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ON THE GROUP OF AUTOMORPHISMS OF
AFFINE ALGEBRAIC GROUPS

BY

DONG HOON LEE

Abstract. We study the conservativeness property of affine algebraic

groups over an algebraically closed field of characteristic 0 and of their

group of automorphisms. We obtain a certain decomposition of affine

algebraic groups, and this, together with the result of Hochschild and

Mostow, becomes a major tool in our study of the conservativeness property

of the group of automorphisms.

1. Introduction. Let G be an affine algebraic group over a field F, with

Hopf algebra &(G) of polynomial functions on G, in the sense of [2] and let

W(G) denote the group of all affine algebraic group automorphisms of G.

Then &(G) may be viewed as a right W(G)-modnle, with W(G) acting by

composition/-»/ » a on &(G).

We recall, from [3], that G is said to be conservative if &(G) is locally finite

as a W(G)-module. As is shown in [3], the conservativeness of G character-

izes the existence of a suitable affine algebraic group structure on W(G) and

the obstruction to the conservativeness of a connected G is realized as the

presence of certain central tori in G, when the base field F is algebraically

closed and of characteristic 0.

In the present study of W(G), we exploit the above results and technique

of [3] and, accordingly, we refer to [2] and [3] for standard facts concerning

affine algebraic groups and their automorphism group.

The following are brief descriptions of the contents appearing in each

section: In §2, we examine reductive affine algebraic groups and their

conservativeness and, in §3, we establish a certain W^o^-invariant decompo-

sition of G when G is conservative. Finally, in §4, we use the result obtained

in §3 to study the structure of W(G).

The following notation is standard throughout: Let G be an affine

algebraic group. Then G, denotes the connected component of the identity

element of G and Z(G) the center of G. If x E G, we use Ix to denote the

inner automorphism of G that is induced by x, and, for a subset S of G,
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IntG(5) denotes {Ix: x E S). In the case where S = G, we simply write

Int(G) instead of IntG(G).

2. Reductive groups and conservativeness. For an affine algebraic group G

over a field F, let £(G) denote the Lie algebra of G, and for a morphism p:

G -» H of affine algebraic groups, £(p) denotes the Lie algebra

homomorphism induced by p. Thus £(G) consists of all F-linear maps X:

&(G) -» F such that X(fg) = X(f)g(l) + f(l)X(g) for all/, g E £(G), and
the map £(p): £(G)-> £(¿7) is given by £(p)(X)(f) = X(f»p),fE &(G)
and A' E £(G). For x E G and/ E #(G), we write x -/for the left translate

of / by x, which is given by (x -/)(y) = f(yx) for y E G and define x//:

W(G)-* F by (x/f)(a)=f(a(x)).
With this preparation, we prove the following characterization of

conservative reductive affine algebraic groups.

Theorem 2.1. Let G be a reductive affine algebraic group over an algebra-

ically closed field F of characteristic 0. Then G is conservative if and only if

Int(G) is of finite index in W(G).

Proof. Suppose Int(G) is of finite index in W(G). Then the Hopf algebra

&(G) is locally finite as an Int(G)-module. Since Int(G) is a normal subgroup

of W(G), it is then locally finite as a W(G)-module, proving that G is

conservative.

Suppose, conversely, that G is conservative. Thus, by Theorem 2.1, [4],

W(G) is an affine algebraic group and its F-algebra &(W(G)) of polynomial

functions on W(G) is generated by the functions x/f, x E G and/ E &(G),

and their antipodes.

We first show that the F-space t(W(G)) may be identified with an

F-subspace of the space Z\G, £(G)) of all nonhomogeneous rational 1-

cocycles of G with coefficients in £(G) relative to the adjoint action of G on

£(G). To do this, we let a E t(W(G)) and, for each x E G, we define

ox:&(G)^F

by

ox(f) = o(x/x-x-f),      fEd(G).

Then we see easily that oxE £(G) for all x E G, and we also have

0) oxy = ox + Ad(x)(oy),      x,yEG.

