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Abstract. The automorphism group of a locally conformal symplectic structure
is studied. It is shown that this group possesses essential features of the symplec-
tomorphism group. By using a special type of cohomology the flux and Calabi

homomorphisms are introduced. The main theorem states that the kernels of these
homomorphisms are simple groups, for the precise statement see chapter 7. Some of
the methods used, may also be interesting in the symplectic case.

Introduction

The concept of locally conformal symplectic (l.c.s. for short) structure is an in-
teresting generalization of the symplectic geometry. Its importance comes from the
fact that the l.c.s. manifolds can serve as natural phase spaces of Hamiltonian dy-
namical systems. One geometric motivation for a study of l.c.s. structures consists
in their relations with the contact structures, cf. [19]. Even more important is the
fact that each even dimensional leaf of a Jacobi manifold possesses a l.c.s. structure,
cf. [7].

In this paper we study the automorphism group of a l.c.s. structure. Our inves-
tigations are motivated by a well known paper of A. Banyaga [1] on the symplecto-
morphism group. We show that surprisingly many properties of the symplectomor-
phism group have still their analogues on the ground of the l.c.s. structures. Let us
add that some basic facts concerning automorphism groups of almost symplectic
and l.c.s. structures were stated by J. Lefebvre in [11, 12].

First section is devoted to the dω-cohomology, the concept which has been initi-
ated by A. Lichnerowicz. As it was observed in [7] the dω-cohomology rather than
the ordinary de Rham cohomology is a proper tool in the l.c.s. geometry. We prove
the finite dimensionality of the dω-cohomology groups and other results probably
not explicitly mentioned in the literature.

In the second section we recall some facts on diffeomorphism groups and fix
the notation. Basic properties of a l.c.s. manifold and its automorphism group
are presented in the third section. We consider the k-transivity of this group and
indicate only that its algebraic structure determines the geometric structure itself.
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In the next three sections we study invariants of the automorphism group of a
l.c.s. manifold, namely the Lee extended homomorphism and its integral counter-
part, the flux homomorphism and the Calabi homomorphism. By making use of
the dω-cohomology we establish basic properties of these invariants. We observe
also, by appealing to a difficult theory of ILH-Lie groups of H. Omori [15], the
countability property of the first homotopy groups of the kernels of these homo-
morphisms. This enables us to give a characterization of Hamiltonian isotopies on
l.c.s. manifolds.

In the seventh section we prove a simplicity theorem which is a consequence
of that for the symplectomorphism group. In the final section we introduce some
invariants of the equivalence class of a l.c.s. structure. These invariants are defined
in the cohomology of the automorphism group and its Lie algebra.

Throughout we will assume that all objects as manifolds, tensors, diffeomor-
phisms etc. are of class C∞. We do not know whether possible analogues of some
of the presented results are known in Cr or Cω categories even for the symplecto-
morphism group.

Acknowledgements. A part of this work was written when the second au-
thor enjoyed the hospitality of the Erwin Schrödinger International Institute for
Mathematical Physics. It is his pleasure to thank Professor P.W.Michor for the
invitation.

1. dω-Cohomology

Let ω be a closed 1-form on a manifold M and define

dω : Ω∗(M)→ Ω∗+1(M) dω(α) := dα+ ω ∧ α

Obviously we have dω ◦ dω = 0 and we may define the dω-cohomology H∗dω (M).
Similarly we define dωc -cohomology with compact supports H∗dωc (M). Suppose [ω′] =
[ω] ∈ H1(M) and choose a ∈ Ω0(M) with ω′ = ω+ da

a = ω+d(ln |a|). Then there are
isomorphisms 1

a : H∗dω ∼= H∗
dω′

(M) and 1
a : H∗dωc

∼= H∗
dω′c

(M) given by multiplication

with 1
a . So for an exact ω the dω-cohomology is isomorphic to the ordinary de

Rham cohomology.
For closed 1-forms ω1, ω2 an easy calculation shows

dω1+ω2(σ ∧ τ) = dω1σ ∧ τ + (−1)|σ|σ ∧ dω2τ.

Hence the wedge product induces a bilinear mapping

∧ : Hk
dω1 (M)×H l

dω2 (M)→ Hk+l
dω1+ω2 (M)

and likewise for the cohomology with compact supports.
For a smooth g : M → N we have an induced mapping g∗ : H∗dω (N) →

H∗
dg∗ω

(M). If g is proper then we also have an induced mapping g∗ : H∗dωc (N) →
H∗
dg
∗ω
c

(M).

1.1. Lemma. Let ω be a closed 1-form on N and let g : M × I → N be a smooth
homotopy. Define a ∈ C∞(M × I,R) by at := exp

( ∫ t
0

inc∗s i∂tg
∗ωds

)
where incs :

M →M × I, incs(x) := (x, s). Then

a1g
∗
1 = a0g

∗
0 : H∗dω (N)→ H∗

d
g∗0ω

(M)
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If g is proper the same holds with compact supports.

Proof. Notice that the definition of a is such that g∗t ω = g∗0ω + d(ln |at|). One
defines a mapping H : Ω∗(N) → Ω∗−1(M) by H(σ) :=

∫ 1

0
at inc∗t i∂tg

∗σdt and
checks that it is a chain homotopy, i.e.

dg
∗
0ωH(σ) +H(dωσ) = a1g

∗
1σ − a0g

∗
0σ

The calculation is straightforward and uses the fact ∂
∂t
at = at inc∗t i∂tg

∗ω. �

Suppose M is the union of two open subsets U , V . Then the following is a short
exact sequence of cochain complexes

0→
(
Ω∗(M), dω

) α−→
(
Ω∗(U)⊕ Ω∗(V ), dω|U ⊕ dω|V

) β−→
(
Ω∗(U ∩ V ), dω|U∩V

)
→ 0

where α(σ) = (σ|U , σ|V ) and β(σ, τ) = σ|U∩V − τ |U∩V . So we obtain the following
Mayer-Vietoris sequence:

1.2. Lemma. Let M be the union of two open subsets U and V . Then there exists
a long exact sequence

· · · → Hk
dω (M) α∗−→ Hk

dω|U
(U)⊕Hk

dω|V
(V )

β∗−→ Hk
dω|U∩V

(U ∩V ) δ−→ Hk+1
dω (M)→ · · ·

and δ([σ]) = [dλV ∧ σ] = −[dλU ∧ σ], where {λU , λV } is a partition of unity
subordinate to {U, V } and the forms under consideration are assumed to be extended
by 0 to the whole M .

Similarly there is an exact sequence of cochain complexes

0→
(
Ω∗c(U ∩ V ), dω|U∩Vc

) β−→
(
Ω∗c(U)⊕ Ω∗c(V ), dω|Uc ⊕ dω|Vc

) α−→
(
Ω∗c(M), dωc

)
→ 0

where β(σ) = (σ,−σ) and α(σ, τ) = σ+τ and everything is assumed to be extended
by 0. So we also get a Mayer-Vietoris sequence with compact supports:

1.3. Lemma. If M is the union of two open subsets U and V then there exists a
long exact sequence

· · · → Hk−1
dωc

(M) δ−→ Hk

d
ω|U∩V
c

(U ∩V )
β∗−→ Hk

d
ω|U
c

(U)⊕Hk

d
ω|V
c

(V ) α∗−→ Hk
dωc

(M)→ · · ·

where δ[σ] = [dλU ∧ σ|U∩V ] = −[dλV ∧ σ|U∩V ] and {λU , λV } is a partition of unity
subordinate to {U, V }.

A covering U of a manifold M is called good if for all m ∈ N and U1, . . . , Um ∈ U
the intersection U1 ∩ · · · ∩Um is either empty or contractible. Using a Riemannian
metric and geodesically convex open sets one easily sees that every manifold admits
a good covering and these coverings are cofinal in the set of all coverings.

Using the Mayer-Vietoris sequence inductively and the fact that for contractible
sets the dω-cohomology is isomorphic to the de Rham cohomology, and hence finite
dimensional, we immediately obtain
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1.4. Corollary. Suppose M admits a finite good covering. Then H∗dω (M) and
H∗dωc (M) are finite dimensional. Especially this is true for compact manifolds.

For an oriented manifold of dimension n we may define a pairing by

〈·, ·〉ω : H∗d−ω (M)×Hn−∗
dωc

(M) ∧−→ Hn
c (M)

∫
M−−→ R

If ω′ = ω+ da
a = ω+d(ln |a|) then −ω′ = −ω+d(ln | 1a |) so 1

a : H∗dωc (M) ∼= H∗
dω′c

(M),

a : H∗d−ω (M) ∼= H∗
d−ω′

(M) and 〈a[σ], 1
a [τ ]〉ω′ = 〈[σ], [τ ]〉ω. Hence if ω is exact this

pairing is non-degenerate by the Poincaré duality.

1.5. Proposition. On an oriented manifold of dimension n the mappings defined
by

Dk
ω : Hk

d−ω (M)→ Hn−k
dωc

(M)∗ Dk
ω([σ])([τ ]) := 〈[σ], [τ ]〉ω

are isomorphisms.

