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ON THE GROWTH OF SOLUTIONS OF /' + gf + hf = 0

SIMON HELLERSTEIN, JOSEPH MILES AND JOHN ROSSI

Abstract. Suppose g and h are entire functions with the order of h less

than the order of g . If the order of g does not exceed j , it is shown that

every (necessarily entire) nonconstant solution / of the differential equation

f" + gf + hf = 0 has infinite order. This result extends previous work of

Ozawa and Gundersen.

I. Introduction

Recently Ozawa [14] proved the following result:

Theorem A. Let g be a transcendental entire function of order p < \ and let

h be a polynomial. Then any nonconstant solution f of

(LI) f' + gf + hfi=0

has infinite order.

Here the order p(fi) and lower order p(fi) of an entire function / are

defined by

p(f)=nmlo*X°*M{r>f)    and   p(fi) = lim l0gl°fM^ » ,
logr l*yj>     r— logr

where M(r, f) = max|z|=r \f(z)\.

We extend Ozawa's result by proving

Theorem. // g and h are entire functions with p(h) < p(g) < \, then any
nonconstant solution of (I.I) has infinite order.

Gundersen [5, Theorem 6] has extended Theorem A to obtain the conclusion

of our theorem under the more restrictive hypothesis p(h) < p(g) < 5 . Thus

our contribution is to treat the case p(g) = \ . The main ingredient in the proof

when p(g) < i is the classical cosnp theorem. The case p(g) = \ seems to

be more delicate.

In §5 we remark that our conclusion also holds under the hypothesis p(h) <

PÍS)<\- F°r ease of exposition we treat in detail only the above theorem and
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694 SIMON HELLERSTEIN, JOSEPH MILES AND JOHN ROSSI

in §5 confine ourselves to highlighting the modifications of our proof necessary

to obtain the lower order result.

It is a simple consequence of the lemma on the logarithmic derivative that

any nonconstant solution of (1.1) has infinite order if p(h) > p(g). Our result

complements this fact for p(g) < \ .

If p(g) = p(h), the conclusion of our theorem is in general false. Indeed,

if p is any polynomial, then f = ep  solves (1.1) for arbitrary g with h =
i       ,   «n2 «

-p -iv) -gp ■
If p(h) < p(g) = 1, (1.1) may have nonconstant solutions of finite order.

Such an example is f" + ez f - f = 0, which has the solution f(z) = e~z - 1.

The possibility of nonconstant solutions of finite order of ( 1.1 ) remains open

in the case p(h) < p(g) with j < p(g) < 1.

We assume familiarity with the notation and fundamental results of Nevan-

linna theory. In addition to the Nevanlinna characteristic T(r, /), we will have

occasion to use the Ahlfors-Shimizu characteristic

Ur.n-f/AUlä,,
where A(t, f) is the average number of solutions of fi(z) = a in \z\ < t as a

varies over the Riemann sphere. In view of

\T0(r,fi)-T(r,fi)\ = O(l),        r^œ

(see [7, p. 13]), the two characteristics are interchangeable for many purposes.

Throughout this paper the order of / will be denoted by X, the order of g

by p, and the order of h by p . We will consistently choose parameters o ,

1 < / < 4, satisfying

(1.2) P <PX < P2< Pi<P< PA-

We will represent the counting functions n(r, 0, F) and N(r, 0, F) of the

zeros of an entire function F by n(r) and N(r) when it seems unnecessary to

specify the function.

II. Known results

Our proof depends on some results of cosKp type.- Before stating these

results, we recall the concepts of density and logarithmic density of subsets

of [1, oo). For E c [1, oo), define the linear measure of E by m(E) =

If" XEil)dt where xE is the characteristic function of E, and define the log-

arithmic measure of E by

mi(E) = J~Xjj9-dt.

The upper density and upper logarithmic density of E are defined by

-.-r     _m(£n[l,r]) ,    ,—-=-„     rr-m,(£n[l,r])
dens£ = lim —-, and   logdens£ = hm —L—¡-.

r^oo r - 1 r->oo log r
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The lower density and lower logarithmic density, densE and log dens E, are

defined similarly with lim sup replaced by lim inf. It is easy to verify [16, p.

1211

(2.1) 0 < dens£ < log densis < logdensis < densis < 1

for any E c [1, oo).

