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ON THE GROWTH ORDER OF AN ALGEBROID FUNCTION
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Abstract. For an algebroid function in the unit disk of finite lower order with a defi-
cient value, we can estimate its growth order in terms of the convergence exponent of the points
of the deficient value and other distinct values not lying on a radial system and the maximal
difference of the arguments of adjacent rays.

1. Introduction and main results. We assume that the reader is familiar with the
fundamental results and standard notations of the Nevanlinna theory in the unit disk Δ =
{z; |z| < 1} and in the complex plane C (see [4, 9, 13, 17]). A value a on the extended
complex plane Ĉ = C ∪ {∞} is called a radially distributed value of a transcendental mero-
morphic function if most of points at which the value is assumed distribute closely along a
finite number of rays from the origin. Many people have taken into account how the growth
of a meromorphic function could be affected by distribution of the arguments of its value
a-points in the complex plane.

In 1955, Edrei [3] proved the following theorem.

THEOREM A ([3]). Let f (z) be a meromorphic function in C and such that the roots
of the three equations

f (z) = 0 , f (z) = ∞ , f (l)(z) = 1 (l ≥ 0, f (0) ≡ f )

are distributed on the rays

reiω1, reiω2 , . . . , reiωq (r ≥ 0, 0 ≤ ω1 < ω2 < · · · < ωq < 2π) .

Denote by δ(a, f (l)) the deficiency of the value a of the function f (l), and assume δ(0, f ) +
δ(1, f (l)) + δ(∞, f ) > 0. Then the order λ(f ) of f (z) is necessarily finite and

λ(f ) ≤ β = sup
1≤i≤q

{π/(ωi+1 − ωi)} (ωq+1 = 2π + ω1) .

In 1993, Wu [10] used the Nevanlinna theory of meromorphic functions in angular do-
mains to study this problem and obtained the following theorem.
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THEOREM B ([10]). Let f (z) be a meromorphic function of finite lower order μ in
C. Suppose that arg z = θj (j = 1, 2, . . . , q; 1 ≤ q < ∞; 0 ≤ θ1 < θ2 < · · · < θq <

2π, θq+1 = θ1 + 2π) are q rays in C, such that for any ε > 0 and x = 0,∞, we have

lim sup
r→∞

log n(r,∪q

j=1Ω(θj + ε, θj+1 − ε), f = x)

log r
≤ ρ < ∞ ,

where ρ is a positive number, Ω(θj + ε, θj+1 − ε) = {z; θj + ε < arg z < θj+1 − ε},
n(r,X, f = x) denotes the number of the roots of f (z) = x in the region X ∩ {|z| ≤ r}(X ⊂
C), counting multiplicities. If f (l) has a finite and nonzero deficient value a, then the order of
f (z) satisfies

λ(f ) ≤ max
(π

ω
, ρ

)
,

where ω = min1≤j≤q(θj+1 − θj ).

In 2003, Zheng [19] gave a simple and elementary way to study the growth of transcen-
dental meromorphic functions in terms of their orders when they and their derivatives have
radially distributed values and proved the following theorem.

THEOREM C ([19]). Let f (z) be a transcendental meromorphic function of finite
lower order μ in C such that for some a ∈ Ĉ and an integer p ≥ 0, δ = δ(a, f (p)) > 0. If
for q pair {αj , βj } of real numbers satisfying

−π ≤ α1 < β1 < α2 < β2 < · · · < αq < βq ≤ π

and an integer k > 0, we have

lim sup
r→∞

log[n(r, Y, f = 0) + n(r, Y, f (k) = 1)]
log r

≤ ρ ,

for Y = ⋃q
j=1{z; αj ≤ arg z ≤ βj } and

q∑
j=1

(αj+1 − βj ) <
4

β
arcsin

√
δ

2
, αq+1 = α1 + 2π ,

where β = max{ρ,ω,μ}, ω = max1≤j≤q{π/(βj − αj )}, then λ(f ) ≤ max{ω, ρ}.
In 2006, Chang [1] used another method to study the radially distributed values of mero-

morphic functions and obtained the following theorem.

THEOREM D ([1]). Let f (z) be a meromorphic function in C of finite lower order
with δ(0, f )+ δ(∞, f ) > 0. Suppose that f has no direction of Marty-type except L : arg z =
θj (j = 1, 2, . . . , q; 0 ≤ θ1 < θ2 < · · · < θq < 2π). Then the order of f satisfies

λ(f ) ≤ π

ω
,

where ω = min1≤j≤q(θj+1 − θj ).

The definition of a Marty direction of a meromorphic function can be seen in [1]. In [18],
Zheng suggested that there are three aspects for an algebroid function worthy of consideration,
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one of them being the growth of an algebroid function when some restriction is imposed on
arguments of certain a-points. We considered this problem for an algebroid function f (z)

defined in the complex plane in another article [12]. In this note, we will investigate the
growth of an algebroid function with radially distributed values in the unit disk. Before stating
the result, we give some notations and definitions of an algebroid function.