Proof. If M is a disjoint union of open balls then we have

Hk
dωc

(
⊔
Ui)∗ ∼=

(⊕
Hk
dωc

(Ui)
)∗ ∼= ∏Hk

dωc
(Ui)∗

and via this isomorphism Dk
ω corresponds to

∏
Dk
ω|Ui

and is therefore an iso-
morphism. Using the explicit description of the connecting homomorphisms δ in
Lemma 1.2 and Lemma 1.3 one easily checks that the following diagram commutes
up to sign:

Hk
d−ω

(M)
α∗−−−−−→ Hk

d−ω
(U)⊕Hk

d−ω
(V )

β∗−−−−−→ Hk
d−ω

(U ∩ V )
δ−−−−−→ Hk+1

d−ω
(M)

Dkω

y Dkω⊕D
k
ω

y Dkω

y Dk+1
ω

y
Hn−k
dωc

(M)∗
(α∗)

∗
−−−−−→ Hn−k

dωc
(U)∗ ⊕Hn−k

dωc
(V )∗

(β∗)
∗

−−−−−→ Hn−k
dωc

(U ∩ V )∗
δ∗−−−−−→ Hn−k−1

dωc
(M)∗

So if Poincaré duality holds for U , V and U ∩ V it also holds for U ∪ V by the five
lemma. Finally one chooses a good covering U such that every U ∈ U does only
intersect finitely many other sets of U . Then we can write M = W1 ∪ · · · ∪Wn

where every Wi is a disjoint union of open balls in U . Since Poincaré duality holds
for Wi, Wj and Wi ∩Wj (the latter is also an disjoint union of open balls) it holds
also for Wi ∪Wj . Proceeding inductively one completes the proof. �

1.6. Example. Let [f ] ∈ H0
dω (M), i.e. f ∈ C∞(M,R) and dωf = 0. Consider the

set Z := {x ∈ M : f(x) = 0}. It is of course closed. We show that it is open too.
Let x ∈ Z and choose a contractible neighborhood U of x. Then ω|U = d(ln |a|) for
some nowhere vanishing function a on U and 1

a : H∗
dω|U

(U) ∼= H∗(U). So 1
af |U is a

constant function on U and since it vanishes in x we obtain f vanishes on U , that
is U ⊆ Z. For connected M this shows that H0

dω (M) and similarly H0
dωc

(M) is at
most 1-dimensional.

Let M be connected and oriented. Then i∗ : H0
dω (M) → H0

dω|U
(U) is injective

and by Poincaré duality i∗ : Hn

d
ω|U
c

(U)→ Hn
dωc

(M) is onto. So generators of Hn
dωc

(M)
can be chosen to have arbitrarily small supports.

Let M = S1 and ω = λdθ, where 0 6= λ ∈ R, be a generator of its first de
Rham cohomology. We claim that H0

dω (S1) = 0. So let f ∈ Ω0(S1) be dω-closed.
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We consider f as periodic function on R then ω = λdx. The condition dωf = 0
translates to f ′+λf = 0, but this has no non-trivial periodic solution, hence f = 0.
So H0

dω (S1) = 0 for every non-exact ω.
Let M be connected and ω a closed 1-form which is not exact. Then there exists

a mapping i : S1 → M such that i∗ω is not exact. Now let f ∈ Ω0(M). By
the previous paragraph i∗f = 0 and hence by connectedness f = 0. So we have
shown H0

dω (M) = 0 and similarly H0
dωc

(M) = 0 for every connected M and any
non-exact ω. Using Poincaré duality we also obtain Hn

dω (M) = 0 and Hn
dωc

(M) = 0
for every oriented, connected, n-dimensional M and every non-exact ω. Using the
orientation covering one sees that the assumption of the orientability is superfluous.
A different proof of Hn

dω (M) = 0 can be found in [7].

1.7. Example. Consider M = R
2\{(−1, 0), (1, 0)} and let ω resp. η be a generator

of H1(M) supported in (−∞, 0)×R resp. U := (0,∞)×R. Then obviously dωη = 0
and η|U cannot be dω|U = d-exact. Using Mayer-Vietoris sequence one can show
that η generates H1

dω (M).

Suppose we have two manifolds M1,M2 and two closed 1-forms ω1 resp. ω2 on
M1 resp. M2. Let ω := pr∗1 ω1+pr∗2 ω2 ∈ Ω1(M1×M2). Then one defines a mapping

Ψ : Ωk(M1)× Ωl(M2)→ Ωk+l(M1 ×M2) (α, β) 7→ pr∗1 α ∧ pr∗2 β.

It is visible that dω(Ψ(α, β)) = Ψ(dω1α, β) + (−1)|α|Ψ(α, dω2β) and hence we have
an induced mapping

H∗dω1 (M1)⊗H∗dω2 (M2)→ H∗dω (M1 ×M2).

As in the ordinary de Rham cohomology one proves, under the assumption that one
of the two manifolds has finite dimensional cohomology, that Ψ is an isomorphism.
Using this and Example 1.7 one obtains manifolds with arbitrarily complicated
dω-cohomology and non-exact ω.

Consider Ω∗c(M) = lim−→K Ω∗K(M) with the inductive limit topology. This is
a strict inductive limit of Fréchet spaces (cf. [9] or [15]) and hence a complete
separated locally convex vector space. We provide im dωc ⊆ ker dωc ⊆ Ω∗c(M) with
the initial topologies and endow H∗dωc (M) with the quotient topology.

1.8. Theorem. Let ω be a closed 1-form on a manifold M . Then H∗dωc (M) is a
strict inductive limit of separated finite dimensional topological vector spaces and
hence a complete separated locally convex vector space.

Proof. First we assume that M is oriented. dωc : Ω∗c(M)→ Ω∗+1
c (M) is continuous

and hence ker dωc ⊆ Ω∗c(M) is closed. By Poincaré duality σ ∈ ker dωc is contained
in im dω if and only if∫

M

τ ∧ σ = 0 ∀τ ∈ ker
(
d−ω : Ω∗(M)→ Ω∗+1(M)

)
but these are continuous conditions and so im dωc ⊆ ker dωc is closed.

Let dωK := dω|Ω∗K(M) : Ω∗K(M)→ Ω∗+1
K (M). It is a general fact that if E = lim−→En

is a strict inductive limit and F ⊆ E is a (not necessarily closed) subspace then
F = lim−→(En ∩ F ) as strict inductive limit. Applying this twice we obtain

lim−→K ker dωK = ker dωc and lim−→K

(
Ω∗K(M) ∩ im dωc

)
= im dωc .
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Since ker dωK is a Fréchet space and im dωc ⊆ Ω∗c(M) is closed, ker dωK
Ω∗K(M)∩im dωc

is sepa-
rated. We claim that it is finite dimensional for nice K.

So assume that K is a dimM -dimensional submanifold with boundary. Let i :
∂K ↪→ K be the inclusion. We let Ω∗(K, ∂K) := {α ∈ Ω∗(K) : i∗α = 0} and denote
by H∗

dω|K
(K, ∂K) the corresponding cohomology, i.e. the relative cohomology. As

usual we have a long exact sequence

· · · → H∗
dω|K

(K, ∂K)→ H∗
dω|K

(K) i∗−→ H∗di∗ω (∂K) δ−→ H∗+1
dω|K

(K, ∂K)→ · · ·

and so H∗
dω|K

(K, ∂K) is finite dimensional by Corollary 1.4. We have a map-
ping Ω∗K(M) → Ω∗(K, ∂K) and we claim that the induced mapping H∗dωK

(M) →
H∗
dω|K

(K, ∂K) is injective. To see this let α ∈ Ω∗K(M) be dω-closed and such
that α|K = dω|Kβ for some β ∈ Ω∗(K, ∂K). Next choose a smooth homotopy
g : K × I → K with g0 = idK , gt(∂K) ⊆ ∂K and such that there exists an open
neighborhood U of ∂K with g1(U) ⊆ ∂K. From Lemma 1.1 we get

dω|K
( ∫ 1

0
at inc∗t i∂tg

∗αdt
)

= a1g
∗
1(α|K)− a0g

∗
0(α|K) = dω|K (a1g

∗
1β)− α|K

By the choice of g we see that g∗1β is zero on U an hence can be extended by 0 to
the whole of M . Moreover one sees that inc∗t i∂tg

∗(α|K) is flat along ∂K and so
the integral in the equation above can also be extended to M by 0. But this shows
that [α] = 0 ∈ H∗K(M). Since we have an injective mapping from H∗K(M) into
the finite dimensional vector space H∗(K, ∂K) the space H∗K(M) has to be finite
dimensional and hence so is ker dωK

Ω∗K(M)∩im dωc
⊆ ker dωK

im dωK
= H∗K(M).

Since the inductive limit can be computed via these nice K we obtain

H∗dωc (M) = ker dωc / im dωc =
lim−→K

ker dωK

lim−→K
(Ω∗K(M)∩im dωc )

= lim−→K
ker dωK

Ω∗K(M)∩im dωc

as strict inductive limit and the steps ker dωK
Ω∗K(M)∩im dωc

are separated finite dimensional
topological vector spaces.

If M is non-orientable let π : M̃ → M denote the orientation covering and let
f : M̃ → M̃ be the unique non-trivial deck transformation. Then

Ω∗c(M̃) = Ω∗,even
c (M̃)⊕ Ω∗,odd

c (M̃) =: {σ : f∗σ = σ} ⊕ {σ : f∗σ = −σ}

It is easily seen that π∗ : Ω∗c(M) ∼= Ω∗,even
c (M̃) and hence H∗dωc (M) ∼= H∗,even

dπ∗ωc
(M̃)

which is a closed subspace of H∗
dπ∗ωc

(M̃). Since the latter is a strict inductive limit
of separated finite dimensional topological vector spaces, so is H∗dωc (M). �

For every manifold N and every complete locally convex vector space E we
define C∞c (N,E) = lim−→K C

∞
K (N,E). The following is a slight generalization of an

argument due to A. Banyaga, see [1] and [3].

1.9. Corollary. Let N , M be manifolds and ω be a closed 1-form on M . Then
every f ∈ C∞c (N, im dωc ) can be lifted, i.e. there exists f̃ ∈ C∞c (N,Ω∗c(M)) with
dωc ◦ f̃ = f .

