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Abstract. In this paper we study some comparative growth properties
of composite entire and meromorphic functions on the basis of their gen-
eralized relative order, generalized relative type and generalized relative
weak type with respect to another entire function.

1 Introduction

Let f be an entire function defined in the finite complex plane C. The max-
imum modulus function corresponding to entire f is defined as Mf (r) =
max {|f (z)| : |z| = r}. If f is non-constant then it has the following property:

Property (A) [2] A non-constant entire function f is said have the Property
(A) if for any σ > 1 and for all sufficiently large values of r, [Mf (r)]

2 ≤Mf (r
σ)

holds. For examples of functions with or without the Property (A), one may
see [2].
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For any two entire functions f and g, the ratio Mf(r)
Mg(r)

as r → ∞ is called the

growth of f with respect to g in terms of their maximum moduli. The order
(lower order) of an entire function f which is generally used in computational
purpose is defined in terms of the growth of f respect to the exp z function
which is as follows:

ρf = lim sup
r→∞

log logMf (r)

log logMexp z (r)
= lim sup

r→∞
log logMf (r)

log (r)(
λf = lim inf

r→∞ log logMf (r)

log logMexp z (r)
= lim inf

r→∞ log logMf (r)

log (r)

)
.

When f is meromorphic, Mf (r) cannot be defined as f is not analytic. In
this case one may define another function Tf (r) known as Nevanlinna’s Char-
acteristic function of f, playing the same role as maximum modulus function
in the following manner:

Tf (r) = Nf (r) +mf (r) ,

where the function Nf(r, a)
( −
Nf(r, a)

)
known as counting function of a-points

(distinct a-points) of meromorphic f is defined as

Nf (r, a) =

r∫
0

nf (t, a) − nf (0, a)

t
dt+

−
nf (0, a) log r

(
−
Nf (r, a) =

r∫
0

−
nf (t, a) −

−
nf (0, a)

t
dt+

−
nf (0, a) log r

)
,

moreover we denote by nf(r, a)
( −
nf (r, a)

)
the number of a-points (distinct

a-points) of f in |z| ≤ r and an ∞ -point is a pole of f. In many occasions

Nf (r,∞) and
−
Nf (r,∞) are denoted by Nf (r) and

−
Nf (r) respectively.

And the function mf (r,∞) alternatively denoted by mf (r) known as the
proximity function of f is defined as follows:

mf (r) =
1

2π

2π∫
0

log+
∣∣∣f(reiθ)∣∣∣dθ, where

log+ x = max (log x, 0) for all x > 0 .
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Also we may denote m
(
r, 1
f−a

)
by mf (r, a).

If f is entire function, then the Nevanlinna’s Characteristic function Tf (r)
of f is defined as

Tf (r) = mf (r) .

Further, if f is non-constant entire then Tf (r) is strictly increasing and con-
tinuous functions of r. Also its inverse T−1f : (Tf (0) ,∞)→ (0,∞) exist and is

such that lim
s→∞T−1f (s) =∞. Also the ratio Tf(r)

Tg(r)
as r→∞ is called the growth

of f with respect to g in terms of the Nevanlinna’s Characteristic functions of
the meromorphic functions f and g. Moreover in case of meromorphic func-
tions, the growth indicators such as order and lower order which are classical
in complex analysis are defined in terms of their growths with respect to the
exp z function as the following:

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞
log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)(
λf = lim inf

r→∞ log Tf (r)

log Texp z (r)
= lim inf

r→∞ log Tf (r)

log
(
r
π

) = lim inf
r→∞ log Tf (r)

log (r) +O(1)

)
.

Bernal [1], [2] introduced the relative order between two entire functions to
avoid comparing growth just with exp z. Extending the notion of relative order
as cited in the reference, Lahiri and Banerjee [9] introduced the definition
of relative order of a meromorphic functions with respect to another entire
function.

For entire and meromorphic functions, the notion of the growth indicators
of its such as generalized order, generalized type and generalized weak type are
classical in complex analysis and during the past decades, several researchers
have already been continued their studies in the area of comparative growth
properties of composite entire and meromorphic functions in different direc-
tions using the growth indicator such as generalized order, generalized type
and generalized weak type. But at that time, the concept of generalized rela-
tive order and consequently generalized relative type and generalized relative
weak type of entire and meromorphic function with respect to another entire
function which have been discussed in the next section was mostly unknown
to complex analysis and was not aware of the technical advantage given by
such notion which gives an idea to avoid comparing growth just with exp func-
tion to calculate generalized order, generalized type and generalized weak type
respectively. Therefore the growth of composite entire and meromorphic func-
tions can be studied on the basis of their generalized relative order, generalized
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relative type and generalized relative weak which has been investigated in this
paper.