Let f = f (z)(z ∈ Δ) be the ν-valued algebroid function defined by an irreducible
equation

(1.1) F(z,w) := A0(z)w
ν + A1(z)w

ν−1 + · · · + Aν(z) = 0 ,

where Aν(z), . . . , A0(z) are analytic functions without any common zeros in the unit disk.
Let �A = (A0, . . . , Aν), �∞ = (1, 0, . . . , 0). For any a ∈ C, denote �a = (aν, aν−1, . . . , 1).
Then,

‖ �A(z)‖ = (|A0|2 + |A1|2 + · · · + |Aν |2)1/2 ,

‖�a‖ =
{
(|a|2ν + |a|2ν−2 + · · · + |a|2 + 1)1/2 , a = ∞ ,

1, a = ∞ .

Since F(z,w) is irreducible, F(z, a) = �A(z) · �a ≡ 0, where F(z,∞) = A0(z). Set

log+ x = max{0, log x} .

Define the proximity function to a number a ∈ Ĉ of f (z) on the circle {|z| = r}:

m(r, �a, �A) = 1

2π

∫ 2π

0
log+ ‖ �A(reiθ )‖‖�a‖

|F(reiθ , a)| dθ,

and the counting function of a-points:

N(r, �a, �A) = N(r, 0, F (z, a))

=
∫ r

0

n(t, 0, F (z, a)) − n(0, 0, F (z, a))

t
dt + n(0, 0, F (z, a)) log r ,

where n(t, 0, F (z, a)) is the number of the roots of the equation F(z, a) = 0 in the disk
{|z| ≤ t}, counting multiplicities. In this paper, n(t, a, f (z)) denotes the number of the roots
of f (z) = a in {|z| ≤ t}, counting multiplicities. Put

T (r, �a, �A) = m(r, �a, �A) + N(r, �a, �A) .

Following G.Valiron, we define the characteristic function of f (z) as

T (r, f ) = 1

2νπ

∫ 2π

0
log max

0≤j≤ν
|Aj(re

iθ )|dθ .

By using Valiron’s result (cf. [15]), we get the relation between T (r, f ) and T (r, �a, �A):

|T (r, �a, �A) − νT (r, f )| = O(1) .

The counting function of a-points of f (z) is defined as

N(r, a, f ) = 1

ν
N(r, 0, F (z, a)) .
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Put

δ(a, f ) = 1 − lim sup
r→1−

N(r, a, f )

T (r, f )
= 1 − lim sup

r→1−
N(r, 0, F (z, a))

T (r, �a, �A)
.

The value a is called a Nevanlinna deficient value of f if δ(a, f ) > 0. The order and lower
order of f (z) are defined as

λ(f ) := lim sup
r→1−

log+ T (r, f )

log(1 − r)−1 ; μ(f ) := lim inf
r→1−

log+ T (r, f )

log(1 − r)−1 .

Given a sector Y = {z; α < arg z < β, |z| < 1}. Define the counting function of a-points of
f (z) in Y as

N(r, Y, f = a) = 1

ν

∫ r

0

n(t, Y, f = a)

t
dt ,

where n(t, Y, f = a) is the number of the roots of f (z) = a in Y ∩ {z; |z| < t}, counting
multiplicities. Now we can state our result as follows.

THEOREM 1.1. Let f (z) be the ν-valued algebroid function of finite lower order μ in
Δ determined by (1.1) and such that δ(a, f ) > 0 for some a ∈ Ĉ. Suppose that

arg z = θk (k = 1, 2, . . . , q, 0 ≤ θ1 < θ2 < · · · < θq < θ1 + 2π = θq+1)

are q(1 ≤ q < +∞) radii in the unit disk, and there exist 2ν distinct values ai = a(i =
1, 2, . . . , 2ν) such that

lim sup
r→1−

log[∑2ν
i=1 n(r, Y, f = ai) + n(r, Y, f = a)]

log(1 − r)−1
≤ ρ < ∞ ,

where Y = Δ\⋃q

k=1{z; arg z = θk, |z| < 1} and ρ > 1. Then, the order of f satisfies

λ(f ) ≤ ρ + 2 + max
1≤k≤q

(
θk+1 − θk

π

)
.

We complete the proof of Theorem 1.1 with the help of the method in Yang [14] and
Chang [1] and the behavior of algebroid functions in the unit disk. Both the papers investigate
the growth of transcendental meromorphic functions with radially distributed values in the
complex plane.

2. Some lemmas. In this section we give some lemmas which are used in the proofs
of our theorems.

LEMMA 2.1 ([11]). Let ϕ(r) be a nondecreasing and positive real function in (0, 1)

and satisfy

lim sup
r→1−

ϕ(r)

log(1 − r)−1 = � ≤ +∞ .