Proof. Since dωc : Ω∗c(M)→ im dωc is onto and im dωc is complete the mapping

dωc ⊗̂π idC∞c (N,R) : Ω∗c(M)⊗̂πC∞c (N,R)� im dωc ⊗̂πC∞c (N,R)
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is surjective. Since C∞c (N,R) is nuclear we obtain

Ω∗c(M)⊗̂πC∞c (N,R) ∼= Ω∗c(M)⊗̂εC∞c (N,R) ∼= C∞c (N,Ω∗c(M))

and
im dωc ⊗̂πC∞c (N,R) ∼= im dωc ⊗̂εC∞c (N,R) ∼= C∞c (N, im dωc )

Via these isomorphisms dωc ⊗̂π idC∞c (N,R) corresponds to (dωc )∗ and hence the latter
is surjective too. See [8] for the functional analysis involved. �

1.10. Remark. U 7→ F(U) := {f ∈ C∞(U,R) : dω|U f = 0} is a locally constant
sheaf and

0→ F → Ω0(·) dω−→ Ω1(·) dω−→ Ω2(·)→ · · ·

is a fine resolution. So H∗dω (M) ∼= H∗(M ;F), where the latter denotes the coho-
mology of M with values in the sheaf F , see [5].

2. The Lie Group Diff∞c (M)

It is well known (see [9]) that Diff∞c (M) = lim−→K Diff∞K (M) is a Lie group modeled
on the complete locally convex vector space Xc(M) = lim−→K XK(M). Let Diff∞c (M)◦
denote its connected component containing id. Its (kinematic) tangent space at id
is Xc(M) but the Lie bracket is the negative of the usual Lie bracket of vector fields.
The adjoint action of g ∈ Diff∞c (M) on Xc(M) is given by (g−1)∗.

For any X ∈ C∞(R,Xc(M)) there is g : R→ Diff∞c (M) such that ġ = X where

ġ : R→ Xc(M) ġ(t)(x) := ∂
∂s |t(gs(g

−1
t (x)).

ġ is the time-dependent vector field defining uniquely g with g(0) = id. Thus there
exists a bijective evolution map

Evol : C∞
(
R,Xc(M)

)
→ C∞

(
(R, 0), (Diff∞c (M), id)

)
and so Diff∞c (M) is regular, cf. [9].

Specifically it admits the exponential mapping, namely

exp : Xc(M)→ Diff∞c (M)◦ X 7→ FlX1 ,

the flow of the vector field at time 1. It is well known that exp is not locally
surjective around 0.

Let N be a manifold (possibly infinite dimensional) and g a Lie algebra. Then
Ω∗(N ; g), the space of g-valued forms on N , is a graded Lie algebra with bracket

[Ψ,Θ](X1, . . . , Xp+q) =
1
p!q!

∑
σ∈S(p+q)

sgn(σ)[Ψ(Xσ(1), . . . ),Θ(Xσ(p+1), . . . )]

where Ψ ∈ Ωp(N ; g) and Θ ∈ Ωq(N ; g). For example we have the right Maurer-
Cartan form κr ∈ Ω1

(
Diff∞c (M); Xc(M)

)
given by κrg := Tg(µg−1), where µx is the

right multiplication by x.
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For a smooth mapping g : N → Diff∞c (M) let δrg ∈ Ω1(N ; Xc(M)) denote
the right logarithmic derivative, i.e. δrg := g∗κr. It satisfies the Maurer-Cartan
equation

(2.1) dδrg − 1
2 [δrg, δrg] = 0

If N is simply connected then the converse also holds. Given α ∈ Ω1(N ; Xc(M))
satisfying the Maurer-Cartan equation then there exists g : N → Diff∞c (M) with
δrg = α.

For f, g : N → Diff∞c (M) then the following Leibniz rule holds:

δr(fg)(t) = δrf(t) + Ad(f(t)) · δrg(t) = δrf(t) + (f(t)−1)∗(δrg(t))

In case N = R the right logarithmic derivative is simply δrg = ġdt, and it is the
inverse of Evol.

If Ψ = Xds + Y dt ∈ Ω1(R2; Xc(M)), where X,Y ∈ C∞(R2,Xc(M)) then the
Maurer-Cartan equation takes the form

∂
∂tX(s, t)− ∂

∂sY (s, t) = [X(s, t), Y (s, t)]

Another formula that will be in use is the following: for ω ∈ C∞(N,Ωk(M)),
g ∈ C∞(N,Diff∞c (M)) and Xx ∈ TxN we have

Xx ·
(
g(x)∗ω(x)

)
= g(x)∗

(
Lδrg(Xx)ω(x) + (Xx · ω)(x)

)
A well known special case is ∂

∂t (g
∗
t ωt) = g∗t

(
Lġtωt+

∂
∂tωt

)
for g ∈ C∞

(
R,Diff∞c (M)

)
and ω ∈ C∞

(
R,Ωp(M)

)
. (See [9].)

Let G be a subgroup of Diff∞c (M). Then we denote by G◦ the group of all
elements in G that can be joined with the identity by a smooth path in G. We call
G connected by smooth arcs iff G = G◦. In this case we denote by G̃ the group of
all smooth paths in G starting at the identity modulo smooth homotopies relative
endpoints, with the pointwise multiplication. Next ev1 = π : G̃→ G stands for the
canonical projection and π1(G) := kerπ ⊆ G̃ is the first homotopy group of G.

3. Locally Conformal Symplectic Manifolds

An almost symplectic manifold (M,Ω) is called locally conformal symplectic (l.c.s.)
if there exists an open covering {Ui}i∈I and a family of positive functions αi ∈
C∞(Ui,R) such that d(αiΩ) = 0 on Ui. It was first observed by H.C.Lee in [10] that
then d lnαi glue up to a closed 1-form ω, provided dim(M) > 2. So equivalently,
and this will be our working definition, a l.c.s. manifold is a triple (M,Ω, ω) where ω
is a closed 1-form and Ω is a non-degenerate 2-form satisfying dωΩ = dΩ+ω∧Ω = 0.
Throughout we will assume that M is connected 2n-dimensional manifold (unless
otherwise stated). Since Ω is non-degenerate we get a canonical vector bundle
isomorphism [ : TM ∼= T ∗M given by X 7→ iXΩ. By ] we denote the inverse of [.

If dimM > 2 then ω is uniquely determined by Ω. Otherwise there would exist
ω′ 6= 0 with ω′ ∧ Ω = 0. Let x ∈ M with ω′(x) 6= 0. Then Ω(x) = ω′(x) ∧ η for
some η ∈

∧1
T ∗xM . This would yield Ω2(x) = 0, a contradiction.

If (M,Ω, ω) is a l.c.s. manifold and a is a nowhere vanishing function on M
then (M, 1

aΩ, ω + da
a ) is again a l.c.s. manifold. Two l.c.s. manifolds (M,Ω, ω) and
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(M,Ω′, ω′) are called conformally equivalent (denoted (M,Ω, ω) ∼ (M,Ω′, ω′)) iff
there exists a nowhere vanishing function a on M with Ω′ = 1

aΩ and ω′ = ω+ da
a =

ω + d(ln |a|). So (M,Ω, ω) is globally conformal symplectic (g.c.s.) manifold iff
[ω] = 0 ∈ H1(M).

A submanifold i : L ↪→ M is called Lagrangian iff dimL = n and i∗Ω = 0.
Notice that the Lagrangian submanifolds remain the same if we change (M,Ω, ω)
conformally.

3.1. Example. Let N be an n-dimensional manifold and let ω be a closed 1 form
on N . Let Θ denote the canonical 1-form on T ∗N . Recall that for α ∈ Ω1(N)
considered as mapping α : N → T ∗N one has α∗Θ = α. Define ω′ := π∗ω,
Ω′ := dω

′
Θ, where π : T ∗N → N is the canonical projection. Then (T ∗N,Ω′, ω′) is

a l.c.s. manifold and for α ∈ Ω1(N) we have α∗Ω′ = dωα. So im(α) is a Lagrangian
submanifold of (T ∗N,Ω′, ω′) if and only if dωα = 0. (T ∗N,Ω′, ω′) is conformally
equivalent to a symplectic manifold if and only if [ω] = 0 ∈ H1(N).

3.2. Example. On S3 there exists a global frame of 1-forms α, β, γ ∈ Ω1(S3)
satisfying dα = β ∧ γ, dβ = γ ∧ α, dγ = α ∧ β. This is because S3 is a Lie group
with Lie algebra so(3,R) and the latter has a basis {A,B,C} satisfying [A,B] = C,
[B,C] = A, [C,A] = B. Let ω := dt ∈ Ω1(S1) and Ω := dωα ∈ Ω2(S1 × S3). We
have Ω2 = 2dt ∧ α ∧ β ∧ γ, so Ω is non-degenerated and (S1 × S3,Ω, ω) is a l.c.s.
manifold.

However S1×S3 does not admit a symplectic structure, for this would be exact
since H2(S1 × S3) = 0 and hence would give rise to an exact volume form on
S1 × S3, a contradiction since S1 × S3 is compact.

3.3. Example. A Jacobi structure ([7]) on a manifold M is given by a Lie bracket
{·, ·} on C∞(M,R) which is local in the sense that

supp({u, v}) ⊆ supp(u) ∩ supp(v) ∀u, v ∈ C∞(M,R).

One can show that such brackets are in a one-to-one correspondence with pairs
(Λ, E), where Λ is a skew symmetric bivector field and E is an ordinary vector field
on M satisfying the following relations

(3.1) [Λ,Λ] = 2E ∧ Λ LEΛ = [E,Λ] = 0.