2 Notation and preliminary remarks

We denote by C the set of all finite complex numbers. Let f be a meromorphic
function and g be an entire function defined on C. We use the standard nota-
tions and definitions of the theory of entire and meromorphic functions which
are available in [8] and [12]. Hence we do not explain those in details. In the
consequence we use the following notation:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, .... and log[0] x = x.

Now we just recall some definitions which will be needed in the sequel.

Definition 1 The order ρf and lower order λf of an entire function f are
defined as

ρf = lim sup
r→∞

log[2]Mf(r)

log r
and λf = lim inf

r→∞ log[2]Mf(r)

log r
.

When f is meromorphic then

ρf = lim sup
r→∞

log Tf (r)

log r
and λf = lim inf

r→∞ log Tf (r)

log r
.

In this connection Sato [10] define the generalized order ρ
[l]
f (respectively,

generalized lower order λ
[l]
f ) of an entire function f which is defined as

ρ
[l]
f = lim sup

r→∞
log[l]Mf (r)

log r

(
respectively λ

[l]
f = lim inf

r→∞ log[l]Mf (r)

log r

)
where l = 1, 2, 3 . . . .

For meromorphic f, the above definition reduces to

ρ
[l]
f = lim sup

r→∞
log[l−1] Tf (r)

log r

(
respectively λ

[l]
f = lim inf

r→∞ log[l−1] Tf (r)

log r

)
for any l ≥ 1.

These definitions extended the definitions of order ρf and lower order λf of
an entire or meromorphic function f which are classical in complex analysis for

integer l = 2 since these correspond to the particular case ρ
[2]
f = ρf (2, 1) = ρf

and λ
[2]
f = λf (2, 1) = λf.
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Definition 2 The type σf and lower type σf of an entire function f are de-
fined as

σf = lim sup
r→∞

logMf(r)

rρf
and σf = lim inf

r→∞ logMf(r)

rρf
, 0 < ρf <∞.

If f is meromorphic then

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞ Tf (r)

rρf
, 0 < ρf <∞.

Consequently the generalized type σ
[l]
f and generalized lower type σ

[l]
f of an

entire function f are defined as

σ
[l]
f = lim sup

r→∞
log[l−1]Mf(r)

rρ
[l]
f

and σ
[l]
f = lim inf

r→∞ log[l−1]Mf(r)

rρ
[l]
f

, 0 < ρ
[l]
f <∞

where l ≥ 1. If f is meromorphic then

σ
[l]
f = lim sup

r→∞
log[l−2] Tf(r)

rρ
[l]
f

and σ
[l]
f = lim inf

r→∞ log[l−2] Tf(r)

rρ
[l]
f

, 0 < ρ
[l]
f <∞

where l ≥ 1. Moreover, when l = 2 then σ
[2]
f and σ

[2]
f are correspondingly

denoted as σf and σf which are respectively known as type and lower type of
entire or meromorphic f.

Datta and Jha [6] introduced the definition of weak type of an entire function
of finite positive lower order in the following way:

Definition 3 [6] The weak type τf and the growth indicator τf of an entire
function f of finite positive lower order λf are defined by

τf = lim sup
r→∞

logMf(r)

rλf
and τf = lim inf

r→∞ logMf(r)

rλf
, 0 < λf <∞.

When f is meromorphic then

τf = lim sup
r→∞

Tf (r)

rλf
and τf = lim inf

r→∞ Tf (r)

rλf
, 0 < λf <∞.

Similarly, extending the notion of weak type as introduced by Datta and
Jha [6], one can define generalized weak type to determine the relative growth
of two entire functions having same non zero finite generalized lower order in
the following manner:
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Definition 4 The generalized weak type τ
[l]
f for l ≥ 1 of an entire function f

of finite positive generalized lower order λ
[l]
f are defined by

τ
[l]
f = lim inf

r→∞ log[l−1]Mf(r)

rλ
[l]
f

, 0 < λ
[l]
f <∞.

