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§1. Introduction

The set £(X) of homotopy classes of self-(homotopy-)equivalences of a based
space X forms a group by the composition of maps, and this group is studied by
several authors.

The purpose of this note is to study the groups &£(S™x S") of the products
S™x S», where S* is the k-sphere. These are studied by P. J. Kahn [8] for the case
m=n, and by A. J. Sieradski [13] for the case m, n=1, 3, 7.

In the first, we consider the case n>m=2. Then the wedge S™V S" is
simply connected, and we can apply the results of [10, §§ 1-2] to the mapping
cone S™x S"=(SmV S") U emt" of the Whitehead product. Hence, by using the
results of W. D. Barcus and M. G. Barratt [3, §4], we have in Theorem 2.6
the exact sequence

0— H,,— &E"%xS")~—G,,— 1,

where H, , is the factor group of =, ., (S™)+m,,,(S") and G, , is the subgroup
of £(S™"v S™). In §3, we study some cases that this sequence is split, but the
extension of this sequence is not known to us in general. Also, by using the qua-
ternion, we compute &(S™ x S*) for m=2, 3 and n>m in Theorems 4.3 and 5.3,
and we see that the above sequence is split if m=2 and is not splitif m=3 and n=35.

By the same way, we have in Theorem 6.2 the similar exact sequence for the
case n=mz2, which is split if n is even. Furthermore, we can determine the
group &(S* x 8™) for n=3, 7 in Theorem 6.4.

The group £(S! x S*) is computed in §§7-8 by the different methods. By
attaching i-cells (i=n+3) to S*, we obtain a CW-complex X,,; which kills the
r-th homotopy groups of S” for r = n+2, and we see that £(S! x $*) is isomorphic
to £(S'x X, ;,) (Lemma 7.1). Consider the composition

f: Stx K(Z,n) —s K(Z,n) L% K(n,, (S"), n+2)

of the natural projection and the generator f' of H**2(Z, n; n,,(S")). Then,
it is well known that S'x X, is the mapping track E, of f. Hence, we can
apply the results of J. W, Rutter [11] and [10,§5] to &#(S'x X,.,), and the
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group £(S! x S”) is determined in Theorem 7.9 for n23 and in Theorem 8.8 for
n=2,

The author wishes to express his gratitude to Professor M. Sugawara and
Dr. S. Oka for their encouragement and valuable discussions.

§2. The group £(S™x S") for n>m=2

In this note, all (topological) spaces are arcwise connected spaces with base
point * and have homotopy types of CW-complexes, and all (continuous) maps
and homotopies preserve the base points. For given spaces X and Y, we denote
by [X, Y] the set of (based) homotopy classes of maps from X to Y, and by the
same letter f a map f: X— Y and its homotopy class fe[X, Y]. Also, we denote
usually by

the induced maps of a given map g: Y—Z.
The group of homotopy classes of self-homotopy-equivalences of a space X
is denoted by

&(X) (=[X, XD,

whose multiplication is given by the composition of maps.
In the first we consider the group £(S™V S”) of the wedge S™v S* for n>
m =2, where S* is the k-sphere in the real (k+ 1)-space. Let

2.D ij:SmcSmv Sn, i:S"c Smv Sn
be the inclusion maps and

(2.2) A w (S™) — &(S™ Vv S

be the homomorphism given by

@3) MOoiy =1y, MEpiy = iyol+i,

for ¢ e n,(S™), where o is the composition of maps and + is the sum in «,(S™V S*).
Then we have the next proposition (cf. [10, §1]). :

PrOPOSITION 2.4, For n>mz=2, we have the split exact sequence
0 —_— nn(S'”) -l—) é’(sm V S") —_ Z2+Zz —_— 1,
and so we have

(2.5) &(S™ v 8" ={a;MO|i,jeZ, = {0,1}, L em,(S™)},
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where a;;=(~¢,)' V (—¢,)7 (¢,€m(S¥) is the class of the identity map) with
relations

A&a;; = a;M(—ep)iole(—e,))).
The product S™x S is the mapping cone
§mx 8% = (S™V 8" Uy, 8™ "
of the Whitehead product
[i,1,]: S™=l—s8m v S"

of the inclusion maps of (2.1). By the above result and the results of [10, §2],
we have the following theorem.

