mod mH ) (55)

for all σ ∈ GF . Note that in applying Cebotarev and the continuity of ρH to deduce (54)

and (55), we are using the fact that ΛH and mH are finitely generated Λ-modules and hence

are closed in the Λ-adic topology on LH .

In order to rigidify the representation ρH , we choose an element τ ∈ GF such that

χ(τ) 6= 1. Let ΛmH
denote the completion of the localization of ΛH at mH with respect to

its maximal ideal. We denote the maximal ideal of ΛmH
by m̂H = mH ΛmH

. By (55) and

Hensel’s Lemma, ρH (τ) has distinct eigenvalues λ1, λ2 ∈ ΛmH
such that λ1 ≡ 1 (mod m̂H )

and λ2 ≡ χ(τ) (mod m̂H ). After extending scalars to LmH
= Frac(ΛmH

), we can choose a

basis for our representation consisting of eigenvectors for ρH (τ), i.e. such that

ρH (τ) =

(
λ1 0
0 λ2

)
. (56)

In the next section, we will demonstrate how to define a cohomology class using the upper

right entries of the representation ρH in this basis as H ranges over the Hi. Ribet showed

how to gain local information about this cohomology class by comparing the “global” basis

satisfying (56) to the “local” basis indicated in (53). This argument, which Mazur [14] has

called “Ribet’s Wrench,” does not succeed in our context if the global basis and local basis

are the same. We must show, therefore, that τ can be chosen so that its eigenvectors do

not agree with the eigenvectors of ρH (Gp) for any p | p. Furthermore, we must do this

simultaneously for all the finitely many H that occur.

Lemma 4.2. Let v ∈ L2
mH

be a nonzero vector in the representation space of ρH , and let

Gv ⊂ GF denote the subgroup of elements σ such that v is an eigenvector for ρH (σ). If

χ(Gv) 6= 1, then Gv has infinite index in GF .

Proof. Fix a τ ∈ Gv such that χ(τ) 6= 1. As above let λ1, λ2 ∈ ΛmH
be the eigenvalues of

ρH (τ) such that λ1 ≡ 1 (mod m̂H ) and λ2 ≡ χ(τ) (mod m̂H ). Choose a basis for ρH (σ) =
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(
aH (σ) bH (σ)
cH (σ) dH (σ)

)
whose first vector is v and such that ρH (τ) is diagonal; hence

ρH (τ) =

(
λ1 0
0 λ2

)
or ρH (τ) =

(
λ2 0
0 λ1

)
. (57)

Let us for the moment assume that the first of these cases holds, as the second case is similar

and proceeds in the same fashion.

By (54) we have

aH (σ) + dH (σ) = tr ρH (σ) ∈ ΛH ⊂ ΛmH

for any σ ∈ GF and moreover by (55) we have

aH (σ) + dH (σ) ≡ 1 + χ(σ) (mod m̂H ). (58)

Now by (57):
aH (τ) = λ1 ≡ 1 (mod m̂H ),

dH (τ) = λ2 ≡ χ(τ) (mod m̂H ).
(59)

We have

1 + χ(σ)χ(τ) ≡ aH (στ) + dH (στ) (mod m̂H ) (60)

≡ aH (σ) + dH (σ)χ(τ) (mod m̂H ), (61)

where (60) follows from (58) with σ replaced by στ and (61) follows from (59). Now (58)

and (61) imply that

aH (σ) ≡ 1 (mod m̂H ), dH (σ) ≡ χ(σ) (mod m̂H ). (62)

(In particular, aH (σ), dH (σ) ∈ ΛmH
.)

Let C0 denote the ΛH -module generated by the elements cH (σ) for σ ∈ GF and let C

denote the ΛmH
-module generated by the cH (σ). The continuity of ρH and the compactness

of GF imply that C0 is compact. It follows that C0 is a finitely-generated ΛH -module, and

hence that C is a finitely generated ΛmH
-module.