Also one may define the growth indicator τ
[l]
f of an entire function f in the

following way:

τ
[l]
f = lim sup

r→∞
log[l−1]Mf(r)

rλ
[l]
f

, 0 < λ
[l]
f <∞.

When f is meromorphic then

τ
[l]
f = lim inf

r→∞ log[l−2] Tf(r)

rλ
[l]
f

and τ
[l]
f = lim sup

r→∞
log[l−2] Tf(r)

rλ
[l]
f

, 0 < λ
[l]
f <∞.

If an entire function g is non-constant thenMg (r) and Tg (r) are both strictly
increasing and continuous function of r. Hence there exists inverse functions
M−1
g : (|f (0)| ,∞) → (0,∞) with lim

s→∞M−1
g (s) = ∞ and T−1g : (Tg (0) ,∞) →

(0,∞) with lim
s→∞T−1g (s) =∞ respectively.

Bernal [1], [2] introduced the definition of relative order of af an entire
function f with respect to an entire function g , denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 :Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
.

The definition coincides with the classical one [11] if g (z) = exp z.
Similarly, one can define the relative lower order of an entire function f with

respect to an entire function g denoted by λg (f) as follows:

λg (f) = lim inf
r→∞

logM−1
g Mf (r)

log r
.

Extending this notion, Lahiri and Banerjee [9] introduced the definition of
relative order of a meromorphic function f with respect to an entire function
g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (r
µ) for all sufficiently large r}

= lim sup
r→∞

log T−1g Tf (r)

log r
.
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The definition coincides with the classical one [9] if g (z) = exp z.
In the same way, one can define the relative lower order of a meromorphic

function f with respect to an entire g denoted by λg (f) in the following manner:

λg (f) = lim inf
r→∞

log T−1g Tf (r)

log r
.

Further, Banerjee and Jana [6] gave a more generalized concept of relative
order of a meromorphic function with respect to an entire function in the
following way:

Definition 5 [6] If l ≥ 1 is a positive integer, then the l- th generalized
relative order of a meromorphic function f with respect to an entire function

g, denoted by ρ
[l]
g (f) is defined by

ρ
[l]
g (f) = lim sup

r→∞
log[l] T−1g Tf (r)

log r
.

Likewise one can define the generalized relative lower order of a meromor-

phic function f with respect to an entire function g denoted by λ
[l]
g (f) as

λ
[l]
g (f) = lim inf

r→∞
log[l] T−1g Tf (r)

log r
.

In the case of meromorphic functions, it therefore seems reasonable to define
suitably the generalized relative type and generalized relative weak type of a
meromorphic function with respect to an entire function to determine the
relative growth of two meromorphic functions having same non zero finite
generalized relative order or generalized relative lower order with respect to
an entire function. Next we give such definitions of generalized relative type
and generalized relative weak type of a meromorphic function f with respect
to an entire function g which are as follows:

Definition 6 The generalized relative type σ
[l]
g (f) of a meromorphic function

f with respect to an entire function g are defined as

σ
[l]
g (f) = lim sup

r→∞
log[l−1] T−1g Tf (r)

rρ
[l]
g (f)

, where 0 < ρ
[[l]]
g (f) <∞.

Similarly, one can define the generalized lower relative type σg (f) in the
following way:

σ
[l]
g (f) = lim inf

r→∞
log[l−1] T−1g Tf (r)

rρ
[l]
g (f)

, where 0 < ρ
[l]
g (f) <∞.
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Definition 7 The generalized relative weak type τ
[l]
g (f) of a meromorphic

function f with respect to an entire function g with finite positive relative

lower order λ
[l]
g (f) is defined by

τ
[l]
g (f) = lim inf

r→∞
log[l−1] T−1g Tf (r)

rλ
[l]
g (f)

.

In a like manner, one can define the growth indicator τ
[l]
g (f) of a meromor-

phic function f with respect to an entire function g with finite positive relative

lower order λ
[l]
g (f) as

τ
[l]
g (f) = lim sup

r→∞
log[l−1] T−1g Tf (r)

rλ
[l]
g (f)

.

3 Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [3] Let f be meromorphic and g be entire then for all sufficiently
large values of r,

Tf◦g (r) 6 {1+ o(1)}
Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2 [4] Let f be meromorphic and g be entire and suppose that 0 < µ <
ρg ≤∞. Then for a sequence of values of r tending to infinity,

Tf◦g(r) ≥ Tf (exp (rµ)) .