Then, for any set E ⊂ (0, 1) such that
∫
E

dr
1−r

< ∞, we have

lim sup
r→1−, r∈(0,1)\E

ϕ(r)

log(1 − r)−1
= � ≤ +∞ .
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The proof of Lemma 2.1 can be seen in [11].

LEMMA 2.2. The transformation

(2.1) u(z) = (ze−iθ0)π/δ + 2(ze−iθ0)π/(2δ) − 1

(ze−iθ0)π/δ − 2(ze−iθ0)π/(2δ) − 1
, (0 ≤ θ0 < 2π, 0 < δ < π)

is a conformal map of the sector Ω(θ0 − δ, θ0 + δ) = {z; θ0 − δ < arg z < θ0 + δ, |z| < 1}
onto the unit disc Δ. For any positive number ε satisfying 0 < ε < δ, the transformation (2.1)
satisfies

u({z; 2−1 < |z| < r}∩{z; | argz − θ0| < δ − ε}) ⊂
{
u; |u| < 1 − ε

2
π
2δ +1δ

(1 − r)

}
;

u−1({u; |u| < ρ})⊂
({

z; |z| < 1 − δ

8π
(1 − ρ)

}
∩{z; | arg z − θ0| < δ}

)
.

(2.2)

The inverse transformation of (2.1) is

(2.3) z = eiθ0

[−(1 + u) +
√

2(1 + u2)

1 − u

]2δ/π

.

If we regard (2.3) as a map from the rectangle [0, 1) × [0, 2π) on |u| − arg u plane onto the
rectangle (0, 1) × (θ0 − δ, θ0 + δ) on |z| − arg z plane, then the Jacobian satisfies

(2.4) |J | = O

(
1

(1 − |u|)2δ/π+3

)
, |u| → 1 − .

In fact, the proof of (2.2) has been given by Sun [7] and Zhang [16] respectively. How-
ever, they only prove the case of ε = δ/2. Here, we will prove (2.2) for the case of 0 < ε < δ

by the same method of Zhang [16]. Moreover, we give the proof of (2.4) for the first time.

PROOF. Set z = |z|eiϕ, α = π/(2δ) > 1. From (2.1), we have

(2.5) 1 − |u|2 = 8(1 − |z|2α)|z|α cos α(ϕ − θ0)

|(ze−θ0)2α − 2(ze−θ0)α − 1|2 .

When 2−1 < |z| < r and | arg z − θ0| < δ − ε,

2(1 − |u|) > 1 − |u|2 ≥ 8(1 − |z|)( 1
2)α sin(αε)

(1 + 2 + 1)2 >
8(1 − |z|)( 1

2 )α 2
π
(αε)

(1 + 2 + 1)2 = ε

2α+1δ
(1 − |z|) .

Then, |u| < 1 − ε

2α+1δ
(1 − |z|) < 1 − ε

2α+1δ
(1 − r).

After a simple calculation, we find that when |u| < ρ,

1 − ρ < 1 − |u|2 < 16α(1 − |z|) .

Then, |z| < 1 − δ
8π

(1 − ρ). Thus (2.2) is proved.
Next we will prove (2.4). Write z = reiθ , u = teiφ. Taking the derivative on both side

of (2.3), we get that

dz

du
= eiθ0

α

[−(1 + u) +
√

2(1 + u2)

1 − u

]1/α−1 √
2(u + 1) − 2

√
1 + u2

(1 − u)2
√

1 + u2
.
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Taking the partial derivatives on both side of (2.3), we derive

(2.6)

∂r

∂t
eiθ + i

∂θ

∂t
reiθ

= eiθ0

α

[−(1 + u) +
√

2(1 + u2)

1 − u

]1/α−1 √
2(u + 1) − 2

√
1 + u2

(1 − u)2
√

1 + u2
· eiφ ,

(2.7)

∂r

∂φ
eiθ + i

∂θ

∂φ
reiθ

= eiθ0

α

[−(1 + u) + √
2(1 + u2)

1 − u

]1/α−1 √
2(u + 1) − 2

√
1 + u2

(1 − u)2
√

1 + u2
· tieiφ .

Combining (2.6) with (2.7) gives

∂r
∂t

+ i ∂θ
∂t

r

∂r
∂φ

+ i ∂θ
∂φ

r
= 1

it
,

so that

|J | =
∣∣∣∣∂r

∂t

∂θ

∂φ
− ∂r

∂φ

∂θ

∂t

∣∣∣∣ =
∣∣ ∂r
∂φ

eiθ + i ∂θ
∂φ

reiθ
∣∣2

tr
.