THEOREM 2.6. Assume n>m=2. Then there is an exact sequence
.7 0— H,,-25 &(Sm"xS") 2 G, — 1.
The groups H,, ,, and G, , are given by
(2.8) Hyn = Tnt l(S™) Ltms Tt 1(S™)] + Tt (S Lns s 1(S™)]
(2.9) Gpn = {ay MO | ey €1 = 0, S em(S™), 1, j€ Zy} (= E(S™V S™),
and @ is given by the restriction on S™V S".

ProOF. By the results of [10, §2], we have the exact sequence

0 —> H,, 25 &Smx S 24, G, — 1,
where H,, ,=7,,4,(5" x $")/Imy for the homomorphism
y=TQG[f):[Sm1 v S+, Smx §"] — 7, ., (S™x S™)
(i: S™v S"— 8™ x S* is the inclusion, f=[i,, i,]), and
Ghn=1(he)|heg(S™V S"),e = +ce&(S™ 1), hof = fog
in 7., (S™V S},

We see easily that I'(i, f), defined in [10, (2.5)], coincides by definition with the
homomorphism

K Ty (X)) + 74 1(X) — i f(X)

of [3, §8, p. 70] for X=S"x 8" and w=ici;, v=ioi,. Therefore, by [3, (8.1)
(1)] we have
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W0, &) = —Liciy, E1+(— 1)1, ici,]

for nem,, (Sm"xS"), {em,,,(S™x S"), and we see that H, , is given by (2.8).
On the other hand, by (2.3) and the definition of the Whitehead product, we
have

a,;MEef = [(— 1)1y, igo (=)' +(—1)i,]
= (= D[iy; iy (= )€1+ (= DLy, 6]
By using the direct sum decomposition
Tpan—1(S™ V 87 = Ty 1(S™) + Ty 1(S) + Ty (S X S7, 8™ V §7),
we see easily that
a;;M&)of = foe ifand only if [c,, ] =0 and &= (—¢)*/.

Therefore, G,,, of (2.9) is isomorphic to G, , by corresponding a;;A(&)>(a;;A(£),
(—¢)i*J), and the homomorphism ¢ x § corresponds to the restriction ¢. g.e.d.

§3. Group extensions in (2.7)

In this section, assume that n>mz2. Let £en,(S™) satisfy [¢,, £1=0.
Then there is a map F,: S™ x S"-»S™ of type (¢,,, &) by the definition of the White-
head product, and we obtain a map

3.0 ME) = (Fg py): S"X S"—> Smx S",
where p, is the projection onto the 2nd factor. Consider the elements
(3.2) bij = (=)' X (—¢,) € £(S™x S"), i,jeZ,.
Then we have easily the following lemma by the definition.
LEMMA 3.3. o(b;; (&) = a,;A8),
where @ is the homomorphism in (2.7).
THEOREM 3.4. Assume that 1 of (3.1) can be chosen so that
MEDMUE) = M +&2)  MUEby; = bjA(—em)olio(—en)),

for any &, en,(S™) with [, £1=0. Then the exact sequence (2.7) is split. Also
the action of G,,, on H,,, is given by

a;; M) (2, B) = (= D I(— ) oF (e, B), (= 1)'B)
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fOV ae 7.cm+n(sm)/|:‘m’ T+ I(Sm)]’ ﬁ € Tcm+n(Sn)/[!m T+ 1(Sn)]'

Proor. The former is obtained immediately by Theorem 2.6 and Lemma
3.3. By the definition of A(&) of (3.1), we have the homotopy commutative
diagram

Smx St L, (Smx STy smtn V@D (gmy )y (Smx §) L, Smx S”
lx(:) V1 OV ll(é)
Smx S L, (§mx §*)y Smin WVAQLE) , (gm oy Sy y (Smx St) L, Smx S*,