Lemma 3 [7] Let f be an entire function which satisfy the Property (A), β >
0, δ > 1 and α > 2. Then

βTf (r) < Tf

(
αrδ
)
.

4 Main results

In this section we present the main results of the paper.

Theorem 1 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, σg < ∞ and h satisfy the Property (A) where

l > 1. Then

lim sup
log[l] T−1h Tf◦g (r)

log[l] T−1h Tf (exp rρg)
≤
σg · ρ[l]h (f)

λ
[l]
h (f)

.
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Proof. Let us suppose that α > 2.
Since T−1h (r) is an increasing function r, it follows from Lemma 1, Lemma
3 and the inequality Tg (r) ≤ logMg (r) {cf. [8]} that for all sufficiently large
values of r we have

T−1h Tf◦g (r) 6 T−1h [{1+ o(1)} Tf (Mg (r))]

i.e., T−1h Tf◦g (r) 6 α
[
T−1h Tf (Mg (r))

]δ
i.e., log[l] T−1h Tf◦g (r) 6 log[l] T−1h Tf (Mg (r)) +O(1) (1)

i.e.,
log[l] T−1h Tf◦g (r)

log[l] T−1h Tf (exp rρg)

≤
log[l] T−1h Tf (Mg (r)) +O(1)

log[l] T−1h Tf (exp rρg)
=

log[l] T−1h Tf (Mg (r)) +O(1)

logMg (r)
·

logMg (r)

rρg
· log exp rρg

log[l] T−1h Tf (exp rρg)
(2)

i.e., lim sup
r→∞

log[l] T−1h Tf◦g (r)

log[l] T−1h Tf (exp rρg)

≤ lim sup
r→∞

log[l] T−1h Tf (Mg (r)) +O(1)

logMg (r)
· lim sup
r→∞

logMg (r)

rρg
·

lim sup
r→∞

log exp rρg

log[l] T−1h Tf (exp rρg)

i.e., lim sup
r→∞

log[l] T−1h Tf◦g (r)

log[l] T−1h Tf (exp rρg)
≤ ρ[l]h (f) · σg ·

1

λ
[l]
h (f)

.

Thus the theorem is established. �

In the line of Theorem 1 the following theorem can be proved:

Theorem 2 Let f be a meromorphic function, g and h be any two entire

functions such that λ
[l]
h (g) > 0, ρ

[l]
h (f) < ∞, σg < ∞ and h satisfy the

Property (A) where l > 1. Then

lim sup
log[l] T−1h Tf◦g (r)

log[l] T−1h Tg (exp rρg)
≤
σg · ρ[l]h (f)

λ
[l]
h (g)

.
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Using the notion of lower type we may state the following two theorems
without proof because it can be carried out in the line of Theorem 1 and
Theorem 2 respectively.

Theorem 3 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, σg < ∞ and h satisfy the Property (A) where

l > 1. Then

lim inf
log[l] T−1h Tf◦g (r)

log[l] T−1h Tf (exp rρg)
≤
σg · ρ[l]h (f)

λ
[l]
h (f)

.

Theorem 4 Let f be a meromorphic function, g and h be any two entire

functions such that λ
[l]
h (g) > 0, ρ

[l]
h (f) < ∞, σg < ∞ and h satisfy the

Property (A) where l > 1. Then

lim inf
log[l] T−1h Tf◦g (r)

log[l] T−1h Tg (exp rρg)
≤
σg · ρ[l]h (f)

λ
[l]
h (g)

.

Using the concept of the growth indicators τg and τg of an entire function g,
we may state the subsequent four theorems without their proofs since those can
be carried out in the line of Theorem 1, Theorem 2, Theorem 3 and Theorem
4 respectively.

Theorem 5 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, τg < ∞ and h satisfy the Property (A) where

l > 1. Then

lim sup
log[l] T−1h Tf◦g (r)

log[l] T−1h Tf
(
exp rλg

) ≤
τg · ρ[l]h (f)

λ
[l]
h (f)

.