Here [·, ·] denotes the Schouten-Nijenhuis bracket. The bracket is then given by:

{u, v} = Λ(du, dv) + udv(E)− vdu(E)

The Hamiltonian vector fields Xu = Λ(du) + uE span a generalized distribution
which is integrable and on every leaf of the resulting foliation there exists a unique
induced Jacobi structure. So one is led to the study of so called transitive Jacobi
manifolds, that is with the foliation consisting of only one leaf. Now if a transitive
Jacobi manifold is odd dimensional then it is a contact manifold and if it is even
dimensional one can identify T ∗M with TM via Λ. If we let Ω be the 2-form
corresponding to Λ and ω the 1-form corresponding to E the equations (3.1) are
equivalent to dω = 0 and dωΩ = 0. So we see that the l.c.s. manifolds are exactly
the transitive, even dimensional Jacobi manifolds. Moreover for the Hamiltonian
we have Xu = ]dωu in this case.
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Suppose {·, ·} is a bracket as above and a is a nowhere vanishing function on M .
Then one can define a new Jacobi bracket by {f, g}a := 1

a{af, ag}. We then have
Λa = aΛ, Ea = aE + Λ(da) and if {·, ·} is even dimensional and transitive so is
{·, ·}a. Then we have Ωa = 1

aΩ, ωa = ω+ da
a . So the deformation of the bracket in

the way described above corresponds exactly to the conformal change of (M,Ω, ω).

If g is a diffeomorphism of M then (M, g∗Ω, g∗ω) is again a l.c.s. manifold. We
write Diff∞c (M,Ω, ω) for the group of all compactly supported diffeomorphisms that
preserve the l.c.s. structure (Ω, ω) up to conformal equivalence, i.e.

Diff∞c (M,Ω, ω) :=
{
g ∈ Diff∞c (M) : (M, g∗Ω, g∗ω) ∼ (M,Ω, ω)

}
More explicitly, g ∈ Diff∞c (M,Ω, ω) iff there exists a ∈ C∞(M,R \ 0) such that
g∗Ω = 1

aΩ and g∗ω = ω + d(ln |a|). If dimM > 2 then the first equation implies
the second since ω is unique. Next we define

Xc(M,Ω, ω) :=
{
X ∈ Xc(M) : ∃u ∈ C∞(M,R) with LXΩ = −uΩ, LXω = du

}
Again, if dimM > 2 then the equation LXΩ = −uΩ implies the equation LXω =
du. It is easily checked that Xc(M,Ω, ω) is a Lie algebra, see Lemma 4.1. Notice
that any Hamiltonian vector field Xu = ]dωu ∈ Xc(M,Ω, ω) for u ∈ C∞c (M,R),
by the description of Xc(M,Ω, ω) in Lemma 4.1. Xc(M,Ω, ω) is the Lie algebra of
Diff∞c (M,Ω, ω) in the following sense:

3.4. Lemma. Let g ∈ C∞
(
(R, 0), (Diff∞c (M), id)

)
. Then we have:

g ∈ C∞
(
R,Diff∞c (M,Ω, ω)

)
⇔ δrg ∈ Ω1

(
R; Xc(M,Ω, ω)

)
⇔ ġt ∈ Xc(M,Ω, ω)

Especially FlX ∈ C∞
(
R,Diff∞c (M,Ω, ω)

)
iff X ∈ Xc(M,Ω, ω).

Proof. Suppose we have g :
(
R, 0) → (Diff∞c (M,Ω, ω), id

)
. Then there exists a ∈

C∞(R×M,R) with g∗tΩ = 1
at

Ω and g∗t ω = ω+d(ln |at|). Differentiating these equa-
tions with respect to t we obtain LġtΩ = −(g−1

t )∗( ȧtat )Ω and Lġtω = d((g−1
t )∗ ȧtat ),

where ȧt := ∂
∂tat. Hence ġt ∈ Xc(M,Ω, ω) with fġt = (g−1

t )∗ ȧtat .
Suppose conversely LġtΩ = −utΩ and Lġtω = dut. Then we define at :=

exp(
∫ t

0
g∗susds). It satisfies g∗t ut = ȧt

at
and a0 = 1. So we obtain the following

differential equation for g∗tΩ:

∂
∂t (g

∗
tΩ) = − ȧtat (g

∗
tΩ) with initial condition g∗0Ω = Ω.

This equation has a solution namely 1
at

Ω and since the solution is unique (evaluate
everything at points x ∈M and obtain differential equations in a finite dimensional
space) we obtain g∗tΩ = 1

at
Ω. Similarly one checks g∗t ω = ω + d(ln |at|). �

We define also the group of strict automorphisms of (M,Ω, ω) by:

Dc(M,Ω, ω) := {g ∈ Diff∞c (M) : g∗Ω = Ω}.

If dim(M) > 2 this is a subgroup of Diff∞c (M,Ω, ω). Moreover we define a Lie
algebra:

Xc(M,Ω, ω) := {X ∈ Xc(M) : LXΩ = 0}
10



Again, if dim(M) > 2 then this is a subalgebra of Xc(M,Ω, ω). For a curve g ∈
C∞

(
(R, 0), (Diff∞c (M), id)

)
we also have

g ∈ C∞
(
R,Dc(M,Ω, ω)

)
⇔ δrg ∈ Ω1

(
R;Xc(M,Ω, ω)

)
⇔ ġt ∈ Xc(M,Ω, ω)

which is an immediate consequence of the formula d
dt (g

∗
tΩ) = g∗tLġtΩ. Notice that

these concepts are not conformally invariant. Of course, Xu = ]dωu ∈ Xc(M,Ω, ω)
iff ω(Xu) = 0. In general, a vector field X is called horizontal if ω(X) = 0. A l.c.s.
manifold (M,Ω, ω) is said to be of the first kind ([19]) if there is X ∈ Xc(M,Ω, ω)
which is not horizontal.

Observe that for any X ∈ Xc(M,Ω, ω) we have LXω = 0 and, consequently,
ω(X) = const. In particular, if X,Y ∈ Xc(M,Ω, ω) then [X,Y ] is horizontal. It is
easily seen that for (M,Ω, ω) of the first kind one has ω(x) 6= 0, ∀x ∈ M , and we
get the horizontal foliation (i.e. spanned by the horizontal vector fields).

The proof of the following is due to P. Michor and C. Vizman, see [9].

3.5. Lemma. Let M be a connected manifold, g ⊆ Xc(M) a Lie algebra of vector
fields and G ⊆ Diff∞c (M) such that X ∈ g implies FlXt ∈ G for all t ∈ R. If for
all x ∈ X there exist X1, . . . , Xn ∈ g such that X1(x), . . . , Xn(x) is a basis of TxM
then G◦ acts transitively on M .

Proof. For x ∈M consider that mapping

f : Rn →M f(t1, . . . , tn) :=
(

FlX1
t1 ◦ · · · ◦ FlXntn

)
(x)

Then we have f(0) = x and f(0, . . . , ti, . . . , 0) = FlXiti (x) hence ∂
∂ti
|0f(t) = Xi(x)

and so T0f is an isomorphism. This shows that the G◦-orbits are open. Conse-
quently the G◦-orbits are closed too, and so there exists only one such orbit since
M is connected. �

By using a main result of [18] one can strengthen the above as well as pioneer
results of Lefebvre [12]. Let us recall some concept from [18]. A diffeomorphism
group G(M) is pseudo-k-transitive with respect to a foliation F if it preserves F
and for any two k-tuples of pairwise distinct points (x1, . . . , xk) and (y1, . . . , yk) of
M such that xi, yi belong to the same leaf and each leaf of dimension ≤ 1 contains
at most one xi there exists f ∈ G(M) satisfying f(xi) = yi, i = 1, . . . , k. Observe
that for a foliation with a one leaf only this concept coincides with the k-transivity.

The following facts can be deduced from [18].

3.6. Proposition. The group Diff∞c (M,Ω, ω) act k-transitively on M for each
k ≥ 1. Furthermore, if (M,Ω, ω) is of the first kind the group Dc(M,Ω, ω) is
pseudo-k-transitive for each k ≥ 1 with respect to the horizontal foliation. The
leaves of this foliation coincide with the orbits of isotopies g in Dc(M,Ω, ω) such
that δrg is horizontal.

Let us only mention one important consequence of 3.6. In view of results of
[17] it is visible that the group Diff∞c (M,Ω, ω) determines uniquely the manifold
M and up to conformal equivalence also the l.c.s. structure (Ω, ω). Under some
assumptions (e.g. no leaves of dimension 0 in the horizontal foliation) the same
may be stated about Dc(M,Ω, ω). Thus the l.c.s. structures belong to a class of
geometric structures which fulfills a modern version of the “Erlanger Programm”,
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cf. [3]. The details of the proof will be presented in a forthcoming paper on Jacobi
structures.

In the sequel it will be important to know the homotopy type of Diff∞c (M,Ω, ω).
By using both Frobenius theorem and implicit function theorem in the case of
ILH-Lie groups H.Omori ([15], IX,7.2) proved essentially the following result.

3.7. Theorem. For K compact Diff∞K (M,Ω, ω) is an ILH-group (and consequently
a Lie group).

3.8. Proposition. Let G(M) be the kernel of a continuous, surjective homomor-
phism from Diff∞c (M,Ω, ω) onto a finite dimensional Lie group. Then G(M) admits
a structure of a Lie group.

In fact, it follows from Theorem III,2.5 in [15] that GK(M) is a Lie group. Then
Diff∞c (M,Ω, ω) = lim−→K Diff∞K (M,Ω, ω) is a Lie group modeled on the locally convex
vector space g = lim−→K gK where gK is the Lie algebra of GK(M).

As a consequence we have

3.9. Proposition. The first homotopy group of Diff∞c (M,Ω, ω) or of any G as in
Proposition 3.8 is countable.

Proof. We appeal to well known papers of J. Milnor [14] and R. Palais [16]. By 3.7
and 3.8 the groups in question are infinite dimensional manifolds. Since compactly
supported they are metrizable and second countable. So by Theorem 5 [16] they
must be absolute neighborhood retracts. Theorem 1 in [14] states that any absolute
neighborhood retract is dominated by a countable CW -complex. This completes
the proof. �

4. The Extended Lee Homomorphism

Parts of the following lemma can be found in [7] or [19].