The composition of the maps in the upper sequence is A'(x, f) by the definition of
A" in [10, §2], and also the composition of the lower one is A'(F,o(, B), B) by (3.1).
These show that

A X (@, YAE) = V' (Fee (e, B), B) .
By the same way, we have
b (0 By = 2((— )i oo (=), (=) o fo(—0)i*)
= A((= 1) (—ep)or, (= 1)'B),
because (—¢,)of=—f mod [¢,, 7,,+ ((S®)] by [4, Th. 6.7, 6.9]. q.e.d.
COROLLARY 3.5. Assume that n>mz2 and [¢,, E]1#0 for any nonzero
element £ e (S™). Then we have the split exact sequence:
0—H,,— &8"xS"— Z,+Z, — 0,
and the action of Z,+Z, on H,,, are given by
;- (% B) = (= D™ (= ep) oo, (—1)B).
Proor. It is clear, since G,,,={a;;}=Z,+Z, by the assumption. g.e.d.
ExAMPLE 3.6, Let n—1=m=2. Then, we have the exact sequence
00— Hypiy — EES™"xS™)y — G, iy — 0,
Where

Hm,m+1 = 7z2m+ I(Sm)/{[‘m’ '7m’7m+ 1]} +n2m+ 1(Sm+1)/{[‘m+ 15 lm+ 1]} s

Z,+Z,+Z, if m=3modd or m=26
Gm,m+1 =

Z,+Z, if m#3mod4 and m#2,6



74 Norichika SAwasmHITA

(nx is the generator of n,, (S*)). Moreover if m#3 mod4 and m+#2, 6, then
the above exact sequence is split with the action given by a;;-(a, p)=((—1)a,

(=17p).

Proor. By [5, p.232] and [6, Lemma 5.1], it is proved that [¢,, 1,]#0
if and only if m#3 mod4 and m#2, 6. Also (~—¢,)oa= —a mod [¢,,, Ty 2(S™]
by [4, Th. 6.7, 6.9]. These results, Theorem 3.4 and Corollary 3.5 show the
desired results. g.e.d.

§4. The group £(S? x.5") for n>3

In this section, we assume that n=>3.

LemmA 4.1. (i) The group G, , of 2.9) is

Gy, = {a;AO) | Eem(S?),i,je Z,},
and the multiplication is given by
a;;MOay ;y MEN) = a4 10+ g M(— 1D EHE).
(tiy The group H, , of (2.8) is
H,,=m,,,(S)+Z,.

Proor. It is well known that [¢,, £]=0 for éer,(S2?) (n=3). Therefore,
G, , is given as above by Theorem 2.6. It is known that

4.2) (=¢)e8=¢  for Cem(S?),
(cf. [12, p. 278]), and we have
a;;M8E)ap i M&) = iy j4 pM(= 1) EH L)

by Theorem 2.6 and Proposition 2.4. Since 7,,,(SM)=2Z,, (i) follows im-
mediately. g.e.d.

Now we have the next theorem by Theorem 3.2.
THEOREM 4.3. Let n=3. Then the exact sequence
0— H,,— &8?*x8") — G,,— 1

is split, where H, , and G, , are the groups in Lemma 4.1. The action of G,,
on H, , is given by

ayME) (a, B) = (=D a+EB, B)
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fO?‘ éEﬂ?n(Sz), aenn+2(sz)a ﬁenn+2(sn) = Z2'

Proor. Consider the Hopf map h:S3—S? and a map F:S?xS83-S5?
of type (¢, h), given by

hq) = qiq™',  F(p,q) =qpq~?,

where q € S3 is a quaternion of norm 1, pe S? is a pure quaternion of norm 1,
and i is the imaginary unit. Then, we can construct

Fy= Fo(;;x &): S2x §" — §2,
A& = (Fg py): 2% 8" — S2x S*,

for any ¢em,(S?), where &' en,(S3) satisfies h&'=¢. It is clear that F, is of
type (¢5, ). By using the equality