Noticing that

r = |z| =
∣∣∣∣−(1 + u) + √

2(1 + u2)

1 − u

∣∣∣∣
1/α

,

then from (2.7) it follows that∣∣ ∂r
∂φ

eiθ + i ∂θ
∂φ

reiθ
∣∣2

r
= 1

α2

∣∣∣∣−(1 + u) +
√

2(1 + u2)

1 − u

∣∣∣∣
1/α−2∣∣∣∣

√
2(u + 1) − 2

√
1 + u2

(1 − u)2
√

1 + u2

∣∣∣∣
2

t2 .

Therefore,

|J | =
∣∣ ∂r
∂φ

eiθ + i ∂θ
∂φ

reiθ
∣∣2

rt

= t

α2

∣∣∣∣−(1 + u) + √
2(1 + u2)

1 − u

∣∣∣∣
1/α−2∣∣∣∣

√
2(u + 1) − 2

√
1 + u2

(1 − u)2
√

1 + u2

∣∣∣∣
2

≤ t

α2

∣∣∣−(1 + u) +
√

2(1 + u2)

∣∣∣1/α−2 ∣∣∣√2(u + 1) − 2
√

1 + u2
∣∣∣2 1

(1 − |u|)1/α+3

≤ 41/α−2 · (2
√

2 + 2
√

2)2

α2

1

(1 − |u|)1/α+3
.

Thus, as |u| = t → 1−, we have

|J | ≤ 22/α+1

α2

1

(1 − t)1/α+3
.

Hence the proof of Lemma 2.2 is completed. �
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The following lemma is the second fundamental theorem for algebroid functions in the
unit disk, whose proof can be found in [6, 8], and we can obtain the error term S(r, f ) by the
same method as used in meromorphic functions.

LEMMA 2.3 ([6, 8]). Let f (z) be the ν-valued algebroid function in Δ determined by
(1.1) and let a1, a2, . . . , aq be q different values on ̂C. Then, we have

(q − 2ν)T (r, f ) <

q∑
i=1

N(r, ai, f ) + S(r, f ) ,

where

S(r, f ) =
{
O(log(1 − r)−1) if λ(f ) < ∞ ,

O(log(1 − r)−1 + log T (r, f )) , r /∈ F if λ(f ) = ∞ ,

where F is a set satisfying that F ⊂ (0, 1) and
∫
F

dr/(1 − r) < ∞.

LEMMA 2.4. Let f (z) be the ν-valued algebroid function in Δ determined by (1.1).
Suppose that there exist 2ν + 1 distinct complex values ai(i = 1, 2, . . . , 2ν), a such that for
any small ε > 0, we have

lim sup
r→1−

log[∑2ν
j=1 n(r, Y, f = aj ) + n(r, Y, f = a)]

log(1 − r)−1
≤ ρ + 1 < ∞ ,

where Y = {z; θ1 + ε < arg z < θ2 − ε, |z| < 1} and ρ > 0. Then

1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ ≤

(
1

1 − r

)ρ+1/ω+3+2ε

log2
(

1

1 − r

)

holds except a set E ⊂ (0, 1) satisfying
∫
E

dr/(1 − r) < ∞, where ω = π/(θ2 − θ1 − 2ε).

PROOF. By Lemma 2.2, we know that the transformation

(2.8) z = z(u) = ei
θ1+θ2

2

[−(1 + u) + √
2(1 + u2)

1 − u

] θ2−θ1−2ε

π

is a conformal map of the unit disk to the sector Y . Set ω = π
θ2−θ1−2ε

. For t < 1, we have

z({u; |u| < t}) ⊂
{
z; θ1 + ε < arg z < θ2 − ε, |z| < 1 − 1

16ω
(1 − t)

}
.

Since the number of roots of a equation in a region is a conformal invariant, it follows that

n(t, τ, f (z(u))) ≤ n

(
1 − 1

16ω
(1 − t), Y, f (z) = τ

)

= O

(
1

(1 − t)ρ+1+ε

)
, t → 1− , τ = aj (j = 1, 2, . . . , 2ν), a .
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After a calculation, we obtain

N(t, τ, f (z(u))) = 1

ν

∫ t

0

n(x, τ, f (z(u)))

x
dx

= 1

ν

∫ t

1/2

n(x, τ, f (z(u)))

x
dx + O(1)

≤ 2

ν

∫ t

1/2
n(x, τ, f (z(u)))dx + O(1)

≤ O

(∫ t

1/2

1

(1 − x)ρ+1+ε
dx

)
+ O(1)

= O

(
1

(1 − t)ρ+ε

)
, t → 1− , τ = aj (j = 1, 2, . . . , 2ν), a .

