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ABSTRACT 

On the Growth Rate of Turbulent Mixing Layers: A New Parametric Model 

Jeffrey Lee Freeman 

 

A new parametric model for the growth rate of turbulent mixing layers is proposed. A 

database of experimental and numerical mixing layer studies was extracted from the 

literature to support this effort. The domain of the model was limited to planar, spatial, 

nonreacting, free shear layers that were not affected by artificial mixing enhancement 

techniques. The model is split into two parts which were each tuned to optimally fit the 

database; equations for an incompressible growth rate were derived from the error 

function velocity profile, and a function for a compressibility factor was generalized from 

existing theory on the convective Mach number. The compressible model is supported by 

a detailed evaluation of the currently accepted models and practices, including error 

analysis of the convective Mach number derivation and a critical analysis of Slessor’s re-

normalization technique which affected his 1998 compressibility parameter. Analysis of 

the database suggested that a distinction should be made between thickness definitions 

that are based on the velocity profile and those based on the density profile. Additionally, 

the accumulation of different normalization approaches throughout the literature was 

shown to have introduced non-physical variance in the trends. Resolution of this issue 

through a consistent normalization process has greatly improved the normality and scatter 

of the data and the goodness-of-fit of the models, resulting in R2 = 0.9856 for the 

incompressible model and R2 = 0.9004 for the compressible model. 
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1 Introduction 

The turbulent mixing layer has been a subject of research for over seventy years. Since it 

is a core phenomenon within the processes of entrainment and fuel injection, scientists 

and engineers alike have been steadily seeking a thorough understanding of its behavior 

and accurate predictive capabilities. This report presents a collation of the existing 

literature, reviews of some prominent theories, and the introduction of a new predictive 

model with improved accuracy. 

 

1.1 Basic Characteristics of Turbulent Mixing Layers 

Turbulent mixing layers are formed when two dissimilar streams of turbulent fluid travel 

parallel to each other. Commonly, the streams are initially separated by a thin, low angle 

splitter plate. The high-speed flow is designated as the primary stream with subscript “1”, 

while the low-speed flow is designated as the secondary stream with subscript “2”. 

Conventionally, mixing layers have been identified by their velocity ratio,  

 𝑟 = 𝑈2𝑈1 Eq. 1 

and their density ratio, 

 𝑠 = 𝜌2𝜌1 Eq. 2 

Figure 1 shows a shadowgraph image of a mixing layer created by Brown and Roshko 

(1974). The images taken during that study uncovered a very characteristic trait of 

turbulent mixing layers to be the large, coherent turbulent structures that travel 

downstream between the two fluids. These structures are caused by a Kelvin-Helmholtz 

instability at the junction of the two streams. They have been observed to grow as they 
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travel downstream, and therefore are often used to identify the extent of the mixing layer 

thickness, 𝛿. 

 

 
Figure 1. An iconic shadowgraph image of a turbulent mixing layer. From Brown 

and Roshko (1974). 

 

Turbulent mixing layers have also proven to be self-similar when sufficiently downstream 

of the splitter plate. For low values of 𝑥 (𝑥 = 0 at the end of the splitter plate), the mixing 

layer thickness has a nonlinear growth rate and the mixing layer behaves more like a wake 

flow. Further downstream, the turbulent mixing becomes the dominant factor and the 

mixing layer is self-similar. In these regions, the transverse (𝑦-direction) velocity profiles 

from any 𝑥-value should stack on top of one another when normalized by the mixing layer 

thickness. Furthermore, the mixing layer thickness growth rate, 𝛿′, is constant in the self-

similar region. 

 

1.1.1 Mixing Layer Thickness Definitions 

Throughout the years, a variety of different mixing layer thickness definitions have arisen. 

This is due largely to the types of data that each individual researcher has available from 

his/her experiment. Thicknesses are commonly defined by some combination of the 

velocity profile and the density profile. Additionally, thickness estimates can be extracted 
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from images of the flow, which can be taken using a variety of imaging techniques 

including (but not limited to) shadowgraph and Schlieren. Some researchers have 

suggested that direct relationships can be drawn between some of the different thickness 

definitions. 

 

The Shear Layer Thickness, 𝜹𝒃 

The shear layer thickness, 𝛿𝑏, is the distance between transverse (𝑦) locations where 𝑈∗ =0.1 and 𝑈∗ = 0.9. The normalized velocity, 𝑈∗, is defined as 

 𝑈∗(𝑦) = 𝑈(𝑦) − 𝑈2𝑈1 − 𝑈2 . Eq. 3 

The values of 0.1 and 0.9 were chosen to account for experimental uncertainty. At the 

theoretical limits of 𝑈∗ = 0 and 𝑈∗ = 1, the freestream turbulent intensity accounts for a 

larger portion of measured deviations from the nominal freestream velocity. The 10% 

buffer on either side is appropriately sized to ensure that the edge of the mixing layer is 

identified with reasonable certainty. This thickness has also been referred to as the 

velocity 10% thickness because of the conventionally accepted size of this buffer. 

 

The Stanford Thickness, 𝜹𝑺 

The Stanford thickness, 𝛿𝑆, is the distance between transverse locations where 𝑈∗ = √0.1 

and 𝑈∗ = √0.9. This thickness has also been referred to as the energy thickness because 

it resembles the shear layer thickness for (𝑈∗)2 rather than 𝑈∗. This thickness definition 

gained its popularity at the 1980-81 AFOSR-HTTM-Stanford Conference on Complex 

Turbulent Flows (Kline et al. 1983). 

 

The Vorticity Thickness 

The vorticity thickness, 𝛿𝜔, is defined as 
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 𝛿𝜔 = ΔU[𝜕𝑈 𝜕𝑦⁄ ]𝑚𝑎𝑥, Eq. 4 

where Δ𝑈 = 𝑈1 − 𝑈2. Eq. 5 

 

The Momentum Thickness, 𝜹𝜽 

The momentum thickness, 𝛿𝜃, is defined as 

 𝛿𝜃 = ∫ 𝜌𝜌1 𝑈∗(1 − 𝑈∗)𝑑𝑦+∞
−∞ , Eq. 6 

 

The Maximum Concentration Thickness, 𝜹𝝆𝒎 

The maximum concentration thickness, 𝛿𝜌𝑚, is calculated by joining the 20% and 80% 

points of the concentration profiles with a straight line and measuring the distance between 

the intercepts of this line and the 0% and 100% concentration levels. Concentration is 

defined as 

 𝜌∗(𝑦) = 𝜌(𝑦) − 𝜌1𝜌2 − 𝜌1 . Eq. 7 

 

The Pitot Thickness, 𝜹𝒑𝒊𝒕 
The Pitot thickness, 𝛿𝑝𝑖𝑡, has the same form as the shear layer thickness, except that it is 

based on a normalized total pressure instead of a normalized velocity and the buffer is 

reduced to 5%. That is, it is defined as the distance between transverse locations where 𝑃𝑡∗ = 0.05 and 𝑃𝑡∗ = 0.95. The normalized total pressure, 𝑃𝑡∗, is defined as 

 𝑃𝑡∗(𝑦) = 𝑃𝑡(𝑦) − 𝑃𝑡,2𝑃𝑡,1 − 𝑃𝑡,2 . Eq. 8 

If the profile has a wake-like defect, it is split into a top and bottom part at the location of 

the minimum; 𝛿𝑝𝑖𝑡 is then measured from 95% of the bottom difference with respect to the 
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minimum, to 95% of the top difference with respect to the minimum. Figure 2 shows a 

graphical representation of this thickness definition for wake-like defects, as presented in 

Papamoschou and Roshko (1988). 

 

 
Figure 2. Graphical representation of Pitot thickness definition for wake-like 

defects. From Papamoschou and Roshko (1988). 

 

The Visual Thickness, 𝜹𝒗𝒊𝒔 

The visual thickness is unlike the other definitions because it is not mathematically based. 

Rather, the visual thickness is commonly determined by drawing straight lines along the 

top and bottom edges of an image of the mixing layer and then calculating the growth rate 

based on those lines. Due to the inexact nature of this method, researchers often average 

the results from a large number of images taken during a brief time period.  

 

The visual thickness has been suggested to be roughly twice the vorticity thickness (Brown 

and Roshko 1974), although the accuracy of this claim is obviously under question. 
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Moreover, it is not likely that the visual thickness, which is primarily based on the density 

profile for shadowgraph and Schlieren images, would be directly relatable to the vorticity 

thickness, which is entirely based on the velocity profile. 

 

1.2 Incompressible Mixing Layer Velocity Profile Model 

The incompressible mixing layer was studied long before high speed mixing layers were 

considered, and as such, simple models for its velocity profile have been brought to a 

higher level of acceptance within the community. The two models discussed here, the 

error function velocity profile and the hyperbolic tangent velocity profile, are similar in form 

but achieve their sigmoidal shape through the use of different mathematical functions from 

which they take their name. The error function profile, introduced by Schlichting (1979), is 

defined as 

 𝑈∗ = 12 [1 + 𝑒𝑟𝑓 (𝜎0𝑦𝜆𝑠𝑥)] Eq. 9 

where 𝜆𝑠 = (1 − 𝑟)(1 + √𝑠)2(1 + 𝑟√𝑠)  Eq. 10 

The spreading parameter, 𝜎0, is an empirically tuned constant. A value of 𝜎0 ≅ 11 has 

been accepted for over six decades. Numerous suggestions ranging between 𝜎0 = 10 and 𝜎0 = 12 have been encountered (Liepmann & Laufer 1947; Barone et al., 2006; Gatski & 

Bonnet, 2009).  