AP, x) = (E)p¢'(x)"t,x)  for peS? xeS",
we can show that 1 satisfies the assumptions of Theorem 3.4 as follows.
AENAUE)(p, x) = (£1(x)E5(x)p&a(x)~ &1 (%)~ 1, x)
= A&, +&)p, %),
HObi(p, x) = EWMP WLy (= (=) )
= by M&(—2,)P)(p, x)
= bjA(—ez)o&o(—2,))p,x) by (4.2).
Also, it is easy to see that
Fo(hx ¢3) = homoT,

where m: S3 x §3—- 83 is the multiplication of $3 and T: S3x S3—>S3x S3 is the
switching map. Therefore, for any a=ha’ e 7, ,(S?) and fem,,,(S?), we have

Fyo, ) = Fo(hx¢3)e (o, &)
= h(¢'B+a) = a+EB.
These show the desired results by Theorem 3.4. q.e.d.

§5. The group £(S3 x S*) for n=4

In this section, we study the case m=3.
For any & e m,(S3), we have [¢3, £]=0 and we can define maps
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E;: S3x 8" — S8, A(E): 83 xS"— S3IxS”

by Efx, y)=x&(y), AN, y)=(x&(y), y). By Theorem 2.6, we have the exact
sequence

(5.1) 0 — 1 3(83)+ 7,4 3(8™) 25 £(S3 xS 25G;, — 1,
where
G3,n = {a;A8) | em(S?),1,j€Z,} .
Since J(¢) is of type (¢35, &), we have
(5.2) @(biA) = ayA&)  for Lem(S?),
where b;; are the elements of (3.2).
THEOREM 5.3. Let n=4. Then we have
E(5% x 8" = {b,; AN (o, B)| €,y 5(53), BEmyi5(S7), L€ m(S?),
i,jeZy}.
The group structure of &(S3 x S*) is given as follows.
(1) A, BOA (22, B2) = Moy +03, By +B2),
(i) AEDMUE) = U +22),
(ili) bybyy = biivjijs boo = 1;
(iv) Ubos = boi A(—8),
(V) Abio = bioM—EA (@35%¢,0);
(vi) A Pbor = boiA'(—a, —(—¢,)°B),
(vii) A(a, Bbyo = byoA'(e, — ),
(vii)) A, B)AE) = UOA (@—&B, B).

Here, S3:n,(S3)—>n,.5(S®) is the suspension homomorphism. Also w; is a
generator of ng(S3)=Z,, given by

(54 ™(w3) = ¢,

where ¢: S3 x S3—S3 is the commutator map: ¢(p, q)=pqp~1q~*, and n: S® x
S3 (83 x 83)/(S3 Vv §3)=S5 is the collapsing map, (cf. e.g. [2, p. 173]).
To prove the theorem, we use the next two lemmas.
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LemMa 5.5. Let p,: S*xS"—>S83 and p,: S xS"—>S" be the projections.
Then we have

P1-¢ps = mM(@35%8)-€py- py = £p,-pr- M (@3S3E),
where m: S3 x S*— (83 x SM/(S3 v §*)=8"*3 is the collapsing map.
Proor. It is easy to see that
P1-&py-p1t-Epat = do(e3x0)
= @3ono(e3X§) = wz083&om,

by (5.4), and we have the first equality. Therefore we have the desired results,
since ¢ is homotopic to the map S3 x $3—§3 given by (p, )~ p~tq 1pg.

g.e.d.
LemMA 5.6. For the monomorphism A’ in (5.1), we have
(e, 0)f = ((po.f)-(anf), pof)
for any aem,,5(S?) and f: S3 x S*—S3 x S*,
Proor. The desired equality follows from
i (@,0) = pyram,  pA(x,0) = p,,
which are seen by the definition: A'(et, 0)=F (1 V (o, 0))< I. g.e.d.

REMARK. If n=5, we see easily by definition that
A'(a, B) = (py-am, p, + Bm)

where + is the sum in the cohomotopy group [S* x S», S*].
Now we are ready to prove Theorem 5.3.

Proor oF THEOREM 5.3. By (5.1) and (5.2), it is sufficient to prove the re-
lations (i)-(viii). (i)-(iii) are seen easily.