(2.9)

For f (z(u)) and complex number aj (j = 1, 2, . . . , 2ν), a we apply Lemma 2.3,

T (t, f (z(u))) ≤
2ν∑
i=1

N(t, ai , f (z(u))) + N(t, a, f (z(u)))

+ O(log(1 − t)−1 + log T (t, f (z(u))))

≤ O

(
1

(1 − t)ρ+ε

)
+ O(log T (t, f (z(u))))

< O

(
1

(1 − t)ρ+ε

)
+ 1

2
T (t, f (z(u))), t /∈ F, t → 1 − .

So that

T (t, f (z(u))) < O

(
1

(1 − t)ρ+ε

)
, t /∈ F, t → 1− ,

and

lim sup
t /∈F, t→1−

log T (t, f (z(u)))

log(1 − t)−1
≤ ρ < ∞ .

By Lemma 2.1, we have λ(f (z(u))) ≤ ρ < ∞. Combining the first case of Lemma 2.3 and
(2.9) gives

T (t, f (z(u))) ≤
2ν∑
i=1

N(t, ai, f (z(u))) + N(t, a, f (z(u))) + O(log(1 − t)−1)

≤ O

(
1

(1 − t)ρ+ε

)
+ O(log(1 − t)−1) ≤ O

(
1

(1 − t)ρ+ε

)
.

(2.10)

Then,

(2.11) m(t, �a, �A(z(u))) ≤ νT (t, f (z(u))) + O(1) ≤ O

(
1

(1 − t)ρ+ε

)
.

Using Lemma 2.2 for the transformation (2.8), we have

u({z; 2−1 < |z| < r, θ1+2ε < arg z < θ2−2ε}) ⊂
{
u; |u| < 1 − ε

2α(θ2 − θ1 − 2ε)
(1 − r)

}
,
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and the Jacobian determinant satisfies that

(2.12) |J | ≤ O

(
1

(1 − r)1/ω+3

)
.

Combining (2.11) with (2.12) it follows that

H :=
∫ r

2−1

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr

≤
∫ 1− ε

2α(θ2−θ1−2ε)
(1−r)

0

∫ 2π

0
log+ ‖ �A(z(teiφ))‖‖�a‖

|F(z(teiφ), a)|
1

(1 − t)1/ω+3
dφdt

=
∫ 1− ε

2α(θ2−θ1−2ε)
(1−r)

0
m(t, �a, �A(z(u)))

dt

(1 − t)1/ω+3

=
∫ 1− ε

2α(θ2−θ1−2ε)
(1−r)

0

(
1

1 − t

)ρ+1/ω+3+ε

dt = O

((
1

1 − r

)ρ+1/ω+2+ε
)

<

(
1

1 − r

)ρ+1/ω+2+2ε

.

(2.13)

Set

E=
{

0<r <1; 1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ >

(
1

1 − r

)ρ+1/ω+3+2ε

log2
(

1

1 − r

) }
.

Now we consider two cases.

Case I. H > 2.
For r ∈ E, we deduce

dH

dr
=

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ

> 2π

(
1

1 − r

)ρ+1/ω+3+2ε

log2
(

1

1 − r

)

≥ 2πHκ log2 H
1

1 − r
,

(2.14)

where κ is a positive constant.
From (2.14) it follows that∫

E

dr

1 − r
≤

∫ ∞

2

dH

2πHκ log2 H
= O(1) .

Case II. H ≤ 2.
Since H increases as r → 1−, we obtain

lim
r→1− H =

∫ 1

2−1

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr ≤ 2 .
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For r ∈ E, we deduce

1

1 − r
<

(
1

1 − r

)ρ+1/ω+3+2ε

log2
(

1

1 − r

)
<

1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ .

Therefore, we have∫
E

dr

1 − r
≤

∫
E

1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr

≤
∫

E∩[0,2−1]
1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr

+
∫

E∩[2−1,1)

1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr

≤
∫ 2−1

0

1

2π

∫ θ2−2ε

θ1+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθdr + 2

π
< ∞ .

Thus the proof of Lemma 2.4 is completed. �

In order to establish the small arc theorem for the algebroid functions, we have the fol-
lowing lemma first. Indeed, the proof has been given in [12]. For completeness, we give the
proof here again.

LEMMA 2.5. Let f (ξ) be the ν-valued algebroid function in Δ determined by (1.1).
Then, for any z = reiθ , 0 < r < R < 1, we have

(2.15) log+ ‖ �A(z)‖‖�a‖
|F(z, a)| ≤ log+(ν + 1)1/2 + R + r

R − r
m(R, �a, �A) +

M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣ ,
where b1, b2, . . . , bM are the roots of the equation f (ξ) = a in |ξ | < R.