 

Dimotakis (1986) proposed a correction factor for spatial asymmetries. The modified 

mixing parameter, referred to here as 𝜆𝐷1986, is 

 𝜆𝐷1986 = (1 − 𝑟)2(1 + 𝑟√𝑠) [1 + √𝑠 − 1 − √𝑠1 + 2.9(1 + 𝑟) (1 − 𝑟)⁄ ] Eq. 11 
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This factor is claimed to apply a difference of up to 10% in extreme cases. Many authors 

neglect to consider this modified parameter and instead only use 𝜆𝑠 (Gatski & Bonnet 

2009). Although it has been considered for the work presented here, the differences were 

insignificant. Therefore, 𝜆𝑠 is used throughout this report for simplicity. 

 

The hyperbolic tangent profile has been presented by Barone et al. (2006) in a very similar 

format to that of the error function profile, however it has been in use for many years before 

that (see Samimy & Elliott 1990). The equation for the hyperbolic tangent profile can be 

written as 

 𝑈∗ = 12 [1 + tanh (𝜎0𝑦𝜆𝑠𝑥)] Eq. 12 

Figure 3 illustrates a comparison between these two incompressible velocity profiles as 

well as their effect on the three velocity-based mixing layer thicknesses. It is apparent that 

for the same 𝜎0, the hyperbolic tangent profile predicts a larger mixing layer thickness for 

all three definitions. With proper tuning of 𝜎0 as applied to the hyperbolic tangent profile, 

these two functions can be made practically equivalent. To avoid this redundancy, only 

the more popular error function velocity profile will be carried forward in this report. 
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Figure 3. Comparison of the error function velocity profile and the hyperbolic 

tangent velocity profile, and their effect on velocity-based mixing layer 

thicknesses. In both cases, 𝝈𝟎 = 𝟏𝟏. 𝟎. 

 

The behavior of the error function velocity profile is further illustrated in Figure 4 

and Figure 5. In Figure 4, several streamwise instances of the profile are plotted to 

display the smoothing tendency of mixing layers. For low 𝑥-locations, the mixing 

layer is small in size and has a very sharp velocity gradient. Further downstream, 

the mixing layer is much thicker and has a lesser maximum velocity gradient. Figure 
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5 demonstrates the self-similarity seen in the fully developed turbulent mixing layer. 

By normalizing the transverse axis by the streamwise location (i.e. plotting 𝑦/𝑥 on 

the horizontal axis), profiles measured at a variety of 𝑥-locations stack perfectly on 

top of each other. This plot also shows how increasing 𝜆𝑠 leads to more rapid 

growth of the mixing layer. 

 

 
Figure 4. Error function velocity profile plotted for a fixed 𝝀𝒔 over many 𝒙-

locations. 
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Figure 5. Self-similarity demonstrated in the error function velocity profile. 

 

1.3 Compressibility Effects on the Turbulent Mixing Layer 

Growth Rate 

Advanced aerospace propulsion technologies rely on rapid molecular mixing between 

drastically different streams. For instance, scramjets mix a subsonic aerosol fuel into a 

supersonic air stream in a very short distance. Alternately, air augmented rockets use a 

supersonic rocket plume to entrain subsonic ambient air. Although special mixing 

enhancement techniques are often utilized, the core phenomenon for all of these cases is 

the turbulent mixing layer. 

 

1.3.1 Observed Characteristics of Compressibility 

It has long been recognized that the introduction of compressibility into the turbulent 

mixing layer causes a significant reduction in mixing layer thickness growth rates (Maydew 
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& Reed 1963; Birch & Eggers 1973; Brown & Roshko 1974; Papamoschou & Roshko 

1988; Gatski & Bonnet 2009). The incompressible, variable density experiment by Brown 

and Roshko (1974) proved that the growth rate reduction observed by other authors is 

separate from the effect of density ratio, indicating that compressibility itself is somehow 

independently associated with this phenomenon. It eventually took the application of direct 

numerical simulation (DNS) to determine that the reduced spreading is caused by a 

reduction in pressure fluctuations associated with higher compressibility (Vreman et al. 

1996; Freund et al. 2000; Pantano & Sarkar 2002). The growth rate reduction was shown 

to have an asymptotic limit at high compressibility because the pressure fluctuations could 

not diminish any further. 

 

In order to better phenomenologically represent the mean scale effects of compressibility, 

Papamoschou and Roshko (1988) divided their experimentally determined growth rates 

by those predicted by an incompressible growth rate model using the same velocity and 

density ratios. In this way they created the normalized growth rate, defined as 

 𝜙 = 𝛿′𝛿0′ = 𝑓(𝑟, 𝑠, 𝑀𝑐1)𝑓(𝑟, 𝑠, 𝑀𝑐1 = 0) Eq. 13 

where 𝑀𝑐1 is the convective Mach number, which serves as a measure of mixing layer 

compressibility. A novel analysis of this parameter’s derivation is presented in Section 3.2 

(page 40). 

 

1.3.2 Measures of Compressibility 

A simple, laboratory-frame Mach number does sufficiently describe the magnitude of 

compressibility in the two-stream mixing layer because the turbulent interactions between 

the streams are dependent on the difference between the two streams. Two parameters 
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have been suggested as measures of the compressibility of the mixing layer. They are the 

convective Mach number, 𝑀𝑐, and Slessor’s compressibility parameter, Π𝑐. 

 

The idea for the convective Mach number was originally published by Bogdanoff (1983), 

although it didn’t gain its name or popularity until it was more fully derived by 

Papamoschou and Roshko (1988). The convective Mach number is defined as 

 𝑀𝑐1 = 𝑈1 − 𝑈𝑐𝑎1  Eq. 14 

and 𝑀𝑐2 = 𝑈𝑐 − 𝑈2𝑎2  Eq. 15 

where 𝑈𝑐, the convective velocity, is the speed of the large, coherent turbulent structures, 

and 𝑎 is the acoustic speed. The subscripts “1” and “2” indicate which of the two streams 

is used as a reference. It can be shown that the two definitions are directly relatable (see 

Section 3.2 for a complete derivation with error analysis). For this reason, researchers 

typically only use the primary convective Mach number, and often show it without the “1” 

subscript as 𝑀𝑐. 

 

Figure 6 shows a fairly modern collection of experimental data and models for normalized 

growth rates plotted against the convective Mach number. The curves are from the 

empirically fit “Langley” curve (see Birch & Eggers 1973), a semi-empirical curve fit from 

Dimotakis (1991a) which is discussed in greater detail in Section 3.4 (page 54), and the 

amplification of the Kelvin-Helmholtz mode obtained from Day et al. (1998) from linear 

stability analysis. It is evident from this plot that the data is far too scattered for any of the 

models to fit well. 
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Figure 6. Normalized mixing layer thickness growth rates plotted against 

convective Mach number. From Smits and Dussauge (2006). 

 

As a part of his doctorate thesis, Slessor (1998) introduced a maximum compressibility 

scale that was intended to address problems seen by the convective Mach number 

associated with extreme density ratios and acoustic speed ratios. This scale, referred to 

here as Slessor’s compressibility parameter, is defined as 

 Π𝑐 = max𝑖=1,2 [√𝛾𝑖 − 1𝑎𝑖 ] ∗ Δ𝑈 Eq. 16 

where 𝑖 refers to the primary (𝑖 = 1) and secondary (𝑖 = 2) streams, respectively. 
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Figure 7 shows this new parameter used in place of the convective Mach number, and the 

reduced scatter suggests a remarkable improvement. Curiously, this parameter has not 

gained much popularity among recent researchers. Section 3.1 (page 34) takes a deeper 

look at Slessor’s contributions. 

 

 
Figure 7. The application of Slessor's compressibility parameter to a collection of 

experimental growth rate data. Solid curve is a best-fit line. From Slessor (1998). 

 

1.4 Thesis Objectives 

The over-arching goal of this thesis is to improve upon existing models for predicting the 

growth rate of incompressible and compressible turbulent mixing layers. Section 2 

discusses the creation of a contemporary database of experimental and 3D DNS mixing 

layer growth rate measurements gleaned from an exhaustive library of articles and reports 
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related to turbulent mixing layers. Section 3 presents a deeper investigation into the 

existing models and various parameters that affect them in an effort to illuminate a 

preferred approach for establishing an improved model. Section 4 lays out the approach 

followed to develop the improved model, presents the model, and discusses its strengths 

and weaknesses. Section 5 offers concluding remarks about the work presented here and 

its significance on the global study of compressible turbulent mixing layers. The 

appendices offer a plethora of supporting documentation, including the database itself in 

tabular format and brief summaries of the articles that contributed viable data to the 

database. 
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2 The Database 

A collection of turbulent mixing layer test cases was derived from the literature and formed 

into the database shown in Appendix C. This database began as a library of references 

from which the data was extracted (see Appendix A), and it was further refined by a 

qualification rubric (see Appendix B). The turbulent mixing layer model and supporting 

analysis presented herein rely heavily on this database. 