(iv)  AObor = (P1-&p2s P2)es x (— )
= (p1-(=£pa), (—en)op2) = bo A(—0).
(viii) OV (@, HAU=E) = V(AUE)(, B))
= A((p1'EP2s P2)o (@, B)) = A'(x+EB, B) .-
(v)  AObio = (P1-€ps; PN —t3%¢,)
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= ((=P1) P2, P2) = b1o((—¢p2)- p1s P2)
= b1o(p;-(—&py) m*(w3S3¢), p,) by Lemma 5.5
= b oA(0383¢, 0)X(—¢) by Lemma 5.6 and nl(—¢)=n
= b0 M= &M (5S3E,0) by (viii).
(Vi) boi A, B)boy = A'(bos (e, BY(—1)) = A'(—a, —(~en)f).
(vii) is similar. g.e.d.

COROLLARY 5.8. If 03.83: 7,(S3)—>m,.3(S?) is O-map, then the exact se-
quence (5.1) is split, where the multiplication of G5, is given in Theorem 3.4.

COROLLARY 5.9. Assume that there is an element £ e n,(S3) such that
20+ 8B+ w3 S #0  for any aem,,3(S?), Bem, 5(S").
Then the sequence (5.1) is not split.

Proor. It follows from Proposition 2.4 that (a,,A(£))2=1. On the other
hand, using the relations in Theorem 5.3, we have

(B10 A (2% B))* = b1 A(O)b1oA (2, — B)UEN (2, B) by (vii)
= A= (@35%, 04 (a, =P (x+EB, BYAE) by (v), (viii)
= XQa+Ef+w3S3E, 0) by (i), (viii), (i).

The last element is not zero by the assumption, and we have the corollary. q.e.d.
ExAMPLE 5.10. The next exact sequence is not split.
00— Zyy+2Z, — &(S3x 8% — Z,+Z,+Z, —> 0.
Proor. For the element #3 € n5(S?), we have
2a+n3f+ w3833 # 0 forany aemny(S3), feng(ST),

by [14, Prop. 5.3, 5.6, 5.9], and so the desired results by the above corollary.
q.e.d.

§6. The group &£(S" x.S")

Let GL(2, Z) be the group of integral 2 x 2 matrices having integral inverse
matrices, with the usual multiplication. Then, it is easy to see that there is an
isomorphism
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(6.1) x: GL2,Z2) — &(S*, v S")

given by
aby._ F((iya+ib) V (ijc+iyd))
X c d 1 2 1 2 ’

where i;: S"—S"V S" is the inclusion to the j-th factor, ¥ is the folding map, and
k € Z means the map of degree k.
The following theorem is proved essentially by P.J. Kahn [8, §2.3].1

THEOREM 6.2. The following sequence is exact:
0—H,,-*>(S"xS) —G,,—> 1,
where
H, = 73(S{Ln tal} + T2u(S{ Lt enl}

GL(2, Z) if n=1,3,17,

. - {(‘C’Z)eGL(z,Z),abEcdsOmodz} if nis odd and #1, 3,7,

10 01 -10 01 o
{i 0 1)’ i<10>= i( 01}, T 0)} if n is even.

Proor. By the same way as Theorem 2.6, it is sufficient to show that the
group G, , in the proof of Theorem 2.6 is isomorphic to the group G,, in
the theorem.

It follows immediately that

2( 5121 = [hatizh, e+ iyd]

= acliy, i;]+(ad+(—=1)"bc)liy, i, ]+ bd[i,, i5].

On the other hand, it is well-known that [¢,,¢,]=0 if n=1, 3, 7, and the order
of [¢,,¢,] is 2 if n is odd and n#1, 3, 7, and is infinite if n is even (cf. e.g. [7,
p- 336]). Therefore, we have the desired results by studying the conditions that
the last element is equal to [iy, iy]ee. q.e.d.