To see this, let y: &(G) -» &(G) ® 6£(G) be the comultiplication of the

Hopf algebra &(G). For each/ E 61(G), we write

(2) Y(/)-2/i®&      /,g,E6E(G).
i=i

Then we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AFFINE ALGEBRAIC GROUPS 147

n

°xy

(3) /(*v) = 2/■(*)£,.(y)   for*, vE G.
/-i

Now let a E WiG). Then

(xy/ ixy)-x •/)(«) =f(aix)a{y)y-xx-x)

= f(aix)x-x-Ix(aiy)y-x))

= t f¡(aix)x-x)g¡(lx(aiy)y-x))   (by (3))
í—i

= 2 (x/x-x-fi){a)(y/y-x-ig¡ « /,))(«).
i-i

That is, we have

(4) xy/ixyyx-f= ¿ (*A_17.)* (>/>''(* ° /,)).
/-I

Now

(/) = »(v/i*)'^/) = a(¿ (*/*-«•/)• (7//-»(* • /,)))

= 2 9{x/x-l-ft)M + 2 /OKv/v-'- (ft « /,)).
i-l J-l

However, we have (using (3))

x/x-x-f=t(x/x-x-fi)gt{l),   and
i-l

v/v-1 • (/« /,) - 2 (>/>_l • (a « /,))/,(»)
/-1

Hence

M/) = °(*/*_1 7) + o{y/y~x • (/. /,)) = ox{f) + oy{foIx)

= (ox + Adix){oy)){f),

proving (1).

For each o £ £(W(G)), define o': G -» £(G) by a'(x) = ax, x E G. Then

we easily see that o' E Z^G, £(G)). Since the functions *//, together with

their antipodes, generate &(W(G)) as an Fralgebra, it follows that the

F-linear map o -* o' is injective, under which we identify t(W(G)) with an

F-subspace of Z X(G, £(G)).

We next consider the morphism of affine algebraic groups v: G-» W^G),

which is given by v(x) = Ix,x E G.

We compute the image of £(G) under the F-linear map £(i>): £(G)-»
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£( W(G)), t(W(G)) being identified with an F-subspace of Z'(G, £(G)).

To do this, we first note that X(f') = - X(f) for all / E 61(G) and

X E £(G). This may be seen as follows: Write y(f) = 2"_,/ ® g¡ as in (2).

Then, by (3),

/(l) =f(xx-x) = tf¡(x)g¡(x) = f 2 fÁ*)>

which implies that 2"=,/g/ is constant.

Hence

o « x( 2 /,*;) = 2 *uï)*?(i) + 2 /,0)*(sí)
\/=i    /   i=i /-i

-*( 2/*(!))+ *(2tfO)«0

= *(/) + *(/')
and *"(/') - - X(f) follows.

For * E £(G), x E G, and/ E (2(G), we have

t(v)(X)(x)(f) = e(i.)(^)(x/x-1./) = X((x/x~x /)-,).

But (Vr1 •/).-- s?.,/,• (a• p(x»'.
Hence

eW(jr)(x)(/)-jfí¿/(-(&-F(x))')

- 2 *(/,)(&-K*))'(i) + 2/,0)*(&-"O)')
/-i i=i

- *( 2 //&0)) -^(¿/fOKa-K*)))

«*(/)- *(/• -(*)) - (A- - Ad(x)(*))(/).

That is, £(j»)(A)(x) = A' - Ad(x)(A"), and we see that Im(£(iO) is equal to

the subsapce BX(G, £(G)) of Z'(G, £(G)) consisting of all 1-coboundaries of

G.
Since G is reductive, 77'(G, £(G)) - 0. Hence Im(£(/>)) = £'(G, £(G)) =

ZX(G, £(G)). Since F is algebraically closed, the surjectivity of t(v) implies

that Im(i>) = Int(G) is open in W(G) and hence Int(G) is of finite index in

W(G).

Theorem 3.2. Let G be an affine algebraic group over an algebraically closed
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field F of characteristic 0. Then G is conservative if a maximal reductive

subgroup of G is conservative.

Proof. Let G„ denote the unipotent radical of G, and let P be a maximal

reductive subgroup of G. Since F is of characteristic 0, a theorem of Mostow

(see [2, Theorem 14.2]) assures that we have a semidirect product decompo-

sition G = Gu • P. By the conjugacy of maximal reductive subgroups, we may

assume that P is conservative, and we have W(G) = Int(G) • Stf, where JQ^is the

subgroup of W(G) consisting of all a E W(G) leaving P invariant.

Let J^ denote the restriction image of-Q^in W(P). Then Int(P) < s$fp, and,

since P is conservative, W(P)/Int(P) is finite by Theorem 2.1. It follows that

J3^/Int(P) is also finite.