 

2.1 Library of References 

A library of references relating to turbulent mixing layers was compiled prior to populating 

the database (see Appendix A). Unfortunately, there is no certain way to confirm absolute 

completion of this library. In fact, there is a very slim likelihood that every technical report, 

journal article, conference paper, textbook, and doctorate and master’s thesis pertaining 

to turbulent mixing layers is identified in this library. The library does, however, offer a 

rather thorough collection of the literature, including all of the highly cited papers and many 

of the less popular ones.  

 

Of the 174 references in the library, all but 12 were acquired and carefully inspected for 

applicable data (For one reason or another, the missing 12 papers could not be acquired 

by the available means.). The papers span over 70 years, with the oldest from 1942 and 

the newest from 2013. References were initially found through keyword searches on web 

databases. From there, new references were identified by tracking citation lineages both 

backward and forward in time.  
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2.2 Data Qualification Rubric 

A rubric was established to ensure that the data contributing to the database were 

reasonably similar to each other. Each metric within the rubric was intended to ensure that 

unwanted variables, known or suspected, did not contaminate the data set. This section 

introduces, clarifies, and justifies each item in the rubric. If any one of these items was not 

met by a test case, then the associated data was excluded from the present database. 

The reader is referred to Appendix B for rubric evaluations for all 162 papers (174 total 

minus 12 un-obtained). 

 

Qualification Metric #1: The data must have come from either a laboratory 

experiment or three-dimensional DNS.  

Since this database was established to develop a more reliable model of the turbulent 

mixing layer, it would be undesirable to contaminate it with computation models that may 

incorrectly represent the physical phenomena. Therefore, RANS and LES numerical 

studies do not apply. For the same reason, theoretical predictions and trends, such as 

those from linear stability analysis (LSA), also do not apply. Furthermore, the prominently 

three-dimensional aspects of the compressible turbulent mixing layer indicate that two-

dimensional DNS would not suffice. Reichert and Biringen (2006) presented a side-by-

side comparison of two- and three-dimensional DNS computations that supports this 

claim. 

 

Qualification Metric #2: Each case must be fully defined by a complete set of 

parameters. 

A complete parameter set includes: 

1. Thickness definition type 
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2. Observed mixing layer thickness growth rate, 𝛿′ 
3. Primary gas (enough information to determine 𝛾1 and 𝑅1) 

4. Secondary gas (enough information to determine 𝛾2 and 𝑅2) 

5. Primary Mach number, 𝑀1 

6. Secondary Mach number, 𝑀2 

7. Velocity ratio, 𝑟 = 𝑈2/𝑈1 

8. Density ratio, 𝑠 = 𝜌2/𝜌1 

9. Total temperature ratio, 𝑇𝑡,2/𝑇𝑡,1 

 

The above parameters were used for calculating the convective Mach number, 𝑀𝑐, 

Slessor’s compressibility parameter, Π𝑐, and a prediction for an incompressible growth 

rate of the same 𝑟, 𝑠, and thickness definition type, 𝛿0′ . Also, they were used to confirm 

the assumption that static pressures are approximately constant (see Qualification Metric 

#7).  

 

It is possible to determine many of these parameters if enough additional information is 

provided. For instance, if 𝑠 was not explicitly defined, but 𝛿0′  and 𝑟 were, then 𝑠 can be 

reverse calculated. Another common example is if the normalized growth rate, 𝜙, was 

presented and the author either explicitly mentioned or alluded to a reference for the model 

used to determine 𝛿0′ , then the observed growth rate could be determined. 

 

Qualification Metric #3: The mixing layer must be planar. 

Axisymmetric mixing layers, commonly created from jet exhausts, experience an eventual 

collapse of their potential core, which is the region of uniform velocity within the center of 

the jet (see Freund et al. 1997). Downstream of the collapse of the potential core, the 
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velocity at the centerline diminishes. This phenomenon makes the definition of an 

axisymmetric mixing layer thickness distinctly different from that of a planar mixing layer. 

Therefore, the study of axisymmetric mixing should remain separate from that of planar 

mixing. 

 

Qualification Metric #4: The mixing layer thickness growth rate must be presented 

in terms of its spatial development and not its temporal development. 

The definitions and the measurement techniques of spatially developing and temporally 

developing mixing layer thickness growth rates are distinctly different. Because of these 

differences, it would be unsuitable to include both types within the same database. 

Although suggestions have been made for relating the two via the convective velocity, 𝑈𝑐, 

they are typically reliant on further assumptions and proportionality constants, which can 

introduce undesirable uncertainties (see Brown & Roshko 1974).  

 

Qualification Metric #5: The mixing layer must not be chemically reacting. 

Chemical reactions between the two streams of the mixing layer introduce a 

preponderance of additional phenomena that complicate the study of mixing layers. 

Although the study of fuel/oxidizer mixing and combustion is of great importance, these 

experiments and simulations are excluded from the present database, which focuses 

solely on the effects of turbulence and compressibility. Dimotakis (2005) offers a thorough, 

top-level discussion of the relationship between turbulent mixing and combustion. 

 

Qualification Metric #6: The mixing layer must be free from artificial mixing 

enhancement techniques. 

Researchers have been actively searching for effective ways to enhance mixing rates ever 

since it was discovered that compressibility hinders the growth rate of mixing layers. Most 



20 
 

applications that contain turbulent mixing layers, including fuel injection and noise 

reduction, stand to benefit from simple yet effective artificial mixing enhancement 

techniques. A variety of techniques have been studied, each of which has performance 

characteristics associated with it. The effects of these different techniques must be kept 

separate from the core behavior of the turbulent mixing layer, which is the focus of the 

present database. In papers where a baseline, non-enhanced mixing layer case was also 

presented, that single case was not excluded from the database due to this qualification 

metric. Some of the many artificial mixing enhancement techniques that are included in 

the present library are as follows: 

 

 Counterflowing streams, where 𝑟 < 0 (Petrie et al. 1985; Strykowski et al. 1993, 

1996; Alvi et al. 1995a, 1995b; Papamoschou 1995) 

 Swirl (Naughton et al. 1997) 

 Acoustic perturbations (Ramaswamy & Loth 1996; Brummund & Nuding 1997; Doty 

& McLaughlin 2000) 

 Artificially high turbulence intensity (Göebel & Dutton 1991) 

 Upstream duct or splitter plate deformations (Wygnanski & Fiedler 1970; Island et 

al. 1998) 

 Steep splitter plate angles (Aso et al. 2009) 

 

Qualification Metric #7: The static pressure gradient must be approximately zero. 

The goal of this metric was to attempt to isolate turbulence as the singular acting effect 

within the mixing layer dynamics. Barre et al. (1997) presented a side-by-side comparison 

of isobaric and non-isobaric mixing layers that showed a measurable difference between 

the two cases. Because of these differences, non-isobaric cases are excluded from the 
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present database. Cases were considered isobaric if the static pressure ratio, 𝑃𝑠2/𝑃𝑠1, was 

between 0.9 and 1.1. Many researchers gave special consideration to ensuring 

compliance to this metric in the design of their apparatus. In cases where the static 

pressure ratio could not be determined (e.g. Chinzei et al. 1986), proof of such special 

consideration could qualify the case for the present database. 

 

Qualification Metric #8: Bounding walls must be sufficiently far away from the 

mixing layer to avoid wall effects. 

If the edges of a mixing layer approach a bounding wall, pressure fluctuations and wall 

boundary layer effects can modify the growth rate of the mixing layer (Erdos et al., 1992). 

Therefore, cases that experienced this situation are excluded from the present database. 

The non-bounded mixing layer is often referred to as a free shear layer. 

 

Qualification Metric #9: Measurements must be taken from a self-similar portion of 

the mixing layer. 

The mixing layer trait of self-similarity (discussed in Section 1.1) is used to ensure 

consistent measurement of constant mixing layer growth rates. If measurements are taken 

in the developing region of the mixing layer wherein growth rates are often more rapid, 

then the observed trends for the mixing layer thickness can be nonlinear and 

misrepresentative of the fully developed growth rate. 

 

A variety of guidelines have been suggested for predicting the minimum downstream 

distance for self-similarity. Bradshaw (1966) claimed that the fully developed mixing layer 

can be found 1000 times the momentum-deficit thickness of the initial boundary layer 

downstream of the splitter plate. That is, fully developed turbulence exists for  
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𝑥𝜃1 > 1000 Eq. 17 

However, the generic applicability of this claim comes into question because Bradshaw’s 

results were based on single-stream, incompressible mixing layers with uniform density. 