PROOF. We will prove that (2.15) holds for every point z. For any z = reiθ , 0 < r <

R < 1, there exists an integer 0 ≤ k = kz ≤ ν, such that

max
0≤l≤ν

|Al(z)| = |Ak(z)| .
Then

log+ ‖ �A(z)‖‖�a‖
|F(z, a)| ≤ log+ (ν + 1)1/2|Ak(z)|‖�a‖

|F(z, a)|
≤ log+(ν + 1)1/2 + log+ |Ak(z)|‖�a‖

|F(z, a)|
= log+(ν + 1)1/2 + log+

∣∣∣∣ Ak(z)

F (z, a)
‖�a‖

∣∣∣∣ .
Notice that both Ak(ξ) and F(ξ, a) are entire functions, ‖�a‖ is a constant number, then

Ak(ξ)‖�a‖
F(ξ, a)
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is a meromorphic function. Now we apply the Possion-Jensen formula to the meromorphic
function Ak(ξ)‖�a‖/F (ξ, a) and have a estimation:

log+
∣∣∣∣Ak(z)‖�a‖

F(z, a)

∣∣∣∣ ≤ 1

2π

∫ 2π

0
log+

∣∣∣∣Ak(Reiφ)‖�a‖
F(Reiφ, a)

∣∣∣∣ R2 − r2

R2 − 2Rr cos(θ − φ) + r2 dφ

+
M∑
t=1

log

∣∣∣∣ R2 − btz

R(z − bt )

∣∣∣∣ .
From the inequality R2−r2

R2−2Rr cos(θ−φ)+r2 ≤ R+r
R−r

, we derive

log+
∣∣∣∣Ak(z)‖�a‖

F(z, a)

∣∣∣∣ ≤ 1

2π

R + r

R − r

∫ 2π

0
log+ |Ak(Reiφ)|‖�a‖

|F(Reiφ, a)| dφ +
M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣ .
From |Ak(Reiφ)| ≤ ‖ �A(Reiφ)‖, we have

log+
∣∣∣∣Ak(z)‖�a‖

F(z, a)

∣∣∣∣ ≤ R + r

R − r
m(R, �a, �A) +

M∑
t=1

log

∣∣∣∣ 2R

z − bt

∣∣∣∣ .

This completes the proof. �

Using the method of [2], we can establish Lemma 2.6, which is called the small arc
theorem for algebroid functions.

LEMMA 2.6. Let I (r) ⊂ [0, 2π) be a measurable set of θ with its measure |I (r)|.
Then for 0 < r < R < 1, we have

1

2π

∫
I (r)

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ ≤ KR

R − r
T (R, f )|I (r)|

(
1 + log+ 1

|I (r)|
)

,

where K is a positive constant number and is independent of r, θ .

PROOF. Let {bl = |bl|eiβl } denote the sequence of the roots of f (z) = a in the unit
disk. From (2.15), we have

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| ≤ log+(ν + 1)1/2 + t + r

t − r
m(t, �a, �A) +

∑
|bl |≤t

log

∣∣∣∣ 2t

reiθ − bl

∣∣∣∣ , (r < t)

and note that

|reiθ − |bl|eiβl | ≥ r| sin(θ − βl)| (|θ − βl| ≤ π/2) ,

|reiθ − |bl|eiβl | ≥ r (π/2 < |θ − βl| ≤ π) .

Hence ∫
I (r)

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ ≤ |I (r)| log+(ν + 1)1/2 + |I (r)| t + r

t − r
m(t, �a, �A)

+
∑
|bl |≤t

[∫
I (r)

log

(
2t

r

)
dθ +

∫
I ∗(r,βl)

log
1

| sin(θ − βl)|dθ

]
,

(2.16)
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where I∗(r, βl) denotes the portion of I (r) which belongs to the arc [−π/2 + βl, βl + π/2].
Following the inequality (9.4) of pp.338 in [2], we have

∫
I (r)

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ ≤ |I (r)|

(
log+(ν + 1)1/2 + t + r

t − r
m(t, �a, �A)

)

+ |I (r)|n(t, a, f )

[
log

(
2t

r

)
+ 1 + log+ π

|I (r)|
]

(0 < r < t) .

(2.17)

By the definition of N(r, a, f ) and T (r, f ),

n(t, a, f ) ≤ N(R, a, f )

log(R/t)
≤ νT (R, f )

log(R/t)
(0 < r < t < R < 1) .(2.18)

We choose t = (r + R)/2. Then combining (2.17) with (2.18), we derive
∫

I (r)

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ ≤ |I (r)|

(
log+(ν + 1)1/2 + 4ν

R − r
T (R, f )

)

+ |I (r)|νT (R, f )

log(R/t)

[
log

(
1 + R

r

)
+ 1 + log+ π

|I (r)|
]

.

In view of log(R/r) > (R − r)/R, we obtain the result. �

Hayman [5] established Lemma 2.7 for a real function defined in (0,+∞).

LEMMA 2.7 ([5]). Let T (r) be a continuous function of r in (0,+∞) which increases
to +∞ and is of finite lower order μ < +∞. Then, for two arbitrary positive real num-
ber τ1 and τ2 satisfying τ2 > τ1 > 1, the lower logarithmic density of the set G = {r ∈
(0,∞); T (τ1r) ≤ τ2T (r)} satisfies

log denseG = lim inf
r→∞

∫
G∩[1,r]

dt
t

log r
≥ 1 − μ

log τ1

log τ2
,

where μ = lim infr→∞ log T (r)/ log r .