Theorem 6 Let f be a meromorphic function, g and h be any two entire

functions such that λ
[l]
h (g) > 0, ρ

[l]
h (f) <∞, τg <∞ and h satisfy the Property

(A) where l > 1. Then

lim sup
log[l] T−1h Tf◦g (r)

log[l] T−1h Tg
(
exp rλg

) ≤
τg · ρ[l]h (f)

λ
[l]
h (g)

.

Theorem 7 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, τg < ∞ and h satisfy the Property (A) where

l > 1. Then

lim inf
log[l] T−1h Tf◦g (r)

log[l] T−1h Tf
(
exp rλg

) ≤
τg · ρ[l]h (f)

λ
[l]
h (f)

.
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Theorem 8 Let f be a meromorphic function, g and h be any two entire

functions such that λ
[l]
h (g) > 0, ρ

[l]
h (f) <∞, τg <∞ and h satisfy the Property

(A) where l > 1. Then

lim inf
log[l] T−1h Tf◦g (r)

log[l] T−1h Tg
(
exp rλg

) ≤
τg · ρ[l]h (f)

λ
[l]
h (g)

.

Theorem 9 Let f be meromorphic and g, h be any two entire functions such

that (i) 0 < ρ
[l]
h (f) <∞, (ii) ρ[l]h (f) = ρg, (iii) σg <∞, (iv) 0 < σ

[l]
h (f) <∞

and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · σg
σ
[l]
h (f)

.

Proof. From (1), we get for all sufficiently large values of r that

log[l] T−1h Tf◦g (r) 6
(
ρ
[l]
h (f) + ε

)
logMg (r) +O(1). (3)

Using Definition 2 we obtain from (3) for all sufficiently large values of r that

log[l] T−1h Tf◦g (r) 6
(
ρ
[l]
h (f) + ε

)
(σg + ε) · rρg +O(1). (4)

Now in view of condition (ii) we obtain from (4) for all sufficiently large values
of r that

log[l] T−1h Tf◦g (r) 6
(
ρ
[l]
h (f) + ε

)
(σg + ε) · rρ

[l]
h (f) +O(1). (5)

Again in view of Definition 6 we get for a sequence of values of r tending to
infinity that

log[l−1] T−1h Tf (r) ≥
(
σ
[l]
h (f) − ε

)
rρ

[l]
h (f). (6)

Now from (5) and (6), it follows for a sequence of values of r tending to infinity
that

log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤

(
ρ
[l]
h (f) + ε

)
(σg + ε) · rρ

[l]
h (f) +O(1)(

σ
[l]
h (f) − ε

)
rρ

[l]
h (f)

.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · σg
σ
[l]
h (f)

.
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Hence the theorem follows. �

Using the notion of lower type and relative lower type, we may state the
following theorem without proof as it can be carried out in the line of Theo-
rem 9:

Theorem 10 Let f be meromorphic and g, h be any two entire functions such

that (i) 0 < ρ
[l]
h (f) <∞, (ii) ρ[l]h (f) = ρg, (iii) σg <∞, (iv) 0 < σ[l]h (f) <∞

and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · σg
σ
[l]
h (f)

.

Similarly using the notion of type and relative lower type one may state the
following two theorems without their proofs because those can also be carried
out in the line line of Theorem 9:

Theorem 11 Let f be meromorphic and g, h be any two entire functions

such that (i) 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, (ii) ρ[l]h (f) = ρg, (iii) σg < ∞,

(iv) 0 < σ
[l]
h (f) <∞ and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
λ
[l]
h (f) · σg
σ
[l]
h (f)

.

Theorem 12 Let f be meromorphic and g, h be any two entire functions such

that (i) 0 < ρ
[l]
h (f) <∞, (ii) ρ[l]h (f) = ρg, (iii) σg <∞, (iv) 0 < σ[l]h (f) <∞

and h satisfy the Property (A) where l > 1. Then

lim sup
r→∞

log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · σg
σ
[l]
h (f)

.

Similarly, using the concept of weak type and relative weak type, we may
state next four theorems without their proofs as those can be carried out in
the line of Theorem 9, Theorem 10, Theorem 11 and Theorem 12 respectively.

Theorem 13 Let f be meromorphic and g, h be any two entire functions

such that (i) 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, (ii) λ[l]h (f) = λg, (iii) τg < ∞, (iv)

0 < τ
[l]
h (f) <∞ and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[[l]]
h (f) · τg
τ
[l]
h (f)

.
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Theorem 14 Let f be meromorphic and g, h be any two entire functions

such that (i) 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, (ii) λ[l]h (f) = λg, (iii) τg < ∞,

(iv) 0 < τ
[l]
h (f) <∞ and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · τg
τ
[l]
h (f)

.