For this reason, Papamoschou and Roshko (1988) argued that a more pertinent 

parameter would be  

 
𝑥𝑒𝑓𝑓𝜃1 > 500 Eq. 18 

where 𝑥𝑒𝑓𝑓 = 𝑥(1 − 𝑟) Eq. 19 

It is important to remember that these are merely guidelines, and that the ultimate goal is 

simply to ensure that the measurements were taken from a fully developed portion of the 

mixing layer. Due to the variety of guidelines and the timeline of their introduction, any 

case that made a concerted effort to address this problem qualifies for the present 

database. The effort could be shown in a variety of ways, including explicit compliance 

with Eq. 17 or Eq. 18, graphical proof of self-similarity via velocity profiles and/or 

unarguably linear mixing layer thickness trends, and statements from the author that self-

similarity was observed. 

 

Qualification Metric #10: The paper must be of sufficient quality. 

To avoid making this metric highly subjective, “sufficient quality” refers to a bare minimum 

level of quality. That is, papers must be free of blatant errors. For example, data presented 

in multiple places within the paper must be consistent. If such errors are found within a 

paper, it can be impossible to tell which representation is correct. Furthermore, the 

credibility of other aspects of the paper is drawn into question when such errors exist. It is 

unfortunate that such a problem exists, as it applies to some rather well-renowned articles. 
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Qualification Metric #11: The publication must be of sufficient quality. 

This metric ensures that the published data has been peer-reviewed. Acceptable forms of 

publication include (but are not limited to) articles published in peer-reviewed journals, 

conference papers for conferences with referees, and faculty approved doctorate and 

master’s theses. 

 

2.3 Database Composition and Data Diversity 

The library presented here is quite diverse, including numerous experimental, numerical, 

and theoretical references. One hundred sixty-two (162) references were acquired for this 

study. The contributions of 7 of these 162 were clearly intended to be superseded by a 

later publication. Among the rest, 81 discussed some form of laboratory experiment. Of 

the references that did not discuss an experiment (papers that discussed an experiment 

in addition to some other investigation are bookkept here as experimental), 49 presented 

a numerical study. These numerical studies included 2D and 3D direct numerical 

simulations (DNS), large eddy simulations (LES), Reynolds-averaged Navier-Stokes 

computational fluid dynamics (RANS CFD), linear stability analysis (LSA), and probability 

density function (PDF) analysis. The remaining references are a smorgasbord of 

theoretical discussions, textbook chapters, topic reviews, and databases. 

 

Although 49 different references presented a numerical study, only the singular case from 

Zhou et al. (2012) could be included in the present database because it was the only 

numerical study that simultaneously met Qualification Metrics #1 (3D DNS) and #4 

(spatially developing mixing layer growth rates). The computational requirements for 3D 

DNS are innately expensive, so the additional requirement for steady state simulations 

has been prohibitively expensive until very recently. 
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The data extracted from the library also exhibits good variety. Of the 78 viable data points, 

49 were studies wherein the primary and secondary gases were of the same composition, 

while the other 29 cases were made from mixed gases. With regards to subsonic versus 

supersonic, 25 of the 78 cases mixed two subsonic streams, 46 mixed a subsonic stream 

with a supersonic stream, and 7 mixed two supersonic streams. The thickness definitions 

of the viable data points consisted of 41 velocity-based, 27 visual, and 10 density-based 

observations.  

 

The histograms in Figure 8 through Figure 13 illustrate the diversity of the data contained 

in the database. Each bin contains values including the low end and not including the high 

end, except for the highest valued bin which also includes values at the high end. Overall, 

these show ample variety for many different parameters. The velocity ratio frequencies 

appear skewed toward the low end because cases where 𝑟 → 1 behave more as wake 

flows than as shear layers. The density ratios show good diversity shortly above and below 

unity, and the high values are also mildly represented with some extreme density ratio 

cases from Brown and Roshko (1974). The combination of the velocity and density ratios 

produce a well-represented variety of mixing parameters. The convective Mach number 

is skewed toward the low end due to the inherent difficulty associated with producing and 

accurately observing high 𝑀𝑐 cases. Immediate benefits could be seen with just a few 

cases in the 0.2 < 𝑀𝑐 < 0.4 and 1.0 < 𝑀𝑐 < 1.2 regions. The acoustic speed ratio, which 

is a combination of gas composition, total temperature ratio, and primary and secondary 

stream Mach numbers, is closely packed near unity with the addition of a handful of cases 

at extremely high values.  
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Figure 8. Histogram of velocity ratios within the database. 

 

 
Figure 9. Histogram of density ratios within the database. 

 

 
Figure 10. Close-up of Figure 9 for small density ratios. 
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Figure 11. Histogram of mixing parameters within the database. 

 

 
Figure 12. Histogram of convective Mach numbers within the database. 

 

 
Figure 13. Histogram of acoustic speed ratios within the database. 
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The collection of histograms shown here collectively present the diversity of cases within 

the database. Although this database does not exhibit ideal characteristics for trend fitting, 

it is sufficient for initial estimates. These histograms are presented with the hope that future 

researchers will use them as guidance for designing their cases. 

 

2.4 Discussion on Uncertainty 

As with all experiments and numerical studies, the cases within the present database are 

subject to uncertainty. In addition to the uncertainty reported by each author, an additional 

albeit small amount of uncertainty was introduced when the data was interpreted from the 

original publications. These sources are described in the following subsections. 

 

2.4.1 Reported Uncertainty within the Articles 

An attempt was made to collect information about the uncertainties associated with each 

data point. This attempt was met with varied successes. Only one out of the 41 velocity-

based observations was presented with uncertainty information that was propagated to 

the growth rate level. Meanwhile, 18 out of the 27 visual growth rate data points and 3 out 

of the 10 density-based growth rate data points came with uncertainty information. 

Similarly, error bars could not be obtained for the convective Mach number or Slessor’s 

compressibility parameter because the values were calculated from multiple parameters 

whose uncertainty was seldom reported. Overall, the lack of error bars in the literature is 

rather underwhelming. 

 

It should be clarified that there were some authors who listed the uncertainties of their 

instruments but did not propagate those uncertainties through to the growth rate level. 

These authors presumably left the exercise of propagating errors for the interested reader. 
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Unfortunately, the exact process followed during and after these experiments was seldom 

explained with enough detail for accurate production of such calculations. Therefore, the 

challenge of propagating other authors’ uncertainties was not surmounted during the 

present effort. 

 

The uncertainty data that were available suggest that, on average, visual growth rate 

measurements are the most prone to error, while the velocity- and density-based growth 

rate measurements are roughly equal in accuracy. This result notionally confirms a logical 

conclusion that the visual estimation of the edge of a mixing layer performed by hand will 

be less precise than the systematic determination of certain values in the instrumentally 

measured velocity or density profile. Further speculation might lead to the notion that 

experimentalists using this more subjective approach were more concerned with the 

evaluation of their uncertainties than those using the more objective approach. 

 

Due to the general lack of uncertainty information within the present database, the 

information that was available is presented here only for the reader’s reference. That is to 

say, no error analysis was performed during the modeling process in Section 4. 

 

2.4.2 Errors Introduced in the Collation of the Database 

A number of graphics throughout the library needed to be quantitatively interpreted 

because the data that they contained was not presented elsewhere in text format. An open 

source program called Plot Digitizer (version 2.6.2) was used to complete this task. The 

program was written by Joseph A. Huwaldt and Scott Steinhorst. More information about 

the program and an opportunity to download the latest version are available at 

http://plotdigitizer.sourceforge.net/.  

http://plotdigitizer.sourceforge.net/
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Like most plot digitizers, this program imports an image and then prompts the user to 

identify the endpoints of the horizontal and vertical axes. The plot is calibrated by pairing 

the plot’s axes values with the pixel locations of the endpoints. Data points can be 

extracted and stored after calibration by clicking the cursor on the plot. Plot Digitizer 2.6.2 

has a zoom feature that allows the user to carefully select locations to within fractions of 

a pixel, rendering the systematic error from the program itself practically negligible. Effort 

can be made to capture large screenshots of the plots so that the images retain high 

resolution, thus enabling utilization of Plot Digitizer’s accuracy. 

 

The primary source of error introduced through digitization was that of human error. Data 

markers in published articles by necessity have a certain size to them so that they can be 

visually identified. When digitizing, the assumption was made that the center of these 

markers identifies the exact location of the plotted data. Based on this, the accuracy of the 

digitized data depended upon the accuracy with which the centers of the data markers 

were selected. The error involved in this process was generally less than ±1% of the scale 

of the plot being digitized. For the normalized growth rate versus convective Mach number 

plots, this typically indicated the introduction of an uncertainty of less than ±0.01 for the 

normalized growth rate. The digitized convective Mach number values were used to 

identify the data point by comparing to the values calculated from other mixing layer 

parameters, and therefore have no associated digitization uncertainty. 