For entire g, let L(t, g) = min, . f \g(z)\. The method of Denjoy-Kjellberg

[12, pp. 193-196] shows for entire g with g(0) = 1 and for 0 < a < 1 that

there exist positive constants kx(a) and k2(a) suchthat

(2.2) j (log L(t, g) - (cos na) log M (t,g))-^

logMij^g}     ,, ,  fogM(4R,g)
> kx(a)--^-k2(a)-^-

when 0 < r < R.

If p(g) < p(g) < ^ , let p3 and a satisfy p(g) < p3 < a < p(g) <

¡¿. Choose rn -> oo with Rn > rn satisfying ran = o(logM(rn, g)) and

logM(ARn , g) = o(Ran) to conclude

^ logL(t,g)I f+a
dt

as «-»oo. Thus there exists sn —> oo with

(2.3) logL(sn,g)>spf.

If p(g) = p(g) < j and p} < p(g), the classical cosnp theorem (contained

in (2.2)) yields sn ->oo satisfying (2.3). In both of the above cases results of

Barry [1, p. 294 and 2, Theorem 4] also imply the existence of unbounded sn

satisfying (2.3).

If /?3 < p(g) = p(g) = j , then either there exists ^-»oo satisfying

(2.4) log L(sn , g) > e log M(sn , g)

for some e > 0 and hence also satisfying (2.3), or

(2.5) logL(r, g) = o(logM(r,g)).

In this final case, namely p(g) = p(g) = j with g satisfying (2.5), g is

extremal for the cos np theorem. Such functions were studied extensively in

[4]. A portion of Theorem 8.1 of [4], when specialized to the case p = j,

becomes

Theorem B. Suppose g is an entire function of order j and satisfies (2.5).

There exists a set G of logarithmic density 1, a set H of density 0, a real-

valued function <p(r), and a positive function AAA?(r) varying slowly in the sense

that

(2.6) lim ^1 = 1
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for all a > 0, such that for r e G - H

(2.7) log\g(rel{9+v{r)))\ = (cos(tp/2) + o(l))rx/2A7(r),        r -» oo,

uniformly for tp e [-it, n].

By (2.1) we note that G* = G - H has logarithmic density 1. For p3 < i¡,

we conclude from (2.6), (2.7), and the fact that G* has logarithmic density 1

that

(2.8) 5f(r)rx,2-p> -> oo

as r-»oc. Defining

(2.9) Kr = {6e[0, 2»] : log|^(re/e)| < r>3},

we conclude from (2.7) and (2.8) that

(2.10) m(Kf)-+0,        reG*,        r -» oo.

In summary, if /?(g) < \ then for all />3 < p(g) we either have sn —► oo

satisfying (2.3), or we have (2.10) for some set G* of logarithmic density 1

where Kr is defined in (2.9).

III. Preliminaries

Our proof depends heavily on the behavior of the logarithmic derivative of

an entire function. For entire F we consider the differentiated Poisson-Jensen

representation where {a } denotes the zeros of F and where \z\ = r < R:

(3.1)
zF'(z)       1    f2\    ._._ ,>..    2zRe*      ,

nfe/Ar-s  *2-v

+  E   (—+ t5¿-'
r/e^<r\Z-%       ^ ~%Z.

+ E U-   v  ^

= JF1(z) + i=-2(z) + F3(z) + JF4(z).

For future use we collect the following observations. It is elementary that

re'6     ,      ârew    \      d _R(reie -a)

re1

>2      -Since w = R(z - a)/(R  - az) maps \z\ = r onto a circle, we conclude that if

Id < r then

W —     lb
re are

(3.3) Re   —-+ —-jg    > 0
\re'e-a     R2-are'e
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and

(3.4)
1    f2n

T-        Re
2n J0

re

2" jo

Trivially if \a\ < r/e, then

rei6

+
are

rew-a     R2-arei6
d6= 1.

(3.5)
ire

18
+

re
id

a     R2/a - rew
<-r <4.

For r < \a\ < R it follows from (3.2) that

(3.6)
1    f2n\

T- /      Re2n J0

re

re
id +

are
jo

a     R2- are16
d6< 1.