The equation

cH (στ) = cH (σ)aH (τ) + dH (σ)cH (τ)

together with (62) implies that cH (σ) ∈ C/m̂H C is a 1-cocycle representing a cohomology

class κ ∈ H1(GF , C/m̂H C(χ)).

The restriction of κ to Gv clearly vanishes, since c(Gv) = 0. If Gv has finite index in GF ,

then the inflation-restriction sequence shows that κ itself is a trivial cohomology class, i.e.

we have cH (σ) = (χ(σ)−1)x for some x ∈ C/m̂H C. Evaluating at σ = τ we see that in fact

x = 0, i.e. the image of cH in C/m̂H C is zero. However, the cH (σ) generate the module

C/m̂H C by definition. Therefore C/m̂H C = 0 and hence by Nakayama’s Lemma, we must
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have C = 0; hence cH is zero as a function on GF . This contradicts the irreducibility of ρH ,

and hence Gv must have infinite index in GF .

If the second case in (57) holds, then cH (σ) ∈ C/m̂H C represents a cohomology class

κ ∈ H1(GF , C/m̂H C(χ−1)) and the same argument goes through.

For each prime p ∈ R and each Hida family H as above, let vp,H ∈ L2
mH

be the

eigenvector for ρH (Gp).

Lemma 4.3. There exists a τ ∈ GF such that χ(τ) 6= 1 and such that vp,H is not an

eigenvector for ρH (τ) for all H and p.

Proof. In the notation of Lemma 4.2, we must show that there exists a τ ∈ GF such that

χ(τ) 6= 1 and τ 6∈ Gvp,H for all p and H . Label the vp,H such that χ(Gvp,H ) 6= 1 as v1, . . . , vn
and the remaining vp,H as vn+1, . . . , vm.

We construct τ inductively. Let τ0 ∈ Gal(H/F ) be nontrivial, so χ(τ0) 6= 1. Let H0 = H.

We define τi for i = 1, . . . , n recursively as follows. Since Gvi has infinite index in GF by

Lemma 4.2, there exists an αi 6∈ Hi−1 in the fixed field of Gvi acting on F . Let Hi be the

Galois closure of H(αi) over F , and let τi be an element of Gal(Hi/F ) such that τi|Hi−1
= τi−1

and τi(αi) 6= αi. Then any τ ∈ GF restricting to τi will satisfy χ(τ) 6= 1 and τ 6∈ Gvi , since

τ acts nontrivially on the fixed field of Gvi .

After defining τ1, . . . , τn in this way, let τ ∈ GF be any element restricting to τn on

Hn. Then by construction, χ(τ) 6= 1 and τ 6∈ Gvi for i = 1, . . . , n. Clearly τ 6∈ Gvi for

i = n+ 1, . . .m, since χ(τ) 6= 1 and χ(Gvi) = 1 for these i. This concludes the proof.

4.2 Construction of the Cohomology Class

Recall that T(m) denotes the localization of T at the prime ideal m, and that

L =
t∏

i=1

LHi

denotes its total ring of fractions. Let T denote the image of T in T(m). The product of the

Galois representations ρHi
for i = 1, . . . , t yields a continuous Galois representation

ρ : GF −→ GL2(L),

where L is endowed with the Λ-adic topology, satisfying:

1. ρ is unramified outside np;

2. for primes l ∤ np, the characteristic polynomial of ρ(Frobl) is

char(ρH (Frobl))(x) = x2 − T lx+ χǫ(l), (63)

where T l denotes the image of Tl in T;

28



3. for all p | p, we have

ρ|Gp
∼

(
χη−1

p ǫ ∗
0 ηp

)
, (64)

where η : Gp −→ T
∗
is unramified and ηp(rec(̟

−1)) = U p. Here ̟ ∈ F ∗
p is a uni-

formizer.