 

The references that were processed using Plot Digitizer are individually identified in 

Appendix D. Due to the typically small magnitude, the digitization error associated with 

these references is not included in the error bars presented throughout the report. 
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2.5 Unaltered Representation of the Database 

The database is represented in Figure 14 in terms of 𝜙 vs. 𝑀𝑐 and in Figure 15 in terms 

of 𝜙 vs. Π𝑐. Each data point was extracted directly from the primary author except for the 

cases summarized in the consortium by Birch and Eggers (1973). To avoid clutter within 

the plots, tabular representations of all parameters and their associated citations are 

included in Appendix C.  

 

When available, the incompressible growth rate by which each data point was normalized 

has been taken from the source, either as an exact value or as a particular model being 

used. When those were not available, the most commonly used models were applied. For 

the visual thickness, Papamoschou and Roshko (1988) suggested that the incompressible 

growth rate could be determined as  

 𝛿0′ = 0.17 𝜆𝑠 Eq. 20 

For the velocity-based thicknesses, the incompressible growth rates were estimated using 

the coefficients presented for the error function profile in Barone et al. (2006), which used 𝜎0 = 11.0. Unfortunately, since no such model has been presented for the momentum 

thickness, those cases could not be included in these graphs despite being viable entries 

in the database. 

 

It can be seen that these plots do not conform well to the published models, although there 

is slight improvement over the scatter shown in Figure 6. It is suspected that this slight 

improvement is attributed to the careful application of the Data Qualification Rubric in 

Section 2.2. Section 3 further investigates reasons for this scatter. 
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Figure 14. The unaltered mixing layer database represented in terms of convective 

Mach number. 

 

 
Figure 15. The unaltered mixing layer database represented in terms of Slessor’s 

compressibility parameter. 
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3 Deeper Analysis of Existing Models 

A deeper analysis of the existing models was required to identify the most promising 

approach for improving the normalized growth rate prediction trends. To identify the 

potential areas for further investigation, consider the top-level definition of the normalized 

growth rate, 

 𝜙 = 𝛿′𝛿0′ = 𝑓(𝑀𝑐  𝑜𝑟 Π𝑐) Eq. 21 

According to this equation, the variation can arise from among the three distinct sources 

described below. 

 

1. The variable within the model function, 𝑀𝑐 or Π𝑐 

2. The observed (experimental or numerical) growth rate, 𝛿′ 
3. The incompressible growth rate model, 𝛿0′ .  

 

Model Function, 𝑴𝒄 or 𝚷𝒄 

Variance within the trend could have been introduced if the basis of the model function 

was inappropriate. Presently, the two parameters that have been suggested for this role 

are the convective Mach number, 𝑀𝑐, and Slessor’s compressibility parameters, Π𝑐. These 

could be deemed inappropriate if their derivations introduce large amounts of uncertainty 

through the required assumptions or if they fail to capture a critical physical phenomenon. 

These parameters are scrutinized in Sections 3.1 and 3.2 to address the present 

concerns. 
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Observed Growth Rate, 𝜹′ 
This source of scatter primarily has to do with the effect of experimental error. Section 2.4 

discusses the general lack of uncertainty information within the present database. 

However, enough information was available to suggest that the typical experimental 

uncertainty is not large enough to singlehandedly account for the scatter within the data. 

Beyond the typical uncertainty, all experiments are prone to the possibility of outliers. 

Overall, it is unlikely that a large magnitude of experimental error has consistently affected 

the study of turbulent mixing layer growth rates from dozens of authors at many different 

facilities over decades of research. 

 

Incompressible Growth Rate Model, 𝜹𝟎′  

The final possible source of scatter suggests that the normalization parameter is either 

incorrect, incomplete, or improperly used. Sections 3.3 and 4.3 show that the combination 

of these three fallacies within the incompressible growth rate model is largely responsible 

for the observed scatter in the compressibility trends and that they can all be resolved with 

proper care.  

 

Section 1.2 introduces the error function velocity profile as the basis of the incompressible 

growth rate model. Section 3.3.1 presents a mathematical derivation of the incompressible 

growth rate coefficients based on the error function velocity profile. The results of this 

derivation offer more generic formulae for the coefficients than have previously been 

published, and these formulae match the coefficients from Barone et al. (2006) for 𝜎0 =11.0. Further investigation of the tuning parameter in Section 4.3 suggests that a more 

optimal value can be found. 
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The present incompressible growth rate model is a function of the mixing layer thickness 

definition, the velocity ratio, and the density ratio. Previous authors have noted that a 

variety of experimental nuances could play a significant role in the observed growth rate 

(see Gatski & Bonnet 2009 for a more complete discussion). The qualification rubric 

discussion in 2.2 was used to eliminate many of these nuances from the present database. 

Section 3.3.2 identifies a further distinction that should be accounted for. 

 

With the vast time span and author base through which the compressible mixing layer has 

been studied, it is very possible that the normalization parameter has not been applied in 

exactly the same way each time. Section 3.3.3 shows that this possibility is an unfortunate 

reality. 

 

3.1 Slessor’s Contribution, Revisited 

Slessor (1998) attempted to address the scatter in the existing normalized growth rate 

trends in Chapter 6 of his doctorate thesis. Through that chapter, he introduced a method 

for re-normalizing the observed growth rate and then presented a novel compressibility 

scale. These two contributions are revisited here. 

 

3.1.1 Evaluation of Slessor’s Re-Normalization Technique 

The starting point for Slessor’s investigations is shown in Figure 16. It contains a modest 

collection of the highly cited articles on compressible turbulent mixing layers. 
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Figure 16. Slessor's initial data set, reproduced from Figure 6.1a of his 1998 

thesis. 

 

Slessor noted that the scaling within individual sets of experimental data seems rather 

consistent despite the overall scatter in the trend. For this reason, he recommended 

adjusting the normalization parameter to account for the deviation caused by the use of 

different experimental facilities. The process he used to do this is listed below. 

 

1. Choose a single case from each researcher’s data set to serve as a reference. It 

was deemed preferential to use the case nearest to 𝑀𝑐 = 0.5 because most 

researchers of compressible turbulent mixing layers had a case that approached 
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that value. The convective Mach number of the chosen case is named 𝑀𝑐,𝑟𝑒𝑓, the 

reference convective Mach number.  

2. Using 𝑟 and 𝑠 from the reference case, apply the following equation from Dimotakis 

(1986) (See Section 1.2): 

 
𝛿0′𝐶𝛿 = (1 − 𝑟)(1 + √𝑠)2(1 + 𝑟√𝑠) [1 − (1 − √𝑠) (1 + √𝑠)⁄1 + 2.9 (1 + 𝑟) (1 − 𝑟)⁄ ] Eq. 22 

3. Next, evaluate the following model (Dimotakis 1991a) using 𝑀𝑐,𝑟𝑒𝑓 from step 1. 

 (𝛿′𝛿0′ )𝑡𝑟𝑒𝑛𝑑 = 0.8𝑒−3𝑀𝑐2 + 0.2 Eq. 23 

4. Finally, the new incompressible growth rate model coefficients are determined by 

the following relationship: 

 𝐶𝛿 = (𝛿′)𝑜𝑏𝑠 (𝛿0′𝛿′)𝑡𝑟𝑒𝑛𝑑 (𝐶𝛿𝛿0′ ) Eq. 24 

This approach was used to significantly reduce the scatter in the data set, as is shown in 

Figure 17. 
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Figure 17. Slessor's re-normalized data set, reproduced from Figure 6.1b of his 

1998 thesis. 

 

The above process is reliant on a particular assumption. To properly reduce terms from 

Eq. 24, one must assume that 𝛿𝑜𝑏𝑠′ = 𝛿𝑡𝑟𝑒𝑛𝑑′  at 𝑀𝑐,𝑟𝑒𝑓. This approach artificially forces all 

of the data to collapse onto the Dimotakis (1991a) model near 𝑀𝑐 = 0.5, allowing the 

remainder of the data to follow suit. Three criticisms are made of this assumption: 

 

1. It suggests that a vast majority of the scatter within the data was caused by 

differences in the apparatus without citing nor distinguishing the particular reasons 

for those differences. Such an approach precludes the possibility of applying the 

resulting trend to practical applications which would inevitably have their own 

unique environmental differences. 
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2. It relies heavily on the heuristic trend of Dimotakis (1991a), which was based on 

the data available at the time. Although a wealth of applicable data was published 

in the years between Dimotakis’ and Slessor’s publications, no attempt was made 

to modernize or update the trend. 

3. Entirely different results could be obtained if an alternate reference Mach number 

was chosen. Slessor’s selection of 𝑀𝑐,𝑟𝑒𝑓 = 0.5 was founded on the availability of 

data rather than physical justification. Unfortunately, Figure 16 shows that the 

greatest variance in the unaltered data occurs near 𝑀𝑐 = 0.5. While this 

coincidence maximizes the reduction in scatter, it emphasizes the point that the 

process would not have been as effective if a different 𝑀𝑐,𝑟𝑒𝑓 were chosen.  

 

Citing these criticisms, the assumption relied upon by Slessor’s re-normalization approach 

is not appropriate for the post-processing of compressible turbulent mixing layer growth 

rate data. 