Theorem 15 Let f be meromorphic and g, h be any two entire functions such

that (i) 0 < λ
[l]
h (f) <∞, (ii) λ[l]h (f) = λg, (iii) τg <∞, (iv) 0 < τ[l]h (f) <∞

and h satisfy the Property (A) where l > 1. Then

lim inf
r→∞ log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
λ
[l]
h (f) · τg
τ
[l]
h (f)

.

Theorem 16 Let f be meromorphic and g, h be any two entire functions

such that (i) 0 < λ
[l]
h (f) ≤ ρ

[l]
h (f) < ∞, (ii) λ[l]h (f) = λg, (iii) τg < ∞,

(iv) 0 < τ
[l]
h (f) <∞ and h satisfy the Property (A) where l > 1. Then

lim sup
r→∞

log[l] T−1h Tf◦g (r)

log[l−1] T−1h Tf (r)
≤
ρ
[l]
h (f) · τg
τ
[l]
h (f)

.

Theorem 17 Let f be meromorphic g, h and l be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) ≤ σ

[m]
h (f ◦ g) < ∞, 0 < σ

[n]
l (f) ≤ σ

[n]
l (f) < ∞ and

ρ
[m]
h (f ◦ g) = ρ[n]l (f) where m and n any positive integers > 1. Then

σ
[m]
h (f ◦ g)
σ [n]l (f)

≤ lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

.

Proof. From the definition of σl (f) and σh (f ◦ g) , we have for arbitrary pos-
itive ε and for all sufficiently large values of r that

log[m−1] T−1h Tf◦g (r) >
(
σ
[m]
h (f ◦ g) − ε

)
rρ

[m]
h (f◦g) (7)

and
log[n−1] T−1l Tf (r) ≤

(
σ
[n]
l (f) + ε

)
rρ

[n]
l (f). (8)
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Now from (7), (8) and the condition ρ
[m]
h (f ◦ g) = ρ

[n]
l (f) , it follows for all

large values of r that,

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
>

(
σ
[m]
h (f ◦ g) − ε

)
(
σ
[n]
l (f) + ε

) .

As ε (> 0) is arbitrary , we obtain that

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
>
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (9)

Again for a sequence of values of r tending to infinity,

log[m−1] T−1h Tf◦g (r) ≤
(
σ
[m]
h (f ◦ g) + ε

)
rρ

[m]
h (f◦g) (10)

and for all sufficiently large values of r,,

log[n−1] T−1l Tf (r) >
(
σ
[n]
l (f) − ε

)
rρ

[n]
l (f). (11)

Combining the condition ρh (f ◦ g) = ρl (f) , (10) and (11) we get for a sequence
of values of r tending to infinity that

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤

(
σ
[m]
h (f ◦ g) + ε

)
(
σ
[n]
l (f) − ε

) .

Since ε (> 0) is arbitrary, it follows that

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (12)

Also for a sequence of values of r tending to infinity that

log[n−1] T−1l Tf (r) ≤
(
σ
[n]
l (f) + ε

)
rρ

[n]
l (f). (13)

Now from (7), (13) and the condition ρh (f ◦ g) = ρl (f) , we obtain for a
sequence of values of r tending to infinity that

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≥

(
σ
[m]
h (f ◦ g) − ε

)
(
σ
[n]
l (f) + ε

) .
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As ε (> 0) is arbitrary, we get from above that

lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≥
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (14)

Also for all sufficiently large values of r,,

log[n−1] T−1h Tf◦g (r) ≤
(
σ
[m]
h (f ◦ g) + ε

)
rρ

[m]
h (f◦g). (15)

As the condition ρh (f ◦ g) = ρl (f) , it follows from (11) and (15) for all suffi-
ciently large values of r that

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤

(
σ
[m]
h (f ◦ g) + ε

)
(
σ
[n]
l (f) − ε

) .

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (16)

Thus the theorem follows from (9), (12), (14) and (16). �

The following theorem can be proved in the line of Theorem 17 and so the
proof is omitted.