Using Lemma 2.7 and by the method of transformation, we can establish Lemma 2.8.

LEMMA 2.8. Let T1(r) be a continuous function of r in (0, 1) which increases to +∞
and is of finite lower order μ < +∞. Then, for two arbitrary positive real number τ1 and
τ2 satisfying τ2 > τ1 > 1, the lower logarithmic density of the set G = {r ∈ (0, 1); T1(1 −
τ−1

1 + rτ−1
1 ) ≤ τ2T1(r)} satisfies

log denseG = lim inf
r→1−

∫
G∩[0,r]

dt
1−t

log 1
1−r

≥ 1 − μ
log τ1

log τ2
.

PROOF. Set r = 1 − t−1, then T (t) = T1(1 − t−1) is a function defined in (1,∞). The
order and lower order of T (t) equal to the order and lower order of T1(r), i.e.,

lim sup
t→∞

log+ T (t)

log t
= lim sup

t→∞
log+ T1(1 − t−1)

log t
= lim sup

r→1−
log+ T1(r)

log(1 − r)−1 ,
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lim inf
t→∞

log+ T (t)

log t
= lim inf

t→∞
log+ T1(1 − t−1)

log t
= lim inf

r→1−
log+ T1(r)

log(1 − r)−1
.

Since the lower order of T1(r) is μ < +∞, the lower order of T (t) is also μ < +∞. For
any τ2 > τ1 > 1, the set G is mapped onto G̃ = {t ∈ (1,∞); T (τ1t) ≤ τ2T (t)} under the
transformation t = (1 − r)−1. Now by Lemma 2.7, we have

(2.19) lim inf
t→∞

∫
G̃∩[1,t ]

dx
x

log t
≥ 1 − μ

log τ1

log τ2
.

Under the one to one transformation r = 1 − t−1, the set G̃ is mapped onto G, and∫
G̃∩[1,t ] dx/x = ∫

G∩[0,r] dx/(1 − x), then from (2.19) we have

lim inf
r→1−

∫
G∩[0,r]

dx
1−x

log 1
1−r

= lim inf
t→∞

∫
G̃∩[1,t ]

dx
x

log t
≥ 1 − μ

log τ1

log τ2
.

Hence we get the result of the lemma. �

LEMMA 2.9. Let f (z) be the ν-valued algebroid function of finite lower order μ in Δ

determined by (1.1) and such that for some a ∈ Ĉ, δ(a, f ) > 0. Suppose that there exist 2ν

distinct complex values aj = a(j = 1, 2, . . . , 2ν) such that

lim sup
r→1−

log[∑2ν
j=1 n(r,X, f = aj ) + n(r,X, f = a)]

log(1 − r)−1 ≤ ρ + 1 < ∞ ,

where X = Δ\⋃q

k=1{z; arg z = θk, |z| < 1}, ρ > 0. Then, for any τ1, τ2 satisfying τ2 >

τ1 > 1, we have

(2.20) lim sup
r∈E1\E,r→1−

log+ T (r, f )

log(1 − r)−1 ≤ ρ + 3 + max
1≤k≤q

{
θk+1 − θk

π

}
,

where E1 = {r; T (1 − τ−1
1 + τ−1

1 r, f ) ≤ τ2T (r, f )} ⊂ (0, 1) and E ⊂ (0, 1) is satisfying
that

∫
E dr/(1 − r) < ∞.

PROOF. From Lemma 2.4 and the condition of Lemma 2.9, it follows that

(2.21)

q∑
k=1

1

2π

∫ θk+1−2ε

θk+2ε

log+ ‖ �A(reiθ )‖‖�a‖
|F(reiθ , a)| dθ

= O

( q∑
k=1

(
1

1 − r

)ρ+1/ωk+3+2ε

log2 1

1 − r

)
,
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where r ∈ (0, 1)\E,
∫
E

dr/(1 − r) < ∞, ωk = π/(θk+1 − θk − 2ε).

Setting R = 1 − τ−1
1 + τ−1

1 r in Lemma 2.6 and noticing that r ∈ E1, we obtain

q∑
k=1

1

2π

( ∫ θk+2ε

θk

+
∫ θk+1

θk+1−2ε

)
log+ ‖ �A(reiθ )‖‖�a‖

|F(reiθ , a)| dθ

≤ K

1 − r
T (1 − τ−1

1 + τ−1
1 r, f )4qε

(
1 + log+ 1

2ε

)

≤ K

1 − r
τ2T (r, f )4qε

(
1 + log+ 1

2ε

)
.