CoroLLARY 6.3. (P.J. Kahn [8, Th. 4]) If n is even, then the sequence
in Theorem 6.2 is split. Also the action of G, , on H,, is given by

1) It seems to the author that the consideration for the case n=3,7 is neglected and that

((1) }) of [8, p. 34] should be ((1) %)
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V0) @t =i (§ 75)Cued = (=t

In the rest of this section, assume that n=3, 7.
For any N=(n;;) e GL(2, Z), we define the element A(N) e £(S" x S") by

ANXp, ) = (p"1:q™ 2, p"21q"22)  for p,qeS*,

where the multiplication is the one of quaternions or Cayley numbers. Then
we have the following theorem.

THEOREM 6.4. Let n=3,7. Then
&(S"x 8™ = {A'(a, HAN) | &, B e 7,,(S™), N e GL(2, Z)},

and the multiplication is given as follows:

(i) X P, p) = L(a+o, B+ ),

(i) AN)(, B) = X(INI(ny 10+ 1:B), INI(na s+ n22B)AN)

(i) ANAM) = V(a,0,, a,0,)ANM),
a;=—|NM|(n;yn;ym,,my, +< nz“ >m11m12 +(n2‘2 ) My Myy)(i=1,2), where N=
(n;;), M=(m;;), and |N| means the determinant of N, and w, is a generator of
Tan(S")=Zy; or Zy,.

Before we prove this theorem, we show the next two lemmas.

LEMMA 6.5. amp,=pron  for aengS3), i=1, 2.

Proor. By the commutative diagram

S3x 83 (ZpD, §6x g3 X1, g3 %53 ¢, g3

I I

S9 S3a S6 @3 S3

we have an.ppan~t.p,~1 =(an, p)*¢ =0. g.e.d.
LeEMMA 6.6. r(mp,.-np,)=rmp,-rnp,- (—( 5 )mnw3n) .

Proor. This lemma follows from p,.p, =p,;-p,(—w;7) (Lemma 5.5) and
Lemma 6.5. q.e.d.

Proor oF THEOREM 6.4. We prove the theorem for n=3, and the theorem
for n=7 is proved by the same way.
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By Theorem 6.2, we have the exact sequence
0 — we(S3)+me(S?) 25 £(S3x S%) 2 GL(12,Z) —> 1.

We notice that A'(a, B)=(p;-an, p,-Br) for a, f € ng(S?), and we have the desired
results by Lemmas 6.5, 6.6. g.e.d.

§7. The group &£(S' xS”) for n=3

In the rest of this paper, we consider the groups &(S'xS") (n=2). For
these groups, we cannot use the methods in §2 since S! Vv S is not simply con-
nected.

By attaching i-cells (i=n+2) to a given CW-complex X, we obtain a CW-
complex X, which kills r-th homotopy groups of X for r>n:

(X)) =0 (r>n), ipn(X)>n(X,) (r=n),
(i,: X— X, is the inclusion).

LemmMmA 7.1. If X is an n-dimensional CW-complex. Then we have iso
morphisms

¢(X) ~ &(X,), ESIxX) = (S ' xXp41)-
Proor. It is easy to see that the‘ induced maps
in [ Xy Xl — [X,X,], i [X,X] — [X, X,]
are bijective by the elementary homotopy theory. Therefore
iwir. [X,, X,] —[X,X]
is bijective, and we have the first isomorphism.
It is obvious that S1x X,,, is obtained from S!'!x X by attaching i-cells

(i=n+3) and kills the r-th homotopy groups of St x X for r>n+1. Therefore,
we have the second isomorphism from the above result. g.e.d.

ReEMARK. The first isomorphism in the above lemma is shown in [1, Lemma
5.17 under the additional assumption that X is 1-connected.

Now, consider the case X=8" for n=3. Then, it is well known that X,
and X, are embeddable in the sequence of the induced fiberings

Q4 1 S E. P L K(Zn) L4
02 |

|

K(ZZs n+l) Xn+1 Xn K(ZZan+2)
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of the generator f' of H**%(Z,n;Z,)=Z, (cf. e.g. [9, p. 140]). Therefore, we
have the sequence of the induced fiberings

7.3) Q4 S'%xX,,,(=E)-2->8S'xX, L4
of f=f"op, such that p=¢, x p’, i=(%,i').
LemMA 7.4. The two induced maps
ix:[QA4,04] — [QA,E;], p*:[S'xX,,S'xX,]— [E; S'xX,]
are both bijective.
Proor. Since i’=p, i, we have
iy = Pyuiy: [QA, QA] 5 [QA,E[] P2, [QA, X, 4 4].