4.1. Lemma. Let X be a compactly supported vector field on M . Then X ∈
Xc(M,Ω, ω) if and only if there exists a locally constant function cX ∈ C∞(M,R)
with dω([X) = cXΩ. In this case cX is unique and we have cX = iXω − uX
where uX is the function satisfying LXΩ = −uXΩ and LXω = duX . Moreover
Xc(M,Ω, ω) is a Lie algebra and the mapping

ϕ : Xc(M,Ω, ω)→ H0
c (M) X 7→ [cX ]

is a Lie algebra homomorphism (called the extended Lee homomorphism). If M is
compact it is surjective iff Ω is dω-exact.

If (M,Ω, ω) ∼ (M,Ω′, ω′) then Xc(M,Ω, ω) = Xc(M,Ω′, ω′) and ϕ′ = ϕ. Let
g ∈ Diff∞c (M) and (M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then g∗ : Xc(M,Ω, ω) ∼=
Xc(M,Ω′′, ω′′) and ϕ′′ ◦ g∗ = g∗ ◦ ϕ. If g ∈ Diff∞c (M,Ω, ω) then Xc(M,Ω, ω) =
Xc(M,Ω′′, ω′′), ϕ◦g∗ = g∗ ◦ϕ and if g ∈ Diff∞c (M,Ω, ω)◦ have even get ϕ◦g∗ = ϕ.

Proof. For any vector field we have dω([X) = LXΩ + iXω ∧ Ω which yields imme-
diately the first statement. For X,Y ∈ Xc(M,Ω, ω) one easily shows

(4.1) [[X,Y ] = dω(iX iY Ω)− cX[Y + cY [X.

Hence dω([[X,Y ]) = 0 and so c[X,Y ] = 0.
12



If Ω′ = 1
aΩ, ω′ = ω + da

a then [′ = 1
a [ and dω

′ 1
a = 1

ad
ω. So the equation

dω([X) = cXΩ is equivalent to dω
′
([′X) = cXΩ′.

Let g ∈ Diff∞c (M). Then g∗ ◦ [ = [′′ ◦ g∗ and hence the equation dω([X) = cXΩ
is equivalent to dω

′′
([′′(g∗X)) = (g∗cX)Ω′′. But this gives g∗ : Xc(M,Ω, ω) ∼=

Xc(M,Ω′′, ω′′) and ϕ′′ ◦ g∗ = g∗ ◦ ϕ. If g ∈ Diff∞c (M,Ω, ω) then (M,Ω′′, ω′′) ∼
(M,Ω, ω) and everything follows from the previous paragraph. The last statement
is due to the fact that g∗ = id : H0

c (M) → H0
c (M) if g is homotopic to the

identity. �

4.2. Remark. Notice that the homomorphism ϕ vanishes if (M,Ω, ω) is conformally
equivalent to a symplectic structure, since H0

c (M) 6= 0 only if M is compact but
in this case Ω is not dω-exact since an exact symplectic structure can only exist
on non-compact manifolds. But ϕ does not vanish in general. For example let
T 4 = S1×S1×S1×S1 be the 4-dimensional torus and let dx, dy, dx′, dy′ denote the
generators of H1(T 4). We take ω := dx, α := sin(y)dx′ + cos(y)dy′ and Ω := dωα.
An easy calculation shows Ω2 = 2dx ∧ dy ∧ dx′ ∧ dy′, so (T 4,Ω, ω) is a compact,
dω-exact l.c.s. manifold, and ϕ is non-trivial by Lemma 4.1.

Another example with non-vanishing ϕ is S1 × S3 with the structure from 3.2.

4.3. Proposition. The Lie algebra homomorphism ϕ integrates to a group homo-
morphism

Φ̃ : D̃iff
∞
c (M,Ω, ω)◦ → H0

c (M)

i.e. Φ̃ ◦ exp = exp ◦ϕ, or Φ̃(FlX) = ϕ(X). If M is compact then Φ̃ is surjective iff
Ω is dω-exact. We have the following formulas:

Φ̃(g) =
∫
I
ϕ∗(δrg) =

∫ 1

0
ϕ(ġt)dt =

[ ∫ 1

0
cġtdt

]
=
[ ∫ 1

0
g∗t cġtdt

]
If (M,Ω, ω) ∼ (M,Ω′, ω′) then D̃iff

∞
c (M,Ω, ω)◦ = D̃iff

∞
c (M,Ω′, ω′)◦ and Φ̃′ = Φ̃.

Proof. Notice that ϕ∗(δrg) ∈ Ω1(I;H0
c (M)) where H0

c (M) is a separated complete
locally convex vector space and hence integration is well defined. Obviously the
various formulas for Φ̃ are equal. We have to check that they do only depend on
the homotopy type relative endpoints of g. So let G : D2 → Diff∞c (M,Ω, ω) and
denote by i : S1 ↪→ D2 the inclusion. Using Stokes theorem and the Maurer-Cartan
equation (2.1) for δrG we obtain∫

S1 ϕ∗(δr(i∗G)) =
∫
S1 i
∗ϕ∗(δrG) =

∫
D2 dϕ∗(δrG) =

∫
D2 ϕ∗( 1

2 [δrG, δrG])

but the right hand side is zero since ϕ vanishes on brackets.
Let f, g : (I, 0) → (Diff∞c (M,Ω, ω), id). Using the Leibniz rule, Lemma 4.1 and

the fact that f(t) ∈ Diff∞c (M,Ω, ω)◦ for every t ∈ I we obtain

ϕ∗(δr(fg))(t) = ϕ(ḟt) + ϕ((f−1
t )∗ġt) = ϕ(ḟt) + ϕ(ġt) =

(
ϕ∗(δrf) + ϕ∗(δrg)

)
(t)

So ϕ∗(δr(fg)) = ϕ∗(δrf) + ϕ∗(δrg) and hence Φ̃(fg) = Φ̃(f) + Φ̃(g). The rest
follows from δr(FlX) = Xdt. �

The homomorphism Φ̃ has the following geometrical interpretation:
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4.4. Proposition. Let g : (I, 0) → (Diff∞c (M,Ω, ω), id) and denote by at the
functions satisfying g∗tΩ = 1

at
Ω, g∗t ω = ω + d(ln |at|). Then for x ∈M we have

Φ̃(g)(x) =
∫
I
(gx)∗ω − ln |a1(x)|

where gx : I →M is the path t 7→ gt(x).

Proof. Differentiating the equation g∗tΩ = 1
at

Ω with respect to t we get ∂
∂t (ln |at|) =

g∗t fġt , where fġt are the functions satisfying LġtΩ = −fġtΩ and Lġtω = dfġt , and
therefore

ln |a1| = ln |a1| − ln |a0| =
∫ 1

0
∂
∂t (ln |at|)dt =

∫ 1

0
g∗t fġtdt

Next we have∫
I
(gx)∗ω =

∫ 1

0
ω( ∂∂s |tgs(x))dt =

∫ 1

0
ω(ġt(gt(x))dt =

∫ 1

0
(g∗t iġtω)dt(x)

Combining these two equations we obtain∫
I
(gx)∗ω − ln |a1(x)| =

∫ 1

0
g∗t (iġtω − fġt)dt(x) =

∫ 1

0
g∗t cġtdt(x) = Φ̃(g)(x)

and we are done. �

We define ∆ := Φ̃
(
π1(Diff∞c (M,Ω, ω)◦

)
. Then Φ̃ factors to a homomorphism

Φ : Diff∞c (M,Ω, ω)◦ → H0
c (M)/∆

If M is compact then, by Lemma 4.1, Φ is surjective iff Ω is dω-exact. If (M,Ω, ω) ∼
(M,Ω′, ω′) then Diff∞c (M,Ω, ω)◦ = Diff∞c (M,Ω′, ω′)◦, ∆ = ∆′ and Φ = Φ′.

4.5. Corollary. If M is compact then H0
c (M) ∼= R and

∆ ⊆ Per(ω) := {〈ω, c〉 : c ∈ H1(M ;Z)} ⊆ R

Especially ∆ ⊆ H0
c (M) is always countable.

4.6. Corollary. Let g ∈ C∞
(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
. Then we have:

g ∈ C∞(R, ker Φ) ⇔ δrg ∈ Ω1(R; kerϕ) ⇔ ġt ∈ kerϕ

In particular, FlX ∈ C∞(R, ker Φ) iff X ∈ kerϕ.

Proof. By Lemma 3.4 we may assume that g has values in Diff∞c (M,Ω, ω) and
δrg ∈ Ω1

(
R; Xc(M,Ω, ω)

)
. For s ∈ R let µs : I → R, µs(t) := ts. We then have

Φ(gs) = τ(Φ̃(µ∗sg)) = τ
( ∫

I
µ∗sϕ∗(δ

rg)
)

= τ
( ∫

µs(I)
ϕ∗(δrg)

)
= τ

( ∫ s
0
ϕ(ġt)dt

)
.

Here τ is the canonical projection τ : H0
c (M) → H0

c (M)/∆. The implication ⇐
follows immediately. So let us assume that g has values in ker Φ. Then

∫ s
0
ϕ(ġt)dt ∈

∆ for all s ∈ I. Since this depends continuously on s and has values in a countable
subset of a separated topological vector space it has to be constant, i.e.

∫ s
0
ϕ(ġt)dt =

0 for all s ∈ I. Differentiating with respect to s we obtain ġs ∈ kerϕ for all
s ∈ R. �
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4.7. Lemma. ker Φ is connected by smooth arcs, and k̃er Φ ∼= ker Φ̃.