Since w = z/(z - a) maps the circle \z\ = \a\ to the line Reyj = \, for

r < \a\ < R we have that

(3.7) Re
re re

¡8

re a     RA/ä - re1

1 r

<2 + R^r-

Finally we notice from (3.1), (3.3), (3.4), and (3.6) with R = 3r that for

r > rn

(3
1    f2n

2n J0
Rere

T?11        Í8 \¡e F (re   )

F(rew)
d6

< 3T(R,F) + n(R,0,F) + 0(1) < AT(eR, F) = 4T(3er, F).

We now prove a sequence of lemmas. The conclusion of Lemma 1 is imme-

diate from Ahlfors's covering surface theory (see [7, Theorem 5.2]). We include

an elementary proof for completeness.

Lemma 1. For nonconstant entire f, let

9ir)
2tt

¡•2n

/     n'r,
Jo

e'a, f) da

be the mean covering number of the unit circle under the map f restricted to

{z : \z\ < r). There exists a set Ex with m¡(Ex) < oo such that

tp(r)
lim = 1.

Proof. The result is trivial for polynomials, and consequently we restrict our

attention to transcendental /. In this case A(r, f) is strictly increasing, un-

bounded, and continuous. Clearly <p(r) is nondecreasing and, by Cartan's iden-

tity [7, p. 8],

(3.9) r^idt-f
Jo     t Jo

rA(t,f)
dt\ = 0(1), CO.
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For e > 0, define tn by requiring A(tn , f) = ( 1 + e)" for « = 0, 1, 2, ... ,

and let /„ = (*„,/„+,). Let

K = \Jiiln. tH exp(l + e)-n/2) U (tn+x exp(-(l + e)-"/2), tn+x)).
n

Evidently mfE*) < oo .

Suppose for some t' e In- E* that tp(t') < (1 - e)2A(t', f). For tn < t < t'

we have

tp(t) < <p(t') < (1 - e)2A(t , fi)< (1 - e)A(tn, f) < (1 - e)A(t,f).

Thus

(3.10) f'^^ldt-f'^ldt
« n

> ey" diliü ¿, > Ci4(/n, /}i0g(í7íB) > e(l + e)"(l + «)■K/2

^'      J      r-*
where in the last step we have used t   $ Ex .   Clearly (3.9) and (3.10) are

incompatible, implying

r-=^¿  A(r, fi)
r$E\

A reversal of the roles of the nondecreasing functions tp(r) and A(r, fi) now

yields the result.

From the argument principle it follows for entire / that

1    f2n   ,       fe    n A 1    [ o      ie fifre16)   ,a
— /     «r,<?   ,fi)da = —\   Rere   Jf   J d6,
2n Jo 2jt yÄf /(ri?'0)

where

y9r = {öe[0,2^]:|/(^,e)|>l}.

In conjunction with Lemma 1, we deduce

for some set Ex with m¡(Ex) < oc .

Lemma 2. Suppose f is an entire function of order X < oo.    Let  n(r) =

n(r, 0, /) and suppose «(1) > 1. For K > 1, let

(3.12) £2(tf) = {r > e : n(r) > Kn(r/e)}.

Then

(3.13) logdens£2(#) < 4A/logÄT.
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Proof. For « = 0, 1, 2, ... , let rn = e" and In = [rn ,rn+x). For m > 2, let

Jm = {js[l,m]:n(rj)>VKn(rj_x)}

and

Lm = {je[l,m-l]:IjDE2(K)¿0}.

Denote the number of elements of Jm and Lm by am and ßm respectively.

Evidently n(rj > KaJ2. Hence if A' > X then

<*m  ;   21og«(rm)    c   2/

m      (log AT) log rm     logic"

for m > m0(X').

We note that if j e Lm, then either j e Jm or j + 1 e Jm . It follows that

ßm < 2am . Thus

(3.14) — <Afv       ' m      logK

for large m.   We deduce (3.13) from (3.14) and the fact that each In has

logarithmic measure 1.

Lemma 3. Let f be entire of order X, 0 < X < oo. For K > 1, let

EfK) = {r>l:A(r,f)/T0(r,fi)>KX}.

Then ÎôgdërîsEfK) < l/K.