Using the homotopy exact sequence of the fibering (X, 4, p’s X,) in (7.2), we
see easily that iy is bijective. Also p,. is bijective since E;=S' x X, ;. There-
fore i, is bijective.

It is easy to see that p* is equal to

HY(S")+HY(K(Z, n)) =25 H'(S)+ HY(X,+1),
which is isomorphic. g.e.d.
By applying [10, Prop. 5.6] for fin (7.3),
LeEMMA 7.5. We have the exact sequence
i*10) X (ST X Xp4q) 22¥ 5 £(S X X,) X £(QA)

of homomorphisms, where i*: [S'x X, 1, QA]->[QA, QA] and i*~1(0) is a group
with an unusual multiplication @.
On this sequence, we have the following three lemmas.

LeMMA 7.6. Im(pxy)=86(S1xX,)=2,+2Z,.

Proor. It is clear that £(4)=&(QA)=1, since A=K(Z,,n+2). There-
fore fof ~ f for any & e £(S* x X,), and there is he £(S* x X,,, ;) such that poh~
Eop, ie., (pxy¥)(h)=(& 1). This shows the first equality. Since X,=K(Z,n)
we see that £(X,)=Z, and [S' A X,, X,]=0, and so the second equality by
[10, Example 5.10]. q.e.d.

Lemma 7.7. i*10)=Z,.

Proor. By using the Serre cohomology sequence, we have
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HYX,1152,) =Z;, H™'(X,41:2Z,)=0.

Therefore, we see that [S'x X, ., QAI=H"(X,11:2Z,)+H"" (X, 11;Z,)=2Z,,
and i*=(x, i")* is equal to 0. g.e.d.

LeMma 7.8. « is monomorphic.

Proor. By the results of J. W. Rutter [11, Cor. 1.3.2], Kerk is equal to
the image of the homomorphism 4: [S!x X, ., 2(S! x X,)]->[S! X X+, R4].
The left hand side is equal to HY(S! A(S! x X,y ))+H*(S* A(S! X X,+,))=0,
and so we have the lemma. g.e.d.

By the above results, we obtain the following

THEOREM 71.9. &(S' xS =Z,+Z,+Z, for n=3.

Proor. By Lemmas 7.1, 7.5-7.8, we have the exact sequence
0— 7, — &S 1 xS")—Z,+Z,—0.

Consider the elements b;;=(—¢;)! x(—¢,) € £(S! x S*). Then, by the definition
of the isomorphism &(S!x S")~&(S!xX,,,) in Lemma 7.1 and the epimor-
phism ¢: £(S'x X, ;)= (S x X,)=Z,+Z,, it is easy to see that the subgroup
{b;li,je Z,} = &(S* x S") is mapped isomorphically onto Z,+Z,. q.e.d.

§8. The groups &£(S! x 52) and £(S! x CP")

By the similar way in §7, we consider the groups £(S!x S2) and &£(S! x
CP™) (n=1) more generally, where CP* is the complex n-dimensional projective
space.

Let Y,,,, be the CW-complex obtained from CP”" by attaching i-cells (i=
2n+3) so that Y5, kills the r-th homotopy group of CP* for r>2n+1. Then
we have the following lemma by Lemma 7.1,

LemMa 8.1. E(SIXCP"y ~ &(S' %X Yyp41)-

It is well known that Y,,., is embeddable in the sequence of the induced
fiberings

QB L, Y,,., 2 K(Z,2) L K(Z, 2n+2)
(8.2) 1 I I
Y K B

of the generator f’ of H2"+2(K). Therefore, we have the sequence of the induced
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fiberings
(8.3) QB L, 8'xY 2,S1xK-L,B

of f=f'op, such that p=¢ xp’, i=(%,i’). Then, Lemma 7.4 holds similarly
for (8.3) and we have the following lemma by the similar way as Lemma 7.5.