Let Tm denote the completion of T(m) with respect to its maximal ideal mT(m). We write

m̂ = mTm for the maximal ideal of Tm. Let τ ∈ GF satisfy the conditions of Lemma 4.3. By

Hensel’s Lemma, there exist unique roots λ1, λ2 ∈ Tm of the characteristic polynomial of ρ(τ)

such that λ1 ≡ 1 (mod m), λ2 ≡ χ(τ) (mod m). We extend scalars for the representation

ρ to Lm = Frac(Tm) and choose a basis for the representation consisting of the associated

eigenvectors for ρ(τ), i.e. such that

ρ(τ) =

(
λ1 0
0 λ2

)
. (65)

We can now construct our desired cohomology class following the method introduced

in the proof of Lemma 4.2. Write ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
. Using (63) and the fact that

T l ≡ 1 + χ(λ) (mod m), it follows from Cebotarev that

a(σ) + d(σ) ∈ T ⊂ Tm (66)

and

a(σ) + d(σ) ≡ 1 + χ(σ) (mod mT). (67)

Our applications of Cebotarev and the continuity of ρ to deduce (66) and (67) rely on the

fact that T and m ⊂ T (and hence their images in T(m)) are finitely generated Λ-modules

and are therefore closed in the Λ-adic topology.

Following the argument from (58)–(62) and using (65), we deduce that a(σ), d(σ) ∈ Tm

and

a(σ) ≡ 1 (mod m̂), d(σ) ≡ χ(σ) (mod m̂). (68)

Now let B denote the Tm-module generated by the b(σ) for σ ∈ GF . Repeating the compact-

ness argument from the proof of Lemma 4.2 shows that B is a finitely generated Tm-module.

Define the E-vector space B = B/m̂B and let b(σ) denote the image of b(σ) in B. The

equation

b(σσ′) = a(σ)b(σ′) + b(σ)d(σ′), σ, σ′ ∈ GF

together with (68) implies that the function

κ(σ) = b(σ)χ−1(σ) (69)

is a 1-cocycle representing a cohomology class [κ] ∈ H1(GF , B(χ−1)).
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4.3 Interlude on the Homomorphism ϕ

The local Artin ring W is complete with respect to its maximal ideal mW , since mran+1
W = 0.

As a result, the homomorphism ϕ : T −→ W extends canonically to a surjective homomor-

phism

ϕm : Tm −→ W.

The arguments used to deduce the congruences (68) can be refined to calculate the images

of a(σ) and d(σ) under the homomorphism ϕm. The key observation that allows this is the

following. While it is clear that ϕm (mod mW ) decomposes as the sum of two characters

(namely, 1 and χ), the same is in fact true for the full homomorphism ϕm. In cases 2 and 3,

define the “Λ-adic cyclotomic character in the variable y”,

ǫy : GF −→ W ∗

to be the character ǫ with the variable π replaced by y, i.e. if ǫ(σ) =
∑∞

i=1 aiπ
i, then

ǫy(σ) =
∞∑

i=0

aiy
i (70)

= 1 +
ǫ(σ)− 1

π
y. (71)

Note that (70) is a finite sum since y is nilpotent, and (71) holds from the relation πy = y2 in

the ring W . Define ǫπ−y(σ) similarly, with y replaced by π− y. Define two homomorphisms

ψ1, ψ2 : GF −→ W ∗

as follows:

ψ1(σ) =

{
1 case 1

ǫy(σ) cases 2 and 3,

ψ2(σ) =

{
χǫ(σ) case 1

χǫπ−y(σ) cases 2 and 3.