Proof. Since we have Corollary 4.6. the inclusion ker Φ ⊆ Diff∞c (M,Ω, ω) induces a
well defined mapping i : k̃er Φ→ ker Φ̃. In order to show that i is onto let g ∈ ker Φ̃.
For any s ∈ I we define hs ∈ C∞

(
(I, 0), (Diff∞c (M,Ω, ω), id)

)
by δr(hs) = sδrg (cf.

Lemma 3.4). Then h0(t) = id and h1(t) = g(t). Moreover

Φ̃(hs) =
∫
I
ϕ∗(δr(hs)) = s

∫
I
ϕ∗(δrg) = sΦ̃(g) = 0

and so Φ(hs(1)) = 0 for all s ∈ I. So h defines a homotopy relative endpoints from g
to s 7→ hs(1), which is a curve in ker Φ. Consequently i is onto. Next we show that
i is one-to-one. Let g ∈ ker i, i.e. there exists G ∈ C∞

(
I × I,Diff∞c (M,Ω, ω)

)
with

G(0, t) = id, G(1, t) = g(t) and G(s, 0) = G(s, 1) = id. For (s, u) ∈ I × I we define
H(s, ·, u) ∈ C∞

(
(I, 0), (Diff∞c (M,Ω, ω), id)

)
by δrH(s, ·, u) = uδrG(s, ·). We have

G(1, t) = g(t) ∈ ker Φ, so δrG(1, ·) ∈ Ω1(I; kerϕ), hence δrH(1, ·, u) ∈ Ω1(I; kerϕ)
and thus H(1, t, u) ∈ ker Φ for all (t, u) ∈ I×I. So g is homotopic relative endpoints
in ker Φ to u 7→ H(1, 1, u). Moreover (s, u) 7→ H(s, 1, u) is a smooth homotopy
relative endpoints from id to H(1, 1, ·). We claim that it has values in ker Φ. Indeed,
since Φ̃(G(s, ·)) = Φ̃(G(0, ·)) = Φ̃(id) = 0 we have

Φ̃
(
H(s, ·, u)

)
=
∫
I
ϕ∗δ

rH(s, ·, u) = u
∫
I
ϕ∗δ

rG(s, ·) = uΦ̃
(
G(s, ·)

)
= 0

and hence Φ(H(s, 1, u)) = 0. Summing up we have seen that g is homotopic
relative endpoints in ker Φ to id, i.e. i is one-to-one. Remains to show that ker Φ
is connected by smooth arcs. It is clear that ev1 : ker Φ̃ → ker Φ is onto, hence
ev1 = ev1 ◦ i : k̃er Φ → ker Φ is also onto and so ker Φ is connected by smooth
arcs. �

5. The Flux Homomorphism

In this section we define an analogue of the flux homomorphism. This concept is
essentially due to E. Calabi [6].

5.1. Lemma. We have a surjective Lie algebra homomorphism

ψ : kerϕ→ H1
dωc

(M) X 7→ [[X]

If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1
aΩ, ω′ = ω + d(ln |a|) then kerϕ = kerϕ′

and 1
aψ = ψ′. Let g ∈ Diff∞c (M) and (M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then g∗ :

kerϕ ∼= kerϕ′′ and ψ′′ ◦ g∗ = g∗ ◦ψ. If g ∈ Diff∞c (M,Ω, ω) then kerϕ = kerϕ′′ and
1
aψ ◦ g

∗ = g∗ ◦ ψ and if g ∈ ker Φ we even get ψ ◦ g∗ = ψ.

Proof. ψ is a Lie algebra homomorphism by formula (4.1). If [σ] ∈ H1
dωc

(M) then
]σ ∈ kerϕ and ψ(]σ) = [σ], so ψ is onto.

If (M,Ω, ω) ∼ (M,Ω′, ω′) then ϕ = ϕ′ and [′ = 1
a [. Hence kerϕ = kerϕ′ and

1
aψ = ψ′.

Let g ∈ Diff∞c (M). From Lemma 4.1 we get g∗ : kerϕ ∼= kerϕ′′ and since we
have [′′◦g∗ = g∗◦[ we also obtain ψ′′◦g∗ = g∗◦ψ. Combining this with the previous
paragraph we obtain the statements about g ∈ Diff∞c (M,Ω, ω). So it remains to
show that ag∗ = id : H1

dωc
(M)→ H1

dωc
(M) for g ∈ ker Φ. Choose a curve gt in ker Φ
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from the identity to g and define at by g∗tΩ = 1
at

Ω and g∗t ω = ω + d(ln |at|). So
we have g1 = g, a1 = a, g0 = id and a0 = 1. Moreover since gt ∈ ker Φ we have
ġt ∈ kerϕ hence fġt = iġtω and ȧt = atg

∗
t iġtω = at inc∗t i∂tg

∗ω. So at satisfy the
same differential equation as the at of Lemma 1.1 and therefore they are the same.
But now Lemma 1.1 yields ag∗ = a1g

∗
1 = id. �

5.2. Proposition. The Lie algebra homomorphism ψ integrates to a surjective
group homomorphism

Ψ̃ : k̃er Φ→ H1
dωc

(M)

i.e. Ψ̃ ◦ exp = ψ ◦ exp, or Ψ̃(FlX) = ψ(X). We have the following formulas:

Ψ̃(g) =
∫
I
ψ∗(δrg) =

∫ 1

0
ψ(ġt)dt =

[ ∫ 1

0
iġtΩdt

]
=
[ ∫ 1

0
atg
∗
t iġtΩdt

]
where g∗tΩ = 1

at
Ω. If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1

aΩ and ω′ = ω + d(ln |a|)
then k̃er Φ′ = k̃er Φ and 1

a Ψ̃′ = Ψ̃.

Proof. The proof is exactly the same as the proof of Proposition 4.3. �

We let Γ := Ψ̃(π1(ker Φ)). Then Ψ̃ factors to a surjective homomorphism

Ψ : ker Φ→ H1
dωc

(M)/Γ

If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1
aΩ and ω′ = ω+ d(ln |a|) then ker Φ′ = ker Φ,

1
aΓ = Γ′ and 1

aΨ′ = Ψ. Notice that Γ is countable in view of Proposition 3.9 and
Theorem 1.8. Similarly to the proof of Corollary 4.6 one shows

5.3. Lemma. Let g ∈ C∞
(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
. Then

g ∈ C∞(R, ker Ψ) ⇔ δrg ∈ Ω1(R; kerψ) ⇔ ġt ∈ kerψ

Specifically, FlX ∈ C∞(R, ker Ψ) iff X ∈ kerψ.

5.4. Remark. The above lemma gives a characterization of Hamiltonian isotopies
on (M,Ω, ω). Namely, an isotopy g ∈ C∞

(
(R, 0), (Diff∞c (M), id)

)
is by definition

Hamiltonian if δrg ∈ Ω1(R, kerψ) (cf. [13] in the symplectic case). It follows then
from 5.3 that any isotopy in ker Ψ is Hamiltonian. For an essentially more compli-
cated reasoning in the symplectic case, see [13], p. 318-320.

5.5. Lemma. ker Ψ is connected by smooth arcs, and k̃er Ψ ∼= ker Ψ̃.

Proof. The proof is the same as the proof of Lemma 4.7. �

A l.c.s. manifold (M,Ω, ω) is said to be exact if there is a 1-form α such that
Ω = dωα.

5.6. Proposition. Suppose (M,Ω, ω) is an exact l.c.s. manifold with Ω = dωα.
Then for g ∈ k̃er Φ we have

Ψ̃(g) = [a1g
∗
1α− α] ∈ H1

dωc
(M)

where g∗tΩ = 1
at

Ω and g∗t ω = ω + d(ln |at|). In particular, Γ = 0.

Proof. First of all we have

iġtΩ = iġtd
ωα = Lġtα+ iġtω ∧ α− dω(iġtα).
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Since gt ∈ ker Φ the at are the same as the at of Lemma 1.1. So we get

ψ(ġt) = [iġtΩ] = [Lġtα+ iġtω ∧ α] = [atg∗t (Lġtα+ iġtω ∧ α)].

Since ġt ∈ kerϕ we have ȧt = atg
∗
t fġt = atg

∗
t iġtω and hence

atg
∗
t (Lġtα+ iġtω ∧ α) = at

∂
∂t (g

∗
t α) + ( ∂∂tat)g

∗
t α = ∂

∂t (atg
∗
t α).

Putting all together we obtain

Ψ̃(g) =
∫ 1

0
ψ(ġt)dt =

[ ∫ 1

0
∂
∂t (atg

∗
t α)dt

]
= [a1g

∗
1α− a0g

∗
0α] = [a1g

∗α− α].

�

5.7. Lemma. Let U be an open cover of M . Then any g ∈ C∞
(
(I, 0), (ker Ψ, id)

)
has a decomposition g = g1 · · · gn, where each gi is supported in some Ui ∈ U and
gi ∈ C∞

(
(I, 0), (ker ΨUi , id)

)
Proof. Fix a compact set K ⊆M and define

HK : C∞
(
I,Ω0

K(M)
)
→ C∞

(
(I, 0), (ker Ψ, id)

)
α 7→ Evol

(
(] ◦ dω)∗α

)
that is the defining equation for g = HK(α) is [ġt = dωαt with initial condition
g0 = id. We define the structure of a topological group on the left hand side space
such that HK becomes a continuous homomorphism. Namely we set

(αβ)(t) := α(t) + (HK(α)(t)−1)∗( 1
at
β(t))

where HK(α)(t)∗Ω = 1
at

Ω. One easily checks that this is a topological group
and HK is a continuous homomorphism. By Lemma 5.3 and Corollary 1.9 we see
that

⋃
K imHK = C∞

(
(I, 0), (ker Ψ, id)

)
and so we only have to show that every

g ∈ im(HK) has the desired decomposition.
Now choose U1, . . . , Un ∈ U covering K, open sets Vi, Wi with W̄i ⊆ Vi ⊆ V̄i ⊆ Ui

such that Wi still cover K and a partition of unity {λ0, . . . , λn} subordinated to
{M \K,W1, . . . ,Wn}. Consider the open neighborhoods Wi of the identity

Wi :=
{
g ∈ C∞

(
(I, 0), (Diff∞c (M,Ω, ω), id)

)
: gt(M \ V̄i) ⊆M \ W̄i ∀t ∈ I

}
and define an open neighborhood of 0 ∈ C∞

(
I,Ω0

K(M)
)

by

WK :=
{
α ∈ C∞

(
I,Ω0

K(M)
)

: HK(
∑i−1
j=0 λjα) ∈ Wi ∀1 ≤ i ≤ n

}
Since WK is open HK(WK) generates imHK and so it suffices to show that every
g ∈ HK(WK) has the desired decomposition.