Proof. For r > 1, let EfK, r) = EfK) n [1, r]. Then

f d_¿<±f A(t,fi)  dt
JE}(K,r)   t Kk Je¿K,t) tToit, fi)

±r Ajt,f)    k
KXjx   tTJt,fi)Ul KX
J_ ¡r A(t,f)  dt=logTQ(r,f)-logT0(l,fi)

'o

Thus
mml(EfK,r))<mlogT0(r,fi)=l_
r—oo        logr r—oo    KXlogr        K'

proving the lemma.

Lemma 4. Suppose f is entire of order X<X'<oc. If px>0, there exists a

set E(px) c [1, oo) satisfying

(3.15) m(E(px)n[r/e,er))<2/e-r'1,       r>rfX'),

and such that if \z\ = r £ E(px), then

I/'(*)'
(3.16) < r2"e2^' ,        r > rQ(X').

fiiz

In particular, E(px) has logarithmic density 0.
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Proof. Let A(a, S) = {z : \z - a\ < 3} and let [aß) denote the zeros of /.

Define

B = \jA(aM,exp(-(3\afi\)^)).
ß

Let

E\Pl) = {t>l:Bn{z:\z\ = t}¿0}.

Evidently

(3.17) m(E*(px)n[r/e,er])<n(3r)e~rPl </e~rPl ,        r > rQ(X').

For r sf E*(px), we apply (3.1) with F = fi and R = 3r to obtain for \z\ = r

< 3T(3r, f) + 2rn(3r)e{9rf' +0(1),

implying

„    A   (9r)"i ,,/. ,    „*,      ,
<r  f  '   ,        r>r0(X),  r $ E (px).

Applying the same argument to f , we obtain a set E** (px ) satisfying (3.17)

and satisfying (3.18) with / replaced by f . We obtain the required E(px) by

setting E(px) = E*(pf) l)E**(px). Evidently

m^Onlrle.erVs^Of^-^Kom,       r^ oo.

Since m¡([r/e, er]) = 2, we deduce the logarithmic density of E(px) is 0.

Lemma 5. Let fi be an entire function of finite order X > 0. If e > 0, there

exists c(e) > 0 and a set Efe) c [1, oo) with lower logarithmic density at least

2c(e) such that for all r e Efe), there exists h = hr > 0 such that if R = re ,

then

(3.19) T0(R',f)<h(e + e)A(r,f)

and for all K > KQ(e),

(3.20) TQ(R',fi)<h2KX(e + e)A(r,f).

Proof. Our proof depends on growth lemmas developed in [6 and 10] and later

extended in [9 and 8], For a previous application of these growth lemmas to

the present context, see [13, pp. 386-387]. Set tp(x) = T0(ex , fi) and note that

tp'(x) = A(ex , fi). Let

h = tp(x)/tp'(x) = T0(e\fi)/A(ex,fi).

Applying Lemmas 1 and 6 of [6], we conclude there exists a set E^(e) of lower

density at least 3c(s) for some c(e) > 0 such that

(3.21) T0(ex+h,fi)<h(e + e)A(ex,f),        x e E*5(e).

zfi'jz)

m

(3.18)
/(*)

m
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ON THE GROWTH OF SOLUTIONS OF f" + gf + hf = 0 701

(See also [13, p. 387].) For K > l/c(e), we apply Lemma 3 to conclude on

a set E$*(e) of lower density at least 2c(e) that in addition to (3.21) we also

have h = TQ(ex, fi)/A(ex, fi) > l/KX and thus

(3.22) T0(ex+h,fi)<h2KX(e + e)A(ex,f).

Writing r = ex and R' = reh, we obtain (3.19) and (3.20) from (3.21) and

(3.22) for a set Efe) of r-values of lower logarithmic density at least 2c(e).

Lemma 6. Suppose g is an entire function of order p e (0, oo) and suppose

0 < p2 < p3 < p < pA < oo. Suppose logL(s, g) > sP3 where L(s, g) =

mm|z|=i \siz)\ ■ For s < r <2s, let

(3.23) Cr = {6 € [0, 2n] : log\g(reW)\ < r'2}.