Lemma 4.4. We have
ϕm(a(σ)) = ψ1(σ)

ϕm(d(σ)) = ψ2(σ).
(72)

Proof. A direct computation shows that for l ∤ np, we have

ϕm(Tl) = ψ1(Frobl) + ψ2(Frobl). (73)

Furthermore, it is easy to see that ǫyǫπ−y = ǫ using the relation πy = y2, and hence

ψ1ψ2 = χǫ. (74)
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Now, (73) implies that

ϕm(a(σ) + d(σ)) = ψ1(σ) + ψ2(σ) (75)

for all σ ∈ GF . The fact that ψ1 ≡ 1 (mod mW ) and ψ2 ≡ χ (mod mW ) along with

ϕm(char(ρ(σ))(x)) = (x− ψ1(σ))(x− ψ2(σ)),

which follows from (74) and (75), implies that

ϕm(λ1) = ψ1(τ), (76)

ϕm(λ2) = ψ2(τ). (77)

Now (75) applied with στ implies that

ϕm(a(σ))ψ1(τ) + ϕm(d(σ))ψ2(τ) = ψ1(στ) + ψ2(στ). (78)

Solving (75) and (78) yields (72) as desired.

Remark 4.5. Let I be the kernel of ϕ′ : Tm −→ E[π]/(πran+1). As in §4.2, Lemma 4.4

can be used to construct a cohomology class [κ̃] in H1(GF , (B/IB)(ψ1ψ
−1
2 )). Applying the

arguments of [15] (see also [18]) one can deduce a lower bound for the E-dimension ofB/IB as

follows. Let J (the “Eisenstein ideal”) denote the kernel of the structure map Λ(1) −→ Tm/I.

Then there are isomorphisms Λ(1)/J ∼= Tm/I ∼= E[π]/(πran+1). Hence J = (πran+1) ⊂ Λ(1).

Let FittAM denote the initial Fitting ideal of a finitely presented A-module M . Then

FittΛ(1)
(B/IB) (mod J) = FittΛ(1)/J(B/IB) = FittTm/I(B/IB) = FittTm

B (mod I) = 0.

The last equality holds because B is a faithful Tm-module. Hence FittΛ(1)
(B/IB) ⊂ J and

dimE B/IB ≥ dimE Λ(1)/J = ran + 1.

However, it is unclear if [κ̃] can be used to construct r cyclotomic cohomology classes in

H1
R(GF , E(χ

−1)).

4.4 Local Behavior of the Cohomology Class

We now study in detail the cohomology class κ constructed in §4.2.

For each place p | p, there is a basis for which the representation ρ|Gp
takes the shape

given in (64). Let

(
Ap Bp

Cp Dp

)
∈ GL2(Lm) denote the change of basis matrix taking this

local basis to our fixed global basis satisfying (65), i.e. such that
(
a(σ) b(σ)
c(σ) d(σ)

)(
Ap Bp

Cp Dp

)
=

(
Ap Bp

Cp Dp

)(
χη−1

p ǫ(σ) ∗
0 ηp(σ)

)
(79)

for σ ∈ Gp.
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Lemma 4.6. The elements Ap and Cp are invertible in Lm.

Proof. First note that Tm ⊂
∏t

i=1 ΛmHi
and hence

Lm ⊂

t∏

i=1

LmHi
, where LmHi

= Frac(ΛmHi
).

We must show that the projections of Ap and Cp onto each factor LmHi
are nonzero for

i = 1, . . . , t. But if the image of Ap or Cp is zero in LmHi
, then it is easy to see that the

eigenvector for ρHi
(Gp) acting on L2

mHi
is an eigenvector for ρHi

(τ). But we chose τ in §4.2

to satisfy the conditions of Lemma 4.3, so this is not the case. This proves the result.

Comparing top left entries of the matrix equation (79) and using Lemma 4.6, we find

b(σ) =
Ap

Cp

(
χη−1

p ǫ(σ)− a(σ)
)
, σ ∈ Gp. (80)

Lemma 4.7. The cohomology class [κ] ∈ H1(GF , B(χ−1)) defined in (69) is unramified

outside R.

Proof. It is elementary to see that any class [κ] ∈ H1(GF , B(χ−1)) is unramified outside p.

Indeed, let v be a place of F not lying above p and let w be the place of H lying above v

according to the choice of decomposition group Gv ⊂ GF . By inflation-restriction, it suffices

to prove that the restriction of [κ] to Gw ⊂ GH is unramified. However, since χ|GH
= 1, this

restriction is an element

resw[κ] ∈ H
1(Gw, B) = Homcts(G

ab
w , B).