 

3.1.2 Evaluation of Slessor’s Compressibility Parameter 

Slessor’s compressibility parameter was derived from the notion that compressibility acts 

to couple kinetic and thermal energy (see Slessor 1998). A maximum compressibility scale 

can be derived by joining the ratio of kinetic to thermal energy (enthalpy), 

 
𝑈22ℎ = 𝛾 − 12 𝑀2 Eq. 25 

with the freestream velocity difference (∆𝑈). This scale, here referred to as Slessor’s 

compressibility parameter, is defined as 

 Π𝑐 = max𝑖=1,2 [√𝛾𝑖 − 1𝑎𝑖 ] ∗ Δ𝑈 Eq. 26 

or explicitly in terms of freestream values, 
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 Π𝑐 = max [√𝛾1 − 1 (𝑀1 − 𝑎2𝑎1 𝑀2) , √𝛾2 − 1 (𝑎1𝑎2 𝑀1 − 𝑀2)] Eq. 27 

Slessor proposed that the systematic deviations in flows with extreme density and/or 

speed-of-sound ratios that he observed when using the convective Mach number as an 

ansatz were largely accounted for with this new parameter. Finally, Slessor offered a fitted 

smooth curve through the data (which had already been altered by his revised 𝛿0′ ) to be 

 
𝛿′𝛿0′ = (1 + 4Π𝑐2)−0.5 Eq. 28 

The combination of Slessor’s re-normalization and his new compressibility parameter 

resulted in the reduced deviation shown in Figure 18. 

 

 
Figure 18. Slessor's re-normalized data set plotted against his compressibility 

parameter, reproduced from Figure 6.4 of his 1998 thesis. 
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Although the trend in Figure 18 appears to present a marked improvement, it is no longer 

applicable after the discussion in Section 3.1.1. A more appropriate evaluation of the 

merits of Slessor’s compressibility parameter is shown by comparing Figure 14 (𝜙 vs. 𝑀𝑐) 

and Figure 15 (𝜙 vs. Π𝑐) in Section 2.5 because the data being fit is equivalent between 

the two plots. This comparison shows only a minor decrease in variation affected by a 

transition from 𝑀𝑐 to Π𝑐. It is possible that Slessor’s compressibility parameter may be 

applicable in future works, however the meager differences that are presently observed 

do not yet warrant a break from the widely accepted convective Mach number. 

 

3.2 The Convective Mach Number, Revisited 

The convective Mach number was originally suggested by Bogdanoff (1983), but it did not 

gain its popularity or its name until it was more fully derived by Papamoschou and Roshko 

(1988). Their derivation, which is reproduced here, covered the necessary steps for a 

reader to follow. However, it did not include a careful analysis of the assumptions and 

simplifications that were associated with the derivation. Such a careful analysis is included 

in this section. 

 

The derivation began with an inspired perspective of the mixing layer. Rather than the 

typical laboratory frame of reference whereby the splitter plate is stationary and the large 

turbulent structures move at a convective speed of 𝑈𝑐, consider the streamlines as they 

would be shaped when the frame of reference is traveling downstream at speed 𝑈𝑐. Figure 

19 demonstrates these two points of view. 
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Figure 19. Sketches of streamlines of a turbulent mixing layer for (a) stationary 

frame of reference, and (b) convective frame of reference. From Papamoschou 

and Roshko (1988). 

 

From the convective frame of reference, the Mach numbers of the primary and secondary 

streams are logically defined as 

 𝑀𝑐1 = 𝑈1 − 𝑈𝑐𝑎1  Eq. 29 

and 𝑀𝑐2 = 𝑈𝑐 − 𝑈2𝑎2  Eq. 30 

This provides the definitions of the primary and secondary convective Mach numbers, 

respectively. With the new frame of reference in mind, the following three assumptions are 

made: 
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1. Assume steady flow (𝜕 𝜕𝑡⁄ = 0) 

2. Assume the saddle point between two adjacent turbulent structures is a common 

stagnation point (𝑃𝑡2 = 𝑃𝑡1) 

3. Assume equal static pressures (𝑃𝑠2 = 𝑃𝑠1) 

 

These three assumptions are fairly simple to justify or check. Steady flow is a trait that can 

be reproduced in a well-designed experiment. Although it is likely untrue for most practical 

applications, the assumption of steady flow is necessary for any remotely simple 

derivation. The shared stagnation point is easy to recognize when envisioning the 

streamlines as shown in Figure 19(b). The third assumption is quite easy to break in any 

practical setting, however it is well enough maintained in experimental settings. Metric #7 

of the qualification rubric for the present database ensured that this assumption was 

enforced to within ±10%. By accepting the above assumptions, the two streams can be 

related by 

 
𝑃𝑡1𝑃𝑠1 = 𝑃𝑡2𝑃𝑠2  Eq. 31 

or in terms of isentropic flow relations, 

 (1 + 𝛾1 − 12 𝑀𝑐12 ) 𝛾1𝛾1−1 = (1 + 𝛾2 − 12 𝑀𝑐22 ) 𝛾2𝛾2−1
 Eq. 32 

Papamoschou and Roshko claimed that Eq. 32 could be simplified if 𝑀𝑐1 is small and 𝛾2 ≈𝛾1, resulting in 

 𝑀𝑐2 = (𝛾1𝛾2)12 𝑀𝑐1 Eq. 33 

What they did not mention is the justifying mathematics nor the error propagation 

associated with this simplification. These missing steps are described below. To begin, 

Eq. 32 is rearranged without simplification to form 
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 𝑀𝑐2 = √ 2𝛾2 − 1 [(1 + 𝛾1 − 12 𝑀𝑐12 )𝛾1𝛾2−𝛾1𝛾1𝛾2−𝛾2 − 1] Eq. 34 

Binomial expansion of the term in parentheses in Eq. 34 gives 

 

(1 + 𝛾1 − 12 𝑀𝑐12 )𝛾1𝛾2−𝛾1𝛾1𝛾2−𝛾2

≈ 1 + (𝛾1𝛾2 − 𝛾1𝛾1𝛾2 − 𝛾2) (𝛾1 − 12 ) 𝑀𝑐12
+ (𝛾1𝛾2 − 𝛾1𝛾1𝛾2 − 𝛾2) (𝛾1𝛾2 − 𝛾1𝛾1𝛾2 − 𝛾2 − 1)2 (𝛾1 − 12 )2 𝑀𝑐14 + ⋯ 

Eq. 35 

If 𝑀𝑐1 is small and 𝛾2 ≈ 𝛾1, then the high order terms (i.e. O(𝑀𝑐14 )) can be neglected. This 

results in  

 𝑀𝑐2 = √ 2𝛾2 − 1 [1 + (𝛾1𝛾2 − 𝛾1𝛾1𝛾2 − 𝛾2) (𝛾1 − 12 ) 𝑀𝑐12 − 1] Eq. 36 

which can be reduced without further assumptions to Eq. 33. The error associated with 

this simplification is graphically depicted in Figure 20, which shows the percent difference 

between Eq. 33 and Eq. 34 for typically found values of 𝑀𝑐1 and 𝛾2/𝛾1. Note that there is 

zero error when 𝛾2 = 𝛾1 and that the error remains low when 𝑀𝑐1 is small (i.e. < 1) 

regardless of 𝛾2/𝛾1. The error becomes significant when 𝑀𝑐1 is above 1.5 and 𝛾2 ≠ 𝛾1. 
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Figure 20. Percent error introduced to 𝑴𝒄𝟐 = 𝒇(𝑴𝒄𝟏) relationship by the omission 

of 𝑶(𝑴𝒄𝟏𝟒 ) terms. 

 

The next step involved calculating the convective velocity, 𝑈𝑐, in terms of freestream 

parameters. Once again, the assumption of equal static pressures was called upon. This 

time, it was used in conjunction with an assumption that both streams are ideal gases. 

Although the ideal gas assumption is justifiable for a vast variety of cases, the reader 

should take caution when applying it to hypersonic or high temperature cases such as 

scramjet fuel injection or air augmented rocket entrainment. These two assumptions 

combine to simplify the ratio of acoustic speeds to 

 
𝑎2𝑎1 = √𝛾2𝑅2𝑇2𝛾1𝑅1𝑇1 = √𝛾2𝜌1𝛾1𝜌2 Eq. 37 

Through simple algebra, it can be shown that the combination of Eq. 29, Eq. 30, Eq. 33, 

and Eq. 37 yields 

 
𝑈𝑐𝑈1 = 1 + 𝑟√𝑠1 + √𝑠  Eq. 38 
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If 𝑀𝑐2 is incorrect by a factor of 𝜀 (i.e. 𝑀𝑐2 = 𝜀 √𝛾2 𝛾1⁄  𝑀𝑐1), then the propagation of error 

updates Eq. 38 to the form, 

 
𝑈𝑐𝑈1 = 𝜀 + 𝑟√𝑠𝜀 + √𝑠  Eq. 39 

Moreover, if the ideal gas and static pressure assumptions are found to be incorrect by a 

factor of 𝛼 (i.e. 𝛼 = 𝜌2𝑅2𝑇2/𝜌1𝑅1𝑇1), then the propagation of error updates Eq. 39 to the 

form, 

 
𝑈𝑐𝑈1 = 𝜀√𝛼 + 𝑟√𝑠𝜀√𝛼 + √𝑠  Eq. 40 

This relationship suggests that the error in 𝑈𝑐 prediction is greatest in the hypothetical 

case of a low density, high speed jet mixing with a high density stagnant gas of 

considerably different 𝛾. If, for example, |𝛾2 𝛾1⁄ | and the true value of 𝑀𝑐1 were large 

enough to produce 𝜀 = 1.2 while 𝑠 = 7, then the isentropic relationship with the above 

simplification would overpredict 𝑈𝑐 by approximately 14%. The error is further 

compounded if 𝛼 is large. In particular, researchers should take special caution when 

attempting to use this approach to study mixing layers with pressure gradients. 