For s sufficiently large we have

(3.24) m(Cr) < s'

Proof. For 6 e Cr and s > s0 we have

^-Pi-\r-s).

ph
<s Pi

Thus

(3.25)

/2<

Is   \àt
log|g(^'e)| dt Re te

-I'M

-  Is    ~t Jo

Rete
i8g'(teie)

i8g'(tew)

Rete

Rete

CrJs

«/.      Ws
¡eg(te  )

gitew)

ig'ite1

gitew)

dddt

gite'°)

dtdd

dt.

gite'6)
dddt

f dt     sp*~
<SnT(3er,g)J   ^k'-^-^-s S> 5n

where we have applied (3.8) with g = F . We deduce (3.24) immediately from

(3.25).

IV. Proof of the theorem

We presume a nonconstant entire / of finite order X < X' satisfies (1.1) and

seek a contradiction. We choose parameters p}■, 1 < j < 4, satisfying (1.2).

By the final remark of §2, we may consider two cases:

(I) there are arbitrarily large s satisfying

(4.1) log\g(se
i6. >A 0 < 6 < 2n,

or
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(II) there exists G* c [1, oo) with logarithmic density 1 such that

m(Kr) = m{6 e [0, 2n] : log|s(ré>'e)| < r"3} = o(l)

as r tends to infinity through values in G*.

We first consider Case I. For large 5  satisfying (4.1), we apply (3.15) to

obtain

(4.2) re(s,s + 3sX'e~sl,1)-E(px).

Defining Cr as in (3.23), we conclude from (3.24) that

(4.3) m(Cr)<3sUpi~Pi~Xe~sl,\

From (1.1) we have

(44) fjz)=    h(z) + fi"(z)/fi(z)
fiz) giz)

From (1.2), (3.16), (3.23), (4.2), and (4.4) it follows that there exists an un-

bounded set H for which 6 ^ Cr implies

l/V")l
(4.5)

fire10)

rp>   ,     v!   2(9^1
e    + r   e K

e

We now estimate

<-Tj-= o(l),        r-+oc,reH.

2nJc

rl ,       i6s\ +

Rer^^Ul    dO
le, V firelb

from above for r G H by appealing to (3.1) with F = fi and R = 3r. Letting

f.,  1 < j < 4, bear the same relationship to / as do F ,  1 < j < 4, to F in

(3.1), we have

(4.6)       ¿| \fx(re'6)\d6<(3T(3r,f) + 0(l))m(Cr) = o(l),

r —* oo, r G H,

by (4.2) and (4.3).
If / has no zeros, we conclude from (4.5) and (4.6) that the total variation of

arg f(re'e) on [0, 2>r] is o(l). Since / is nonconstant, this is incompatible

with the Casorati-Weierstrass theorem and the argument principle, providing

the desired contradiction.

If / does have zeros, we conclude from (3.5) and (4.3) for r e H that

(4.7) ¿| \Ref2(re'6)\dd < ^n(r/e)m(Cr) = o(l),

From (3.3) and (3.4) we have

(4.8) ¿ J (Refifre'e))+ dd < n(r) - n(r/e).

CO.
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From (3.7) and (4.3) we conclude that for r e H

(4.9)   ¿ Jc (ReffreW))+d6 < ¿(«(3r) - n(r))m(Cr) = o(l),

Combining (4.5), (4.6), (4.7), (4.8), and (4.9), we obtain

(4.10)

703

r —»• oo.

2n

r2n

Jo
Rere >/(et (re

J8s

fi(relb
d6<n(r)-n(r/e) + o(l)

< n(r) - I + o(l),        r>r0,reH.

Since

(4.11) ¿/><"*S-=»<'>fire10)

by the argument principle, (4.10) provides the required contradiction.

We now consider Case II. Suppose e > 0. Applying Lemma 1, Lemma 4,

and Lemma 5, we conclude there exists a set E c [1, oo) such that

(4.12)

(4.13)

(4.14)

and

(4.15)

E n Ex = 0,

EC)E(px) = 0,

Ec(G*nE5(e)),

log dens£ > c(e).

By (4.13) for large r e E we have as in (4.5) for 6 £ Kr

(4.16)
fifre")
firew)

/'+r2A'eW
<-7i-= 0(1) r -* oo.