Now, the image of Iw in Gab
w is a pro-ℓ group where ℓ is the prime of Q below w (or trivial,

if w is a complex place) and B is a pro-p group, being a finite-dimensional E-vector space.

Therefore there are no non-zero continuous homomorphisms between these groups and hence

resIw([κ]) = 0.

Next we show that [κ] is unramified (in fact locally trivial) at primes p ∈ R′. By definition

of R′, there exists σ̃ ∈ Gp such that χ(σ̃) 6= 1. Since ηp(σ̃) ≡ ǫ(σ̃) ≡ a(σ̃) ≡ 1 (mod m̂), it

follows that χη−1
p ǫ(σ̃) − a(σ̃) ∈ T∗

m and hence by (80) we have Ap/Cp ∈ B. Reducing (80)

modulo m̂B we see that resp κ is a coboundary:

κ(σ) = (1− χ−1(σ))Ap/Cp, σ ∈ Gp.

Therefore resp[κ] = 0 as desired.

Lemma 4.8. The Tm-module B is generated by b(σ) for all σ ∈ Ip, p ∈ R.
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Proof. Let BI be the Tm-module generated by b(σ) for all σ ∈ Ip, p ∈ R. Let BI = B/BI .

We want to show that BI = 0. Let [κI ] denote the image of the cohomology class [κ] in

H1(GF , (BI/m̂BI)(χ
−1)). By Lemma 4.7, the class [κI ] is unramified outside R. But by the

definition of BI , the image of κ(σ) in BI/m̂BI is trivial for σ ∈ Ip, p ∈ R, and therefore

[κI ] is unramified everywhere. By Proposition 2.2, it follows that [κI ] = 0. Repeating the

argument at the end of Lemma 4.2 shows that BI = 0. Indeed, writing κI as a coboundary

and evaluating at τ shows that κI = 0 as a function. Yet the values of κI generate BI/m̂BI

and hence BI/m̂BI = 0. Since BI is a finitely generated Tm-module, Nakayama’s Lemma

implies that BI = 0 as desired.

Lemma 4.9. Let R = {p1, . . . , pr}. We have B ⊂
Ap1

Cp1
m̂+ · · ·+ Apr

Cpr
m̂.

Proof. This follows from Lemma 4.8 and equation (80), together with the observation that

for p ∈ R, we have χ(Ip) = 1 and

ηp(σ) ≡ ǫ(σ) ≡ a(σ) ≡ 1 (mod m̂), σ ∈ Ip.

5 Computation of the Regulator

We now assemble the constructions of the previous sections and complete the proof of The-

orem 1, which states that Lan(χ) = Rp(χ). Let I denote the kernel of the homomorphism

ϕm : Tm −→ W .

5.1 Proof of Lan(χ) = Rp(χ) in Cases 1, 2, and 3

Let [κ] ∈ H1
R(GF , B(χ−1)) denote the cohomology class constructed in §4.2. Let u1, . . . , ur

denote an E-basis of Uχ. By Proposition 2.1 and Lemma 4.7, we have

r∑

i=1

respi κ(uj) = 0 in B for j = 1, . . . , r. (81)

For each fixed j, we can write uj =
∑

k yjk ⊗ ejk where yjk ∈ OH [1/p]
∗ and ejk ∈ E. For

each i = 1, . . . , r, let

σij =
∑

k

ejky
(i)
jk ∈ E[Gpi ]

where y
(i)
jk ∈ Gpi is any element whose image in Gab

pi
is equal to the image of yjk under the

local Artin reciprocity map (9) (as usual we use (7) to embed OH [1/p]
∗ ⊂ F ∗

pi
). Then noting

that χ(Gpi) = 1, we have by definition:

respi κ(uj) = b(σij) in B where b(σij) =
∑

k

ejkb(y
(i)
jk ) ∈ B.
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Therefore (81) can be written

r∑

i=1

b(σij) ∈ m̂B for each j = 1, . . . , r. (82)