For α ∈ WK we set fi := HK(
∑i
j=0 λjα). Then we have f0 = id, fn = HK(α),

and if we let gi := f−1
i−1fi we obtain HK(α) = g1 · · · gn. It remains to show that

gi ∈ C∞
(
(I, 0), (ker ΨUi , id)

)
, but this follows from

gi = f−1
i−1fi = HK

(
t 7→ ai−1(t)fi−1(t)∗(λiα(t))

)
where, f∗i Ω = 1

ai
Ω, for we have supp

(
t 7→ ai−1(t)fi−1(t)∗(λiα(t))

)
⊆ V̄i ⊆ Ui. �
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6. The Calabi Invariant

The first trace of the Calabi invariant can be found in [6]. It has been popularized
under this name in [1], see also [13],[3].

6.1. Lemma. Let (M,Ω, ω) be a 2n-dimensional l.c.s. manifold and assume that
H0
dωc

(M) = 0. Then we have a surjective Lie algebra homomorphism

ρ : kerψ → H2n

d
(n+1)ω
c

(M) X 7→ [uΩn]

where u is the unique function on M such that [X = dωu.
If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1

aΩ, ω′ = ω + d(ln |a|) then kerψ = kerψ′

and 1
an+1 ◦ ρ = ρ′. Let g ∈ Diff∞c (M) and (M,Ω′′, ω′′) := (M, g∗Ω, g∗ω). Then

g∗ : kerψ ∼= kerψ′′ and ρ′′ ◦ g∗ = g∗ ◦ ρ. If g ∈ Diff∞c (M,Ω, ω) then kerψ = kerψ′′

and 1
an+1 ◦ ρ ◦ g∗ = g∗ ◦ ρ and if g ∈ ker Ψ we even get ρ ◦ g∗ = ρ.

Proof. Notice that u is unique since we have the assumption H0
dωc

(M) = 0. Let
[X = dωu and [Y = dωv. By formula (4.1) we get [[X,Y ] = dω(iX iY Ω) and since

(iX iY Ω)Ωn = ndωv ∧ dωu ∧ Ωn−1 = nd(n+1)ω
(
vdωu ∧ Ωn−1

)
we see that ρ vanishes on brackets. Given any [σ] ∈ H2n

d
(n+1)ω
c

(M) we may write σ =
uΩn for some u ∈ C∞c (M,R), since Ω is non-degenerate. But then ](dωu) ∈ kerψ
and ρ(](dωu)) = [σ]. So ρ is onto.

If (M,Ω, ω) ∼ (M,Ω′, ω′) then Lemma 5.1 yields kerψ = kerψ′. Moreover
(n + 1)ω′ = (n + 1)ω + d(ln |an+1|) and so 1

an+1 : H2n

d
(n+1)ω
c

(M) ∼= H2n

d
(n+1)ω′
c

(M).

If [X = dωu then [′X = 1
a [X = 1

ad
ωu = dω

′
( 1
au) and so ρ′(X) = [ 1

auΩ′n] =
[ 1
an+1uΩn] = 1

an+1 ρ(X).
Let g ∈ Diff∞c (M). From Lemma 5.1 we get g∗ : kerψ ∼= kerψ′′. If [X = dωu

then [′′(g∗X) = dω
′′
(g∗u) and hence ρ′′(g∗X) = [g∗uΩ′′n] = [g∗(uΩn)] = g∗ρ(X).

The statements about g ∈ Diff∞c (M,Ω, ω) follow now from the previous paragraph.
So it remains to show that an+1 ◦ g∗ = id : H2n

d
(n+1)ω
c

(M) → H2n

d
(n+1)ω
c

(M) for
g ∈ ker Φ, but the proof is similar to the proof of the corresponding statement on
ψ (cf. proof of Lemma 5.1). �

6.2. Remark. Suppose (M,Ω, ω) is not conformally equivalent to a symplectic man-
ifold. By Example 1.6 we have H0

dωc
(M) = 0 and H2n

d
(n+1)ω
c

(M) = 0. So ρ is always
defined, but it is identically 0.

6.3. Proposition. Let (M,Ω, ω) be a 2n-dimensional l.c.s. manifold and assume
that H0

dωc
(M) = 0. Then the Lie algebra homomorphism ρ integrates to a surjective

group homomorphism
R̃ : k̃er Ψ→ H2n

d
(n+1)ω
c

(M)

i.e. R̃ ◦ exp = ρ ◦ exp, i.e. R̃(FlX) = ρ(X). We have the following formulas:

R̃(g) =
∫
I
ρ∗(δrg) =

∫ 1

0
ρ(ġt)dt =

[ ∫ 1

0
utΩndt

]
=
[ ∫ 1

0
at(g∗t ut)Ω

ndt
]

where g∗tΩ = 1
at

Ω and dωut = [ġt. If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1
aΩ and

ω′ = ω + d(ln |a|) then k̃er Ψ = k̃er Ψ′ and 1
an+1 R̃ = R̃′.

Proof. The proof is exactly the same as the proof of Proposition 4.3. �
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We let Λ := R̃
(
π1(ker Ψ)

)
. Note that Λ is countable in view of Proposition 3.9.

The homomorphism R̃ factors to a surjective homomorphism

R : ker Ψ→ H2n

d
(n+1)ω
c

(M)/Λ

If (M,Ω, ω) ∼ (M,Ω′, ω′) with Ω′ = 1
aΩ and ω′ = ω+ d(ln |a|) then ker Ψ = ker Ψ′,

1
an+1 Λ = Λ′ and 1

an+1 ◦R = R′. Notice that Λ is countable in view of Proposition 3.9
and Theorem 1.8. Similarly to the proof of Corollary 4.6 one shows:

6.4. Lemma. Let (M,Ω, ω) be a 2n-dimensional l.c.s. manifold with H0
dωc

(M) = 0.
Let g ∈ C∞

(
(R, 0), (Diff∞c (M,Ω, ω), id)

)
. Then

g ∈ C∞(R, kerR) ⇔ δrg ∈ Ω1(R; ker ρ) ⇔ ġt ∈ ker ρ

Especially FlX ∈ C∞(R, kerR) iff X ∈ ker ρ.

6.5. Lemma. kerR is connected by smooth arcs, and k̃erR ∼= ker R̃.

Proof. The proof is the same as the proof of Lemma 4.7. �

6.6. Proposition. Let (M,Ω, ω) be a 2n-dimensional exact l.c.s. manifold, Ω =
dωα. Then H0

dωc
(M) = 0 and for g ∈ k̃er Ψ we have

R̃(g) = 1
n+1 [uΩn] = 1

n+1 [(a1g
∗
1α) ∧ α ∧ Ωn−1]

where u ∈ C∞c (M,R) is the unique function satisfying dωu = a1g
∗
1α−α (cf. Propo-

sition 5.6). Especially we have Λ = 0.

Proof. If ω is not exact then by Example 1.6 H0
dωc

(M) = 0, and if ω is exact then
(M,Ω, ω) is conformally equivalent to a symplectic structure and it is well known
that this can only happen if M is not compact, i.e. 0 = H0

c (M) ∼= H0
dωc

(M). So we
always have H0

dωc
(M) = 0 and thus u is unique.

Let vt be the functions satisfying [ġt = dωvt and recall the homotopy operator
from Lemma 1.1. Then we have

a1g
∗
1α− α = H(dωα) + dωH(α) = H(Ω) + dωH(α)

and
H(Ω) =

∫ 1

0
atg
∗
t iġtΩdt =

∫ 1

0
atg
∗
t (dωvt)dt =

∫ 1

0
dω(atg∗t vt)dt.

Together this yields

a1g
∗
1α− α = dω

( ∫ 1

0
atg
∗
t vtdt

)
+ dω

( ∫ 1

0
atg
∗
t iġtαdt

)
and so

u =
∫ 1

0
atg
∗
t vtdt+

∫ 1

0
atg
∗
t iġtαdt =: u1 + u2.

Next we have

(atg∗t iġtα) ∧ Ωn = an+1
t g∗t (iġtα ∧ Ωn) = nan+1

t g∗t (α ∧ iġtΩ ∧ Ωn−1)

= nan+1
t g∗t (α ∧ dωvt ∧ Ωn−1)

= nan+1
t g∗t (vtΩn)− nan+1

t g∗t d
(n+1)ω(αvtΩn−1)

= nan+1
t g∗t (vtΩn)− d(n+1)ω(nan+1

t g∗t (αvtΩn−1)).
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and therefore [u2Ωn] = n[u1Ωn] ∈ H2n

d
(n+1)ω
c

(M). So

1
n+1 [uΩn] =

∫ 1

0
[an+1
t g∗t (vtΩn)]dt =

∫ 1

0
[vtΩn]dt =

∫ 1

0
ρ(ġt)dt = R̃(g).

The second expression follows now easily

[uΩn] = [udωα ∧ Ωn−1] = [d(n+1)ω(uα ∧ Ωn−1)− (dωu) ∧ α ∧ Ωn−1]

= [(a1g
∗
1α− α) ∧ α ∧ Ωn−1] = [(a1g

∗
1α) ∧ α ∧ Ωn−1].