Theorem 18 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) ≤ σ

[m]
h (f ◦ g) < ∞, 0 < σ

[n]
k (g) ≤ σ

[n]
k (g) < ∞ and

ρ
[m]
h (f ◦ g) = ρ[n]k (g) where min {m,n} > 1. Then

σ
[m]
h (f ◦ g)
σ
[n]
k (g)

≤ lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

.

Theorem 19 Let f be meromorphic g, h and l be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) < ∞, 0 < σ

[n]
l (f) < ∞ and ρ

[m]
h (f ◦ g) = ρ

[n]
l (f)

where m and n are any positive integers with m > 1 and n > 1 respectively.
Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
.
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Proof. From the definition of σ
[n]
l (f) , we get for a sequence of values of r

tending to infinity that

log[n−1] T−1l Tf (r) >
(
σ
[n]
l (f) − ε

)
rρ

[n]
l (f). (17)

Now from (15), (17) and the condition ρ
[m]
h (f ◦ g) = ρ

[b]
l (f) , it follows for a

sequence of values of r tending to infinity that

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤

(
σ
[m]
h (f ◦ g) + ε

)
(
σ
[n]
l (f) − ε

) .

As ε (> 0) is arbitrary, we obtain that

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (18)

Again for a sequence of values of r tending to infinity,

log[m−1] T−1h Tf◦g (r) >
(
σ
[m]
h (f ◦ g) − ε

)
rρ

[m]
h (f◦g). (19)

So combining the condition ρh (f ◦ g) = ρl (f) , (8) and (19), we get for a
sequence of values of r tending to infinity that

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
>

(
σ
[m]
h (f ◦ g) − ε

)
(
σ
[n]
l (f) + ε

) .

Since ε (> 0) is arbitrary, it follows that

lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
>
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

. (20)

Thus the theorem follows from (18) and (20). �

The following theorem can be carried out in the line of Theorem 19 and
therefore we omit its proof.

Theorem 20 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) < ∞, 0 < σ

[n]
k (g) < ∞ and ρ

[m]
h (f ◦ g) = ρ

[n]
k (g)

where m and n are any positive integers > 1. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
≤
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
.
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The following theorem is a natural consequence of Theorem 17 and Theorem
19.

Theorem 21 Let f be meromorphic g, h and l be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) ≤ σ

[m]
h (f ◦ g) < ∞, 0 < σ

[n]
l (f) ≤ σ

[n]
l (f) < ∞ and

ρ
[m]
h (f ◦ g) = ρ[n]l (f) where m and n are any positive integers with m > 1 and
n > 1 respectively. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤ min

{
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

,
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

}

≤ max

{
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

,
σ
[m]
h (f ◦ g)
σ
[n]
l (f)

}
≤ lim sup

r→∞
log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
.

The proof is omitted.
Analogously one may state the following theorem without its proof as it is

also a natural consequence of Theorem 18 and Theorem 20.

Theorem 22 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < σ
[m]
h (f ◦ g) ≤ σ

[m]
h (f ◦ g) < ∞, 0 < σ

[n]
k (g) ≤ σ

[n]
k (g) < ∞ and

ρ
[m]
h (f ◦ g) = ρ[n]k (g) where m and n are any positive integers > 1. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
≤ min

{
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

,
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

}

≤ max

{
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

,
σ
[m]
h (f ◦ g)
σ
[n]
k (g)

}
≤ lim sup

r→∞
log[m−1] T−1h Tf◦g (r)

log[n−1] T−1k Tg (r)
.

In the same way , using the concept of relative weak type, we may state
next two theorems without their proofs as those can be carried out in the line
of Theorem 17 and Theorem 19 respectively.

Theorem 23 Let f be meromorphic g, h and l be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) ≤ τ

[m]
h (f ◦ g) < ∞, 0 < τ

[n]
l (f) ≤ τ

[n]
l (f) < ∞ and

λ
[m]
h (f ◦ g) = λ[n]l (f) where m and n any positive integers > 1. Then

τ
[m]
h (f ◦ g)
τ
[n]
l (f)

≤ lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

.
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Theorem 24 Let f be meromorphic g, h and l be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) < ∞, 0 < τ

[n]
l (f) < ∞ and λ

[m]
h (f ◦ g) = λ

[n]
l (f)

where m and n are any positive integers with m > 1 and n > 1 respectively.
Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
.