Now by (80), we have

b(σij) =
∑

k

ejk ·
Ai

Ci

(
η−1
i ǫ(y

(i)
jk )− a(y

(i)
jk )

)
(83)

where we have written for simplicity Ai, Ci, and ηi for Api , Cpi , and ηpi . As we have noted,

the term in parenthesis on the right lies in m̂ since ηi, ǫ, a all lie in Tm and are congruent to

1 modulo m. Furthermore we have:

η−1
i (y

(i)
jk ) = U

oi(yjk)
pi ≡ 1 + oi(yjk)(Upi − 1) (mod I)

ǫ(y
(i)
jk ) ≡ 1 + ℓi(yjk)π (mod π2)

a(y
(i)
jk ) ≡ 1 + a′i(yjk) (mod (m̂2, I)), (84)

where a′i(yjk) ∈ m̂ is any element such that

ϕm(a
′
i(yjk)) =

{
0 case 1

ℓi(yjk)y cases 2 and 3.

The congruence (84) follows from Lemma 4.4. Of course π2 ∈ m̂2. Therefore

η−1
i ǫ(y

(i)
jk )− a(y

(i)
jk ) ≡ ℓi(yjk)π + oi(yjk)(Upi − 1)− a′i(yjk) (mod (m̂2, I)).

Hence (83) can be written more simply as

b(σij) =
Ai

Ci

(ℓi(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij)

for some mij ∈ (m̂2, I). Now in view of Lemma 4.9, which implies that m̂B ⊂
∑r

i=1
Ai

Ci
m̂2,

(82) can be written

r∑

i=1

Ai

Ci

(ℓi(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij) = 0 for each j = 1 . . . , r,

after altering the mij by elements of m̂2. It follows that

det

(
Ai

Ci

(ℓi(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij)

)

i,j=1,...,r

= 0

since it is the determinant of a matrix whose rows all sum to 0. Cancelling the constants Ai

Ci

(which are invertible by Lemma 4.6) from the rows of this matrix, we obtain

det (ℓi(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij) = 0.
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This determinant now takes place in the ring Tm, and in fact all of its entries lie in the

maximal ideal m̂. We apply the homomorphism ϕm to this equation to obtain an equation

in the ring W :

det((ℓi(uj)π + oi(uj)ǫi + nij) = 0 case 1, (85)

det((ℓi(uj)(π − y) + oi(uj)ǫi + nij) = 0 cases 2 and 3, (86)

where nij ∈ m2
W . Since each entry of this matrix lies in mW , it is clear that the nij do not

effect the value of the determinant modulo mr+1
W . Finally, using the relations in the ring W

(in particular that ǫiπ = 0 and ǫiy = 0) it is easy to calculate these determinants. In case 1

we find

0 ≡ det(ℓi(uj)π + oi(uj)ǫi) (mod mr+1
W )

≡ det(ℓi(uj))π
r + det(oi(uj))ǫ1 · · · ǫr (mod mr+1

W )

≡ det(ℓi(uj))π
r + det(oi(uj))(−1)

ran+1
L

∗
an(χ)π

ran (mod mr+1
W ). (87)

If ran = r, then L ∗
an(χ) = Lan(χ) and since πr 6∈ mr+1

W , it follows that

Lan(χ) = (−1)r det(ℓi(uj))/ det(oi(uj)) = Rp(χ)

as desired. If ran > r, then πran ≡ 0 (mod mr+1
W ), so (87) implies that det(ℓi(uj)) = 0, hence

Rp(χ) = 0. Since Lan(χ) = 0 in this case as well, we again find Lan(χ) = Rp(χ).

Cases 2 and 3 are nearly identical, once one uses the relations in the ring W to observe

that (π − y)r = πr − yr 6∈ mr+1
W .