(2.22)

Taking ε = ε(r) = (1 − r)2 in (2.22) yields
q∑

k=1

1

2π

( ∫ θk+2ε

θk

+
∫ θk+1

θk+1−2ε

)
log+ ‖ �A(reiθ )‖‖�a‖

|F(reiθ , a)| dθ

≤ 4qK(1 − r)

(
1 + log+ 1

2(1 − r)2

)
τ2T (r, f )

<
νδ(a, f )

4
T (r, f ), r → 1 − .

(2.23)

Setting in (2.21) ε = ε(r) = (1 − r)2 and adding together (2.21) and (2.23), we derive

m(r, �a, �A) ≤ νδ(a, f )

4
T (r, f ) + O

( q∑
k=1

(
1

1 − r

)ρ+1/ωk+3+2ε

log2 1

1 − r

)
, r ∈ E1\E.

By the definition of δ(a, f ), we have

m(r, �a, �A) >
νδ(a, f )

2
T (r, f ) , r → 1 − .

So that

νδ(a, f )

4
T (r, f ) ≤ O

( q∑
k=1

(
1

1 − r

)ρ+1/ωk+3+2ε

log2 1

1 − r

)
, r ∈ E1\E, r → 1 − .

This leads to

lim sup
r∈E1\E,r→1−

log+ T (r, f )

log(1 − r)−1 ≤ ρ + 3 + max
1≤k≤q

{
θk+1 − θk

π

}
.

The proof is completed. �

3. Proof of Theorem 1.1. Set

K := ρ + 2 + max
1≤k≤q

{
θk+1 − θk

π

}
.

By Lemma 2.9, we have

(3.1) lim sup
r∈E1\E,r→1−

log+ T (r, f )

log(1 − r)−1 ≤ K ,
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where log densE1 ≥ 1 −μ
log τ1
log τ2

,
∫
E

dr
1−r

< ∞, μ is the lower order of f . Obviously, μ ≤ K .
Choose τ2 large enough such that

(3.2) log τ2 > 3K log τ1 ≥ 3μ log τ1 .

So that

lim inf
r→1−

∫
(E1\E)∩[0,r]

dt
1−t

log 1
1−r

≥ lim inf
r→1−

∫
E1∩[0,r]

dt
1−t

log 1
1−r

− lim sup
r→1−

∫
E∩[0,r]

dt
1−t

log 1
1−r

= 1 − μ
log τ1

log τ2
− 0 >

2

3
.

(3.3)

This leads to lim supr→1−,r∈E1\E{r} = 1. Thus r ∈ E1\E, r → 1− can hold.
Set F = E1 \ E. Now we claim that for r → 1−, r /∈ F , there exists a number r ′ such

that r ′ ∈ F and r ′ ∈ [r, 1 − (1 − r)d ], where

d = 1 + 3K log τ1

log τ2
< 2 .

In fact, otherwise, there exists a sequence {rn} such that rn → 1 as n → ∞ and F ∩ [rn, 1 −
(1 − rn)

d ] = ∅ for each n. So that

F ⊂ (0, 1) \
∞⋃

n=1

[rn, 1 − (1 − rn)
d ] .

Assume rn > 1 − (1 − rn−1)
d (otherwise we can consider a subsequence), then∫

F∩[0,1−(1−rn)d ]
dt

1 − t
≤

∫
[0,1−(1−rn)d ]\⋃n

j=1[rj ,1−(1−rj )d ]
dt

1 − t

=
n∑

j=2

∫ rj

1−(1−rj−1)
d

dt

1 − t

= log
1

1 − rn
− (d − 1)

n−1∑
j=2

log
1

1 − rj
− d log

1

1 − r1
.

(3.4)

On the other hand, by (3.3), we have for rn → 1−,

(3.5)
1

d log 1
1−rn

∫
F∩[0,1−(1−rn)d ]

dt

1 − t
≥ 1 − K

log τ1

log τ2
= 1 − d − 1

3
.

Combining (3.4) with (3.5), we have

0 <

n−1∑
j=2

log(1 − rj )
−1

log(1 − rn)−1
≤ d

3
− 1 <

2

3
− 1 .

This is impossible.
Since r ′ ∈ F , we have

T (r ′, f ) <

(
1

1 − r ′

)K+ε
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by Lemma 2.9. Consequently,

T (r, f ) ≤ T (r ′, f ) ≤
(

1

1 − r ′

)K+ε

≤
(

1

1 − r

)(
1+ 3K log τ1

log τ2

)
(K+ε)

.

Taking limitation,

lim sup
r→1−

log+ T (r, f )

log(1 − r)−1
≤

(
1 + 3K log τ1

log τ2

)
(K + ε) .

Letting ε → 0, τ2 → ∞,

lim sup
r→1−

log+ T (r, f )

log(1 − r)−1
≤ K = ρ + 2 + max

1≤k≤q

{
θk+1 − θk

π

}
.

We complete the proof of the theorem.
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