 

On the other hand, the errors inherent to the above derivation are quite small if any of the 

parameters are relaxed. That is, if 𝛾2 ≈ 𝛾1, the true value of 𝑀𝑐1 is small, the velocity ratio 

is moderate to high, or the density ratio is low, then either 𝜀 or its effect on Eq. 39 become 

quite small (i.e. < ±2%). These circumstances apply to a vast majority of the cases 

presently under consideration. Based on these findings, the convective Mach number and 

the simplified isentropic relationship for the convective speed are confirmed as an 

acceptable parameter for the study of most compressible turbulent mixing layers. 
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No discussion about the prediction of the convective velocity is complete, however, without 

some mention of the controversy associated with its measurement. Several authors have 

presented contradicting evidence about the accuracy of the theoretical predictions. 

Recently, Thurow et al. (2008) published an assessment of the associated measurement 

techniques in which they found that flow visualization and inadequately seeded planar 

Doppler velocimetry (PDV) can provide misleading results. Meanwhile, the result from 

their fully seeded PDV case was close to the theoretically expected value. 

 

3.3 Normalization and the Incompressible Growth Rate Model 

The third potential source of variance within the compressibility model is the act of 

normalizing the observed growth rate by an estimate for what the growth rate would have 

been without the effects of compressibility. Accurate establishment and application of the 

incompressible growth rate model is necessary for the normalized growth rate to have 

meaning. The following subsections discuss these factors. 

 

3.3.1 Derivation of the Incompressible Growth Rate Model 

The accuracy of the incompressible growth rate model by which the observed growth rates 

are normalized is paramount to the isolation of the effects of compressibility. The standard 

form of the model is (Papamoschou & Roshko 1988) 

 𝛿0′ = 𝐶𝛿 (1 + 𝑟)(1 + 𝑟√𝑠)1 + √𝑠 = 𝐶𝛿𝜆𝑠 Eq. 41 

where 𝐶𝛿 is a relationship of proportionality. Specific values for 𝐶𝛿 have been suggested 

for each of the three velocity-based thickness definitions by Barone et al. (2006). However, 

complete derivations of parameter-based equations for the determination of 𝐶𝛿 are not 
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found in the literature. As such, they are presented here. The products of these derivations 

(i.e. Eq. 49, Eq. 50, and Eq. 56) are applied in Section 4.3.1. 

 

Overview 

The velocity profile for incompressible mixing layers can be estimated using the error 

function profile, 

 𝑈∗ = 𝑈 − 𝑈2𝑈1 − 𝑈2 = 12 [1 + erf (𝜎0𝑦𝜆𝑠𝑥)] Eq. 42 

where erf(𝑧) = 2√𝜋 ∫ 𝑒−𝑘2 𝑑𝑘𝑧
0  Eq. 43 

The three velocity-based mixing layer thickness definitions (described in more detail in 

Section 1.1.1) are listed below: 

 

 Shear Layer Thickness: 𝛿𝑏 = 𝑦1 − 𝑦2 , where 𝑦1 and 𝑦2 are the locations where 𝑈∗ = 0.9 and 0.1, respectively. 

 Stanford Thickness: 𝛿𝑆 = 𝑦1 − 𝑦2 , where 𝑦1 and 𝑦2 are the locations where 𝑈∗ =√0.9 and √0.1, respectively. 

 Vorticity Thickness: 𝛿𝜔 = (𝑈1 − 𝑈2) (𝜕𝑈 𝜕𝑦⁄ )𝑚𝑎𝑥⁄ = 1 (𝜕𝑈∗ 𝜕𝑦⁄ )𝑚𝑎𝑥⁄ . 

 

Because mixing layers are self-similar and also because of the nature of the error function 

velocity profile, the growth rates of these thicknesses vary as functions of 𝜎0, 𝜆𝑠, and the 

individual definitions (subscript “𝑑𝑒𝑓” is replaced by “𝑏”, “𝑆”, or “𝜔” accordingly) such that 

 𝛿0,𝑑𝑒𝑓′ = 𝐶𝑑𝑒𝑓(𝜎0) ∗ 𝜆𝑠 Eq. 44 

The derivations of 𝐶𝑏(𝜎0), 𝐶𝑆(𝜎0), and 𝐶𝜔(𝜎0) are shown below. 
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Derivation of 𝑪𝒃 and 𝑪𝑺 

The derivations for 𝐶𝑏 and 𝐶𝑆 are similar, so only the derivation for 𝐶𝑏 is shown here. To 

begin, it is desired to know the values of 𝑦 when 𝑈∗ = 0.9 and 0.1. For 𝑈∗ = 0.9, 

 𝑈∗ = 0.9 = 12 [1 + erf (𝜎0𝑦1𝜆𝑠𝑥 )] Eq. 45 

Solve for 𝑦1 using the inverse error function to get 

 𝑦1 = 𝜆𝑠𝑥𝜎0 erf −1[(0.9 ∗ 2) − 1] Eq. 46 

Repeat the process for 𝑈∗ = 0.1 and take the difference to yield the shear layer thickness, 

 𝛿𝑏 = 𝑦1 − 𝑦2 = 𝜆𝑠𝑥𝜎0 [erf −1(0.8) − erf −1(−0.8)] ≅ 1.8124 𝜆𝑠𝑥𝜎0  Eq. 47 

Take the derivative with respect to 𝑥 to yield the mixing layer growth rate, 

 𝛿𝑏′ ≅ 1.8124 𝜆𝑠𝜎0 Eq. 48 

Finally, rearrange terms into the coefficient format, 

 𝐶𝑏 = 𝛿𝑏′𝜆𝑠 ≅ 1.8124𝜎0  Eq. 49 

Through nearly equivalent steps, the Stanford thickness can be found to be 

 𝐶𝑆 ≅ 1.4923𝜎0  Eq. 50 

 

Derivation of 𝑪𝝎 

For the derivation of the incompressible vorticity thickness growth rate coefficient, note 

that the derivative of the error function is as follows: 

 
𝑑𝑑𝑧 erf(𝑧) = 2√𝜋 𝑒−𝑧2

 Eq. 51 

Begin by calculating the 𝑦-derivative of the error function velocity profile,  
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𝜕𝑈∗𝜕𝑦 = 𝜕𝜕𝑦 [12 [1 + erf (𝜎0𝑦𝜆𝑠𝑥)]] = 𝜎0√𝜋𝜆𝑠𝑥 𝑒−(𝜎0𝑦𝜆𝑠𝑥)2

 Eq. 52 

This derivative is at its maximum when 𝑦 = 0. Therefore,  

 (𝜕𝑈∗𝜕𝑦 )𝑚𝑎𝑥 = 𝜎0√𝜋𝜆𝑠𝑥 Eq. 53 

The vorticity thickness is the inverse of this derivative, 

 𝛿𝜔 = 1(𝜕𝑈∗𝜕𝑦 )𝑚𝑎𝑥
= √𝜋𝜆𝑠𝑥𝜎0  Eq. 54 

Take the derivative with respect to 𝑥 to yield the growth rate, 

 𝛿𝜔′ = √𝜋𝜆𝑠𝜎0  Eq. 55 

Finally, rearrange terms into the coefficient format, 

 𝐶𝜔 = 𝛿𝜔′𝜆𝑠 = √𝜋 𝜎0  Eq. 56 

 

3.3.2 Apparent Dependence on Mixing Layer Thickness Definition 

The normalized growth rate, 𝜙, is created by dividing an observed growth rate with an 

incompressible growth rate model evaluated with the same 𝑟, 𝑠, and thickness definition 

as the observed case. The fact that the thickness definition can affect the incompressible 

growth rate estimate implies that the resulting normalized values of 𝜙 should be 

independent of the chosen thickness definition.  

 

To test this notion, the unaltered database from Figure 14 was separated into categories 

based on the thickness definition of the data as shown in Figure 21. The velocity-based 

thicknesses category contains all data that was reported in terms of 𝛿𝑏, 𝛿𝑆, or 𝛿𝜔. The 

visual thicknesses category contains only the data that was extracted from flow imaging 
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and reported as 𝛿𝑣𝑖𝑠. The density-based thicknesses category contains any thickness 

definition that is directly affected by the density profile, including 𝛿𝜃, 𝛿𝑝𝑖𝑡, and 𝛿𝜌𝑚. 