5.2 Proof of Lan(χ
−1) = Rp(χ

−1) in Case 3

As noted in §3.2, to complete the proof we must show that Lan(χ
−1) = Rp(χ

−1) in case 3.

For this, we repeat the arguments from §4.4 onward using the “c-cocycle” coming from our

representation rather than the “b-cocycle”. To be precise, we let C denote the Tm-module

generated by the elements c(σ) for all σ ∈ GF and write C = C/m̂C. Then the equation

c(σσ′) = c(σ)a(σ) + d(σ)c(σ′), σσ′ ∈ GF

together with (68) implies that the function c : GF → C is a 1-cocycle defining a cohomology

class

[c] ∈ H1(GF , C(χ)).

The elementary argument at the beginning of the proof of Lemma 4.7 shows that [c] is

unramified outside p, and hence outside R since R′ is empty in case 3. The analogue of (80),

which is seen by equating lower left entries in (79), is the following:

c(σ) =
Cp

Ap

(
χη−1

p ǫ(σ)− d(σ)
)
, σ ∈ Gp.
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Lemma 5.1. For p ∈ R and σ ∈ Ip, we have that

ϕm(ǫ(σ)− d(σ)) ∈ yW.

Proof. Lemma 4.4 implies that ϕm(d(σ)) = ǫπ−y(σ). Using the relation πy = y2, it is easy to

see that ǫ(σ)− ǫπ−y(σ) = ǫy(σ)− 1 in W . The result follows.

From Lemma 5.1, the arguments of Lemmas 4.8 and 4.9 apply without change to show

that

C ⊂
Cp1

Ap1

y+ · · ·+
Cpr

Apr

y

where y = ϕ−1
m (yW ) is an ideal of Tm.

We can next repeat the argument of §5.1 without change, where now u1, . . . , ur denotes

an E-basis of Uχ−1 . Noting that ϕm(d(σ)) = χǫπ−y(σ) by Lemma 4.4 and hence that

ϕm(χη
−1
pi
ǫ(σ)− d(σ)) = ǫy(σ)− 1 + oi(σ)ǫi, σ ∈ Gpi

(where σ ∈ F̂ ∗
pi

is such that rec(σ) is the image of σ in Gab
p ), the analogue of (86) is the

equation

det((ℓi(uj)y + oi(uj)ǫi + nij) = 0

with nij ∈ mWy. We obtain

det(ℓi(uj))y
r + det(oi(uj))(−1)

s+1
L

∗
an(χ)π

s ≡ 0 (mod mWyr). (88)

Note that in the ring W = W3, we have

yt =Wπt = (−1)s−t L ∗
an(χ)

L ∗
an(χ

−1)
πs,

hence (88) can be written

det(ℓi(uj))y
r + det(oi(uj))(−1)

t+1
L

∗
an(χ

−1)yt ≡ 0 (mod mWyr). (89)

This congruence yields an equality in yr/mWyr, the 1-dimensional E-vector space generated

by the image of yr. If t = r, then L ∗
an(χ) = Lan(χ) and we obtain

det(ℓi(uj)) + det(oi(uj))(−1)
r+1

Lan(χ
−1) = 0,

hence Lan(χ
−1) = Rp(χ

−1) as desired. If t > r, then yt ∈ mWyr so (89) yields det(ℓi(uj)) = 0

and hence Rp(χ
−1) = 0. Since Lan(χ

−1) = 0 in this case as well, we again find Lan(χ
−1) =

Rp(χ
−1). This completes the proof.

Remark 5.2. We note that this argument fills in a hole at the end of the proof of Theorem

4.4 in [5]. There it was simply suggested without elaboration that switching the roles of b

and c yields a cohomology class giving the desired result for χ−1. This is indeed the case

if ran(χ) = r = 1, but in the case ran(χ) > ran(χ
−1) one needs a version of the argument

presented here and in particular the whole homomorphism ϕm; the homomorphism φ1+ǫ

constructed in [5] does not suffice in case 3.
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