From this point on, we can copy the argument used in [3, p. 539] for the

proof of conservativeness of G when P is a connected semi-simple algebraic

subgroup and conclude that G is conservative. This establishes Theorem 2.2.

3. ^(Gi-invariant decomposition of G. For a subset -Q^of W(G), let G**

denote the set consisting of all x E G such that a(x) = x for all a E S*f .

We prove the following result which will then be used in §4 for out study of

W(G).

Theorem 3.1. Let G be a connected conservative affine algebraic group over

an algebraically closed field F of characteristic 0, and let T be the maximal

central torus of W(G)X. Then there exists a W(G)-invariant algebraic vector

subgroup ZofG such that G = Z X GT.

Proof. If T is trivial, then the assertion holds trivially. Thus we assume

that Fis of dimension > 1.

For each x E G, the inner automorphism Ix induced by x commutes with

every element of T. Hence, for a E T and x E G, we have x ~ xa(x) E Z (G).

We define, for each a E T, ija: G -» Z(G) by r¡a(x) = x~la(x), x E G.

Then -qa is a morphism of affine algebraic groups. Since G is connected, it

follows that %(x) E Z(G)X for all x E G. Now we choose a maximal

reductive subgroup P of G so that G = Gu • P (semidirect). We first show that

every element of P is F-fixed. To do this, we choose a maximal torus D of P.

Then P = D • P', where P' denotes the commutator subgroup of P, and

P' < Ker T/a implies that every element of P ' is F-fixed. Hence it is enough to

show that every element of D is F-fixed. Let K be the maximal torus of Z(G).

Then the torus t\a(D) is contained in A', and hence we see that every element

a of F leaves D invariant. Consider the polynomial map

</>: F X D-*D,

given by <i>(a, x) = a(x), and define, for each x E D, <bx: F-» D by <bx(a) =

a(x). Then clearly <bx is a polynomial map. Let x E D be of order m < oo.
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Then <f>x(a) is also of order m for all a E T. Since D contains only a finite

number of elements of order m, it follows from the connectedness of T that

Im $x = {x}. That is, a(x) = x for all a ET. Since the elements in D of

finite order form a dense subset of D, it follows that T leaves every element of

D fixed.

Next we show that if U denotes the unipotent radical of Z(G), then

G = U'GT. The morphism Tja: G -» Z(G) for a E F maps G„ into U. Hence

Tja induces a morphism pa: Gu -» U of affine algebraic groups. Let p° denote

£(u0): £(G„) -» £(i/). The natural action of T on U determines a F-module

structure on the F-space t(U), and this in turn defines a F-module structure

on the F-space Hom^iG,,), t(U)).

We then have

(1) p°ß = p°ß + a • p°ß,      a,ßE T.

To prove (1), we note that exp^- p° = pa- expG>, where exp^, expG> denote

the exponential maps for U, Gu, respectively. Hence for X E £(G„),

expp%(X) - paß(exp X) - (exp Xyxaß(exr>X)

- (exp A-)_1a(exp A>((expX)~xß(expX))

= A»a(exp A-)a(u^(exp *)) = exp p°(A-)a(exp p°ß(X))

= exp pl(X)exp(t(a){pl(X ))) = exp(pa0(A-) + a • p°(A")).

Hence it follows that p°aß(X) = p[](X) + a • p%(X), proving (1).

The identity (1) defines a rational F-module structure on the F-space

F © Hom^^G,,), Í/), if we define the F-action by a• (r, <£) = (r, rp° + a-

<f>) for a E T, r E F and d> E Hom^iGJ, £({/)). Since F is reductive, the

F-submodule Homf(£(Gu), £(£/)) has a 1-dimensional F-invariant comple-

ment in F © HomF(t(Gu), £(t/)). This complement contains exactly one

element of the form (1, d>).

Hence (1, <b) = a • (1, <b) = (1, p° + a • <;>) for all a E F and this implies

that p° = d> - a • d>, a E F.

For each X E £(GU), we have

exp <*>(*) - exp(pa0(A-) + a - <t,(X))

= exv(p0a(X))exp(Z(a)(<b(X)))

= (exp X)~xa(exp X)a(exp <t>(X)).

Hence exp^A"- expy<p(X) E GT for all Z E £(G„). Since expCii(£(Gu)) =

GB, it follows that G„ < U- GT, andp < GT implies G = UGT."