We choose K > 1 so large that (3.19) and (3.20) hold for r e E and estimate

,*/Ve)V
2rc Jk

Rere
fire'")

d6

using (3.1) with F = fi and R = re '   where R' = re   in Lemma 5. We have

¡Os.
,*/2

\fx(re'°)\<(4T(R,f) + 0(l))

lTT^RAffi)

(eh'2-l)2

< HKX(e + e)A(r,f)
n'

since re Efe). Consequently

(4.17) ¿/ \fix(re,6)\dd = o(A(r,f)),
-n JK

r e E,  r -> oo.
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by (2.10) and (4.14). If / has no zeros, the combination of (3.11), (4.16), and

(4.17) provides the desired contradiction.

If / does have zeros, we may presume «(1,0,/) = «(1) > 1. Applying

Lemma 2, we may choose K > 1 so large that in addition to (4.12), (4.13),

(4.14), and (4.15), E also satisfies

(4.18) EnE2(K) = 0.

We conclude from (2.10) and (3.5) that

(4.19) ±^\Ref2(re,6)\d6

4
<—n(r/e)m(Kr) = o(n(r/e)),        reE,  r — oo.

From (3.3) and (3.4) we have

(4.20) ¿ J | Reffre'e)\ dB < n(r) - n(r/e).

From (3.7), (3.19), and (3.20) we conclude

(4.21) ±- f (Refifre'8))+d6
2rc Jk,

<^(n(R)-n(r))^- + -^m(Kr)

n(R) (1      2\     ^^N(R')fl      2\     ,„,
<^{2 + h)miKr^^r{2 + h)miK')

- T{Rnh f) {l + l) m{Kr) = °{A{r' f)h        reE,r^œ.

We conclude from (3.12), (4.17), (4.18), (4.19), (4.20), :nd (4.21) that

(4.22) ±r Uzre'°f^p-)+d6
2n Jo     { fi(re'e)j

<«(/•)- n(r/e) + o(A(r, /) + n(r/e))

<(l+o(l)-l/K)n(r) + o(A(r,fi)),        reE,  r - oo.

The combination of (3.11) with (4.22) is incompatible with (4.11), providing

the desired contradiction.

V. Concluding remarks

The conclusion of our theorem also holds under the hypothesis p(h) <

Pig) < 3 • For /?3 < p(g), we first establish as before that either (2.3) holds

for some sequence sn —> oo or (2.10) holds for a set G* of upper logarithmic

density 1. If p(g) < \ , we conclude from Kjellberg's lower order extension [12]

of the cosnp theorem (essentially (2.2)) that for each /?3 < p(g) there exists

sn —> oc satisfying (2.3). Thus we suppose p(g) = \ .  Either (2.4) holds for
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some sn -* oo and hence (2.3) also holds, or alternatively (2.5) holds. By the

remarks following Theorem 8.1 in [4, p. 283], (2.5) implies the set Kr defined

in (2.9) satisfies (2.10) for all r in some set G* of upper logarithmic density

1. (We note in this case (2.8) holds as r —► oo through values in (7* by (2.7)

and the fact that pig) = j.)

The proof proceeds from this point as before with only the trivial modifica-

tion that logarithmic density is replaced by upper logarithmic density. It is also

necessary to observe, before applying Lemma 6, that we may presume g to be

of finite order. It follows from the elements of Nevanlinna theory that (1.1)

cannot have nonconstant solutions of finite order if p(g) = oo and p(h) < oo.

Added in proof. Recently Rossi [15] considered the differential equation

(5.1) w" + Aw = 0,

where A is entire of order p(A) < 1. If wx and w2 are linearly independent

solutions of (5.1) and E = wxw2, then in [15] it is shown using harmonic

measure estimates that the exponent of convergence X(E) of the zero set of

E is infinite if p(A) < \. We indicate a second proof of this fact using the

techniques of this paper.

By differentiating (5.1), it can be verified directly that E satisfies

(5.2) É" + AAÉ + 2A'E = 0.

(See also [11, Example 9, p. 395].) We suppose by way of contradiction that

X(E) < oo. We first conclude the order of E is finite, since it follows from

elementary considerations [15, equation (2.3)] that

T(r,E) = N(r,l/E) + \T(r,A) + 0(logrT(r,E)),        r^oo,  rfG,

Setting F = E4A2, we observe that F has finite order and from (5.2) that

for some set G of finite measure

that I

(5.3) F'/F = -£J£.

A contradiction can now be obtained by repeating with no essential modification

our argument in §4 with (4.4) replaced by (5.3).
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