Finally, in view of this formula R̃(g) does only depend on the endpoint of g, so R̃
vanishes on closed loops, i.e. Λ = 0. �

6.7. Lemma. Let U be a covering by open balls of a l.c.s. manifold (M,Ω, ω) with
H0
dωc

(M) = 0. Then every g ∈ C∞
(
(I, 0), (kerR, id)

)
has a decomposition g =

g1 · · · gn, where every gi is supported in Ui ∈ U and gi ∈ C∞
(
(I, 0), (kerRUi , id)

)
.

Proof. Fix a compact set K ⊆M and define

HK : C∞
(
I,Ω2n−1

K (M)
)
→ C∞

(
(I, 0), (kerR, id)

)
α 7→ Evol

(
(] ◦ dω)∗u

)
where u ∈ C∞

(
I,Ω0

K(M)
)

is the unique function satisfying dωαt = utΩn. So the
defining equation for g = HK(α) is [ġt = dωut with initial condition g0 = id. We
define the structure of a topological group on the left hand side space such that
HK becomes a continuous homomorphism. Namely we set

(αβ)(t) := α(t) + (HK(α)(t)−1)∗( 1
at
β(t))

where HK(α)(t)∗Ω = 1
at

Ω. One easily checks that this is a topological group
and HK is a continuous homomorphism. By Lemma 6.4 and Corollary 1.9 we see
that

⋃
K imHK = C∞

(
(I, 0), (kerR, id)

)
and so we only have to show that every

g ∈ im(HK) has the desired decomposition. From now on the proof is completely
similar to the proof of 5.7. �

6.8. Lemma. Let U be a covering by open balls of a l.c.s. manifold (M,Ω, ω) with
H0
dωc

(M) 6= 0. Then every g ∈ C∞
(
(I, 0), (ker Ψ, id)

)
has a decomposition g =

g1 · · · gn, where every gi is supported in Ui ∈ U and gi ∈ C∞
(
(I, 0), (kerRUi , id)

)
.

Proof. By Example 1.6 ω has to be exact and so (M,Ω, ω) is conformally equivalent
to a compact, symplectic manifold. But in this case the statement is well known
and can be found in [1] and [3]. �

7. Simplicity Theorem

We start with the following result due to W. Thurston (see [3]).

7.1 Lemma. Let X be a Hausdorff topological space, U be a basis of the topology
and G ⊆ Homeo(X) be a subgroup of homeomorphisms on X. Assume we have for
all U ∈ U a perfect subgroup GU ⊆ G ∩HomeoU (X), satisfying:

(1) every G-orbit is dense in X (weak transitivity)
(2) V ⊆ U is a covering of X then

⋃
V ∈V GV generates G (fragmentation)

(3) U, V ∈ U , g ∈ G, g(U) ⊆ V then gGUg
−1 ⊆ GV
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Then G is simple.

Proof. Let id 6= g ∈ G. We want to show N(g) = G, where N(g) denotes the
normal subgroup in G generated by g. Since id 6= g we find x ∈ X with g(x) 6= x
and by 1 we also find h ∈ G with h(x) 6= x and h(x) 6= g(x). Since X is Hausdorff
we can separate x, g(x), h(x) by open neighborhoods W1,W2,W3 of x, g(x), h(x)
respectively. We let U := W1∩g−1(W2)∩h−1(W3). Then U is an open neighborhood
of x and U, g(U), h(U) are pairwise disjoint. We claim

(7.1) [u, v] = [[u, g], [v, h]] ∀u, v ∈ HomeoU (X)

Since U ∩ g(U) = ∅ and U ∩ h(U) = ∅ we have

(7.2) [u, g] =


u on U

gu−1g−1 on g(U)
id elsewhere

[v, h] =


v on U

hv−1h−1 on h(U)
id elsewhere

and so (7.1) holds on M\(g(U)∪h(U)). It remains to check [[u, g], [v, h]]|g(U)∪h(U) =
id but this follows again from (7.2) and the fact g(U) ∩ h(U) = ∅.

¿From (7.1) and the perfectness of GU we obtain

GU = [GU , GU ] ⊆ [[GU , g], [GU , h]] ⊆ [N(g), G] ⊆ N(g)

Now let y ∈ X be arbitrary. From 1 we get Uy ∈ U and αy ∈ G with αy(Uy) ⊆ U
and hence using 3

GUy ⊆ α−1
y GUαy ⊆ α−1

y N(g)αy ⊆ N(g)

Since {Uy : y ∈ X} covers X,
⋃
y∈X GUy generates G by 2 and so G ⊆ N(g). �

Now we make use of the following theorem due to A. Banyaga (see [1]).

7.2. Theorem. Let U be an open ball and Ω a symplectic form on U . Then kerR
is a perfect group, i.e. kerR = [kerR, kerR].

Our main result is the following:

7.3. Theorem. Let (M,Ω, ω) be a connected l.c.s. manifold such that H0
dωc

(M) 6= 0.
Then ker Ψ is simple and if H0

dωc
(M) = 0 then kerR is simple.

Proof. We will apply Lemma 7.1, so we have to check its assumptions. If H0
dωc

(M) 6=
0 we let G := ker Ψ, U be the totality of open balls in M and GU := kerRU .
Theorem 7.2 yields GU = [GU , GU ], Lemma 3.5 gives property 1, Lemma 6.8 gives
property 2 and property 3 is obvious.

If H0
dωc

(M) = 0 we let G := kerR, U be the open balls in M and GU := kerRU .
Again Theorem 7.2 yields GU = [GU , GU ], Lemma 3.5 gives property 1, Lemma 6.7
gives property 2 and property 3 is obvious. �

7.4. Corollary. Let (M,Ω, ω) be a connected l.c.s. manifold. If H0
dωc

(M) 6= 0 then
ker Ψ = [ker Φ, ker Φ] is perfect and if H0

dωc
(M) = 0 then kerR = [ker Ψ, ker Ψ] is

perfect.

Proof. Everything follows immediately from Theorem 7.3. �

7.5. Corollary. Let (M,Ω, ω) be a connected l.c.s. manifold which is not g.c.s.
(i.e. ω is not exact). Then ker Ψ = [ker Φ, ker Φ] is simple (and hence perfect).

Proof. As mentioned several times we have in this case R = 0. �
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8. Cohomological Invariants of
[
(Ω, ω)

]
By C = [(Ω, ω)] we will denote the conformal equivalence class of a l.c.s. (Ω, ω) on
M . We will assume that dim(M) > 2 and consider the Ω only.

We follow some ideas of Banyaga [2] (see also references therein). For g ∈
Diff∞c (M,Ω, ω) we denote g∗Ω = 1

ag
Ω and for X ∈ Xc(M,Ω, ω) we write LXΩ =

−uXΩ.

8.1. Proposition. (i) The mapping

ξΩ : Diff∞c (M,Ω, ω)→ C∞(M,R) g 7→ ln(ag−1)

is a 1-cocycle on the group Diff∞c (M,Ω, ω) with values in C∞(M,R). Here we
consider C∞(M,R) as a Diff∞c (M,Ω, ω)-module: g · a = a ◦ g−1. The class
ΞC := [ξΩ] ∈ H1

(
Diff∞c (M,Ω, ω);C∞(M,R)

)
is independent of the choice of a

representant in C.
(ii) The mapping

ζΩ : Xc(M,Ω, ω)→ C∞(M,R) X 7→ −uX

is a 1-cocycle on the Lie algebra Xc(M,Ω, ω) with values in its module C∞(M,R).
Its cohomology class ZC = [ζΩ] depends on C only.

The proof is straightforward, see, e.g., [2].

8.2. Proposition. The following statements are equivalent:
(1) C is g.c.s.
(2) ΞC = 0
(3) ZC = 0

Proof. First we show that (1) ⇒ (2). Choose a symplectic structure Ω on M
representing C, i.e. ω = 0. If g ∈ Diff∞c (M,Ω, 0) with g∗Ω = 1

ag
Ω we get 0 = dg∗Ω =

− 1
a2
g
dag ∧Ω and so ag is constant, since Ω is non-degenerated and dim(M) > 2. If

K := supp(g) we obtain

vol(K) =
∫
K

Ωn =
∫
g∗K

g∗Ωn =
∫
K

1
ang

Ωn = 1
ang

vol(K)

and so we must have ag = 1. Consequently ξΩ(g) = 0 and so ΞC = 0. (2) ⇒ (3)
follows immediately from the formula:

(8.1) ζΩ(X) = d
dt |0
(
ξΩ(FlX−t)

)
Indeed if ΞC = 0 then there exists u ∈ C∞(M,R) with ξΩ(g) = (g−1)∗u − u for
all g ∈ Diff∞c (M,Ω, ω), and so (8.1) yields ζΩ(X) = d

dt |0
(
(FlXt )∗u − u

)
= LXu for

all X ∈ Xc(M,Ω, ω), i.e. ZC = 0. Finally we show (3) ⇒ (1). Since ZC = 0 there
exists u ∈ C∞(M,R) such that ζΩ(X) = LXu for all X ∈ Xc(M,Ω, ω). Consider
the l.c.s. structure (Ω′, ω′), where Ω′ := 1

e−uΩ. We claim that ω′ = 0. An easy
calculation shows LXΩ′ = 0 for all X ∈ Xc(M,Ω′, ω′) = Xc(M,Ω, ω). From this
we get LXω′ = 0, that is iXω′ is constant for all X ∈ Xc(M,Ω, ω). If ω′ would
be non-zero then we could easily construct X = ]dωv ∈ Xc(M,Ω, ω) with iXω

′

non-constant, a contradiction. So ω′ = 0 and (M,Ω, ω) is conformally equivalent
to the symplectic manifold (M,Ω′, ω′). �
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