LemMmA 8.4. We have the exact sequence
i*71(0) £, £(S1x Y) ~2X¥, &(S! x K) x £(QB)
of homomorphisms, where i*: [S! x Y, QB]—>[QB, QB] and i*~1(0) is a group

with a multiplication @.
In this lemma, we have the following three lemmas.

LeEmMA 8.5. By the natural projection &(S!x K)x &(QB)— &(St x K),
Im (@ x ) is isomorphic to

Imp =&8S'xK)=2Z,+Z,.

Proor. By the definition of @ xy in [10, p. 26], Im (¢ x ) is the set of
(h,e) e £(S* x K) x &(QB) such that the following diagram is homotopy com-
mutative for some h, € £(S* x Y):

QB L, 8S1xY 2 ,S'xK
(%) Js [ J
QB 1, 81xY-2,S'xK
Then, we have the right commutative square in the following diagram:
H2n+2(B) (_;_1 H?"1(QB) _;__, H2m2(S1x K)

(0 o . lh*

H2n+2(B) (_’_;_ H2"+1(QB) % H2n+2(S1 XK)

where 7 and 7, are the transgressions. Since the left square in (#x) is clearly
commutative and f*=1ot7!, we see that h*f*=f*e*. These show that

Im(pxy) = {(h,e)e (St x K)Xx EB)|foh = eof}.

Furthermore, for any h e £(S! x K), there is a unique element ¢ e £(B) such that
h*f*=f*¢*. Therefore we have Im (¢ x /) is isomorphic to Im ¢=¢&(S! x K),
which is Z, + Z, by the second equality of Lemma 7.6. g.e.d.

LemMa 8.6. i*1(0)=[S'xY,QB] = Z.

Proor. In the cohomology exact sequence
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[S! x K, QB] -* [S! x Y, @B] -*-, [2B, QB]

of the fibering (8.3), we see that i* =0 by the same way as Lemma 7.7. Also, the
multiplication @ of *~1(0)=Imp* in Lemma 8.4 coincides with the usual
multiplication +, by [10, Lemma 5.4 (ii)]. q.e.d.

LeEMMA 8.7. « in Lemma 8.4 is monomorphic.

Proor. By the results of J. W. Rutter [11, Cor. 1.3.2, Th. 1.4.3], Kerx
is equal to the image of

(@Qf)s: [S'x Y, (S x K)] — [S! x Y, QB].

Since B=K(Z,2n+2), Qf is homotopic to the constant map, and we have the
lemma. g.e.d.

THEOREM 8.8. Let n=1. Then we have the split exact sequence
0—Z %, &S xCPY—Z,+Z, —> 0,
where the action of Z,+Z, on Z is given by
(=D (=D))m=(-1)"*'m, for meZ i jeZ,.

Proor. By Lemmas 8.1-8.7, we have the above exact sequence. Consider
the elements b;;=(—¢;)'x(—c)/ € &(S* xCP")=¢&(S! xY), where —: is the
generator of £(CP")=Z,. It is easy to see that the subgroup Z,+Z,={b;|
i,jeZ,}=&(S' x CP") is mapped isomorphically onto Z,+Z, of the right hand
side. Therefore the above sequence is split.

To study the action, we consider the diagram

SIXY 4, SIxYXSIXY 1Xm , SIxYXK(Z, 2n+1) %, SIxY

lbu 1bu>‘bu lb”m lb”

SIxY 4, SIxYxSxY X, SIxYXK(Z,2n+1) £ S1xY,

where 4 is the diagonal map, k is the multiplication, and the compositions of the
maps in the horizontal sequences are equal to x(m) and x(m’) respectively by
the definition of x (cf. [10, (5.2)]). It is easy to see that the above diagram is
commutative for e=(—1)/*"1 and m'=(~1)*/m and we have the desired
results. g.e.d.
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