Now we consider the rational F-module £(17). Since F is a torus over an

algebraically closed field, we may decompose the F-space t(U) as
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ß(tf) - 2 lx + ñ(uf,

where Lx is the weight space {X E t(U): a-X = x(ot)X for all a E T}

corresponding to the weight x: T->F*, and ñ(U)T is the F-fixed part of

t(U).
Since F is a normal subgroup of W(G), W(G) permutes the weights of F

in £(£/). Hence the F-subspace Z = £X_,LX is W(G)-invariant. Let Z =

expvZ. Then Í/ = Z X i/r and this implies that G = Z X GT follows.

Clearly Z is W(G)-invariant and the theorem is proved.

Remark. Since F is a normal subgroup of W(G), it follows that GT is also

If(G)-invariant. As we will see in §4, T is central in W(G) and, in fact, a

direct factor of W(G).

4. Decomposition and conservativeness of W(G).

Theorem 4.1. Let G be a conservative connected affine algebraic group over

an algebraically closed field F of characteristic 0. Then the maximal central

torus of W(G)X is of dimension < 1 and is a direct factor of W(G).

Proof. Let T be the maximal central torus of W(G)X, and assume that F is

nontrivial. Then we have a W(G)-invariant decomposition G = Z X GT

(Theorem 3.1). Hence we have W(G) = W(Z) X W(GT) as affine algebraic

groups and the restriction map T -* W(Z) is injective.

Let 5 denote the Lie algebra of Z. Then the affine algebraic group W(Z)

may be identified with the affine algebraic group GL(i) of all F-linear

automorphisms of 0. Since F is algebraically closed, the center of W(Z) is a

1-dimensional torus and is a direct factor of W(Z). Since every element of

W(Z) can be extended to an element of W(G), we see easily that the

restriction map sends F isomorphically onto the center of W(Z). Hence our

assertion follows.

In [2], Hochschild proved that, if G is a nonabelian unipotent affine

algebraic group, then the maximal central torus of W(G)X is trivial and hence

that W(G)X is conservative. The assertion does not hold for arbitrary solvable

affine algebraic groups (see the example in [2, p. 111]).

The following theorem characterizes those nonabelian solvable groups G

for which W(G)X is conservative.

Theorem 4.2. Let G be a connected conservative solvable nonabelian affine

algebraic group over an algebraically closed field of characteristic 0. Then the

following are equivalent:

(i) W(G)X is conservative.

(ii) The connected component of the center of W(G)X is unipotent (i.e.

T= 1).
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(iii) G cannot be a product G = Z X H of a nontrivial algebraic vector

subgroup Z and an algebraic subgroup H, both of which are invariant under

W(G).

Proof, (iii) -» (ii) follows from Theorem 3.1 and the subsequent remark,

(ii) -» (iii) holds because of the decomposition W(G) = W(Z) X W(H).

(ii) -» (i) follows from Theorem 3.2 of [4],

It remains to show (i) -> (ii).

Let A' be a maximal torus of G so that G = Gu • K (semidirect).

If K is trivial, then G is unipotent and nonabelian, and hence (ii) holds (see

[2, p. 110]).
(1) Suppose dim K > 2. Then the maximal central torus of G is trivial by

Theorem 3.2 [4] and this implies that the torus IntG(A) » KZ(G)/Z(G) is

of dimension > 1. Since Int(G) is a normal algebraic subgroup of W(G), it

follows that the algebraic torus IntG(A) is contained in the radical of W(G),

and hence is central in a maximal reductive group containing it. Since W(G)X

is conservative, (ii) follows from Theorem 3.2 of [3].

(2) Suppose dim K = 1. If A is central in G, then G = Gu X K, and hence

W(G) at IV(GU) X Z2. Since G„ is nonabelian, (ii) follows immediately.

Therefore we may assume that the identity component of the center of G is

unipotent. Then Int^AT) is a 1-dimensional torus. Assume that (ii) does not

hold, and let F be the maximal central torus of W(G)X. Then F n IntG(A) =

{1}, for if a E T is of the form a = Ix for some x E K, then the decom-

position G = Z x Grin Theorem 3.1 implies that a = 1.

Since F centralizes IntG(AT), it follows that T = T- lntG(K) (direct) is an

algebraic torus of dimension 2.

Since T' is contained in the radical of W(G)X, it follows that T is central

in a maximal reductive subgroup containing T. (See [1, Chapter III].) Hence

again by Theorem 3.2 of [3], W(G)X cannot be conservative, contradicting (i).

Therefore F = {1} and (ii) is proved.
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