 

Visual inspection of the 𝜙 vs. 𝑀𝑐 plot in Figure 21 and the associated histogram of 

residuals in Figure 22 suggests that a discrepancy may exist between the velocity-based 

thicknesses and the other types. Moreover, it appears that the Dimotakis (1991a) trendline 

represents the visual thickness growth rates much better than the velocity-based thickness 

growth rates. Such a discrepancy could indicate that the density profile and the velocity 

profile may be affected differently by compressibility. Another possible explanation could 

be that the incompressible growth rate models for the velocity-based thicknesses and the 

density-based or visual thicknesses are not consistent with each other. Either way, the 

evidence shown here suggests that (with the present knowledge) a trendline for the 

velocity-based thickness growth rates should be fit without regard for the visual and 

density-based thicknesses. The data processing and model fitting approach in Section 4 

reflects this decision. 
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Figure 21. The unaltered mixing layer database represented in terms of convective 

Mach number and identified by thickness definition type. 

 

 
Figure 22. Histogram of residuals for Figure 21. 
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3.3.3 Inconsistent Normalization Case Example: Data from Chinzei et al. 

(1986) 

What may be the most significant contributor for the large scatter in the data is the lack of 

consistency seen in authors’ representations of their predecessors’ work. It is customary 

to present comparable data from past studies alongside the results of one’s own 

publication. The collection and treatment of each individual set of data is subject to many 

sources of augmentation that are capable of effectively altering the data’s reception. As 

the original publications become older and less accessible, authors may be inclined to 

extract their data sets from secondary sources, which can compound the possibility of 

changing how the original data is represented.  

 

Take the experimental data published by Chinzei et al. (1986) as a case example. Since 

it was published before the theoretical work of Papamoschou and Roshko (1988), the 

measured mixing layer growth rates were normalized according to a process that is quite 

different from the presently accepted incompressible growth rate models. As a result, each 

author wanting to compare his/her own results with those of Chinzei et al. had to make a 

decision about how to properly normalize the growth rates. In contrast, most of the 

experiments that came after 1988 were normalized by modern incompressible growth rate 

estimates within the original publication, thereby making it easier for future authors to 

reproduce the exact normalized growth rate without having to concern themselves with 

the raw, experimentally measured growth rate.  

 

The outcome of the added freedom associated with the data from Chinzei et al. (1986) is 

shown in Figure 23. Each data series in this plot supposedly represents the exact same 
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outcome of one experiment, however they were each extracted from a different source. 

The variables between these data series are the models used for the incompressible 

growth rate and each author’s ability to accurately reproduce the original data. It is clear 

that the incompressible growth rate model used for normalization can play a significant 

role in how a raw data set is perceived. Moreover, the model appears to have taken many 

forms over the years. These variations suggest that a major source of the disagreement 

within the overall database could have been caused by inconsistent post-processing 

rather than from the experiments themselves. 

 

 
Figure 23. Various representations of the growth rates observed by Chinzei et al. 

(1986). 

 

The compilation of data in the present study addresses the inconsistencies shown above 

in two ways. First, all of the data was extracted from their original publications in order to 

avoid copying erroneously translated information. Secondly, enough information was 

required of each case in order to clearly identify the observed mixing layer growth rate. A 

selection of article summaries and comments on data extraction is included in Appendix 

D to clarify the processes used in some of the more difficult cases. The benefit derived 
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from the careful data extraction process employed here was maintained in the modeling 

approach described in Section 4 by consistently applying a re-tuned incompressible 

growth rate model to all of the applicable data.  

 

3.4 Dimotakis (1991a) Trendline, Revisited 

The final aspect in creating a useful and trustworthy empirical model is the parametric 

function that is fitted to the data. The function used here as the basis of the model was 

generalized from the trendline originally suggested by Dimotakis (1991a). The function 

has the form 

 �̂� = (1 − 𝐴)𝑒−𝐵(𝑀𝑐)𝐶 + 𝐴 Eq. 57 

where 𝐴, 𝐵, and 𝐶 are the parameters of the model. As presented by Dimotakis (1991a), 

these parameters had values of 𝐴 = 0.2, 𝐵 = 3, and 𝐶 = 2.  

 

Since this function is the basis of the fitted model, further analysis of its form and 

sensitivities is warranted. The requirements of the function, as defined by conventionally 

accepted knowledge about compressible turbulent mixing layers and the data set in 

question, are listed below.  

 

1. The model must have �̂� = 1 at 𝑀𝑐 = 0.  

2. Until some low value of 𝑀𝑐 (typically around 𝑀𝑐 ∼ 0.3), �̂� ≈ 1. 

3. For 𝑀𝑐 ≳ 1, �̂� is constant. The exact 𝑀𝑐 location and �̂� constant value are 

allowed to vary with the data. 

4. The curve should have a smooth transition between the “beginning” (requirement 

#1) and the “end” (requirement #3). 
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Figure 24 through Figure 26 show how the model created by Dimotakis and expanded 

here meets these requirements while allowing sufficient flexibility to the statistician. In 

each figure, a single parameter is varied while the other parameters are fixed at nominal 

(approximate) values. In each, a bold curve indicates where the varying parameter equals 

the nominal value used in the other figures. The values of the parameters being plotted 

are listed above each figure. 

 

Figure 24 shows how parameter 𝐴 sufficiently enables the model to meet requirements #1 

and #3 while providing simple and precise control of the asymptotic value. According to 

the requirements, appropriate values of 𝐴 are within the set (0, 1) depending on the 

magnitude of compressibility’s effect.  

 

 
Figure 24. The effect of model parameter "A". 
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Figure 25 shows how parameter 𝐵 can be used to tune the value of 𝑀𝑐 at which the model 

reaches its asymptotic �̂� value. According to the requirements, appropriate values of 𝐵 

are within the set (0, ∞). 

 

 
Figure 25. The effect of model parameter "B". 

 

Figure 26 shows how parameter 𝐶 can be used to tune the value of 𝑀𝑐 at which the model 

departs from the incompressible (�̂� ≈ 1) region. According to the requirements, 

appropriate values of 𝐶 are approximately within the set (2, 40). Although these suggested 

limits can be crossed if desired, the smoothness of the curve is largely impacted. 
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Figure 26. The effect of model parameter "C". 

 

It should be noted that the parameters 𝐵 and 𝐶 are not mutually exclusive. Both 

parameters affect the transition between the incompressible and highly compressible 

asymptotes in a similar fashion—higher values lead to sharper transitions, and vice versa. 

If the two parameters are not relatively well balanced, the larger parameter can dominate 

over the smaller one, affecting both the incompressible and highly compressible regions. 

This coupled relationship makes appropriate selection of parameter values very difficult 

without the aid of numerical optimizers. 

 

Although parameter selection may be somewhat difficult, the form of the model adequately 

meets the minimal requirements. Moreover, the features of the model are sufficiently 

sensitive to the model’s parameters.  
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4 A New Model for Turbulent Mixing Layer 

Growth Rates 

The analysis presented in Section 3 was used as a foundation for an improved model for 

the turbulent mixing layer growth rate. Sections 3.1 and 3.2 suggest that the convective 

Mach number is an adequate measure of compressibility. Meanwhile, Section 3.3 

identifies the incompressible growth rate model as a prime candidate for modification. 

Based on the findings of Section 3.3.2 and the availability of parametric equations for 

velocity-based incompressible growth rates, the model is fit to only the velocity-based 

thickness data. Finally, Section 3.4 shows that a generalized, parametric form of the 

Dimotakis (1991a) model function is suitable for representing the trends found in the data. 

 

In preparation for the modeling process, Section 4.1 identifies the statistical tools that are 

employed, and Section 4.2 presents the reduced data set that is considered. The process 

itself is quite simple, with proper tuning and consistent application of the incompressible 

growth rate model in Section 4.3 and the identification and removal of statistical outliers in 

Section 4.4. 

 

4.1 Discussion of Statistical Tools Used During the Modeling 

Process 

This section offers a brief overview of the statistical tools that are used during the modeling 

process. Among these tools are least square best-fit model parameter tuning, the 

coefficient of determination, histograms of residuals, and boxplots. 
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Model Parameter Tuning 

The model’s parameters were tuned to fit the data for the least squared sum of residuals. 

The incompressible growth rate model has only one parameter, 𝜎0, which was tuned using 

an optimization algorithm written in MATLAB (see Section 4.3). The model for the 

normalized growth rate has three parameters, 𝐴, 𝐵, and 𝐶, which were tuned using a 

program called ZunZun. ZunZun is an open-source curve fitting tool that was written by 

James R. Phillips, is powered by Python, and is available on the internet at 

http://zunzun.com/. It runs a very robust regression algorithm that is capable of finding 

best-fit parameter sets for hundreds of two-dimensional and three-dimensional nonlinear 

equations in addition to user-defined functions. The user-defined function feature was 

used in the present effort. A plethora of statistical metrics and plots are reported for each 

curve fit so that the user can assess the quality of the model. 

 

Goodness-of-Fit Metrics 

The coefficient of determination (