The following theorem is a natural consequence of Theorem 23 and Theorem
24:

Theorem 25 Let f be meromorphic g, h and l be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) ≤ τ

[m]
h (f ◦ g) < ∞, 0 < τ

[n]
l (f) ≤ τ

[n]
l (f) < ∞ and

λ
[m]
h (f ◦ g) = λ[n]l (f) where m and n any positive integers > 1. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
≤ min

{
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

,
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

}

≤ max

{
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

,
τ
[m]
h (f ◦ g)
τ
[n]
l (f)

}
≤ lim sup

r→∞
log[m−1] T−1h Tf◦g (r)

log[n−1] T−1l Tf (r)
.

The following two theorems can be proved in the line of Theorem 23 and
Theorem 24 respectively and therefore their proofs are omitted.

Theorem 26 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) ≤ τ

[m]
h (f ◦ g) < ∞, 0 < τ

[n]
k (g) ≤ τ

[n]
k (g) < ∞ and

λ
[m]
h (f ◦ g) = λ[n]k (g) where m and n are any positive integers > 1. Then

τ
[m]
h (f ◦ g)
τ
[n]
k (g)

≤ lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

.

Theorem 27 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) < ∞, 0 < τ

[n]
k (g) < ∞ and λ

[m]
h (f ◦ g) = λ

[n]
k (g)

where m and n any positive integers > 1. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
≤
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

≤ lim sup
r→∞

log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
.
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The following theorem is a natural consequence of Theorem 26 and Theorem
27.

Theorem 28 Let f be meromorphic, g, h and k be any three entire functions

such that 0 < τ
[m]
h (f ◦ g) ≤ τ

[m]
h (f ◦ g) < ∞, 0 < τ

[n]
k (g) ≤ τ

[n]
k (g) < ∞ and

λ
[m]
h (f ◦ g) = λ[n]k (g) where m and n are any positive integers > 1. Then

lim inf
r→∞ log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
≤ min

{
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

,
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

}

≤ max

{
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

,
τ
[m]
h (f ◦ g)
τ
[n]
k (g)

}
≤ lim sup

r→∞
log[m−1] T−1h Tf◦g (r)

log[m−1] T−1k Tg (r)
.

Theorem 29 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) ≤ ρ[l]h (f) < ρg ≤∞ and σ

[l]
h (f) <∞ where l > 1. Then

lim sup
r→∞

log[l] T−1h Tf◦g(r)

log[l−1] T−1h Tf (r)
≥
λ
[l]
h (f)

σ
[l]
h (f)

.

Proof. Since ρ
[l]
h (f) < ρg and T−1h (r) is a increasing function of r, we get from

Lemma 2 for a sequence of values of r tending to infinity that

log[l] T−1h Tf◦g(r) ≥ log[l] T−1h Tf (exp (rµ))

i.e., log[l] T−1h Tf◦g(r ≥
(
λ
[l]
h (f) − ε

)
· rµ

i.e., log[l] T−1h Tf◦g(r) ≥
(
λ
[l]
h (f) − ε

)
· rρ

[l]
h (f). (21)

Again in view of Definition 6, we get for all sufficiently large values of r that

log[l−1] T−1h Tf (r) ≤
(
σ
[l]
h (f) + ε

)
rρ

[l]
h (f). (22)

Now from (21) and (22), it follows for a sequence of values of r tending to
infinity that

log[l] T−1h Tf◦g(r)

log[l−1] T−1h Tf (r)
≥

(
λ
[l]
h (f) − ε

)
· rρ

[l]
h (f)(

σ
[l]
h (f) + ε

)
rρ

[l]
h (f)

.

Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[l] T−1h Tf◦g(r)

log[l−1] T−1h Tf (r)
≥
λ
[l]
h (f)

σ
[l]
h (f)

.
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Thus the theorem follows. �

Now we state the following theorem without its proof as it can be carried
out in the line of Theorem 29 and with the help of Definition 7:

Theorem 30 Let f be meromorphic, g and h be any two entire functions such

that 0 < λ
[l]
h (f) < ρg ≤∞ and τ

[l]
h (f) <∞ where l > 1. Then

lim sup
r→∞

log[l] T−1h Tf◦g(r)

log[l−1] T−1h Tf (r)
≥
λ
[l]
h (f)

τ
[l]
h (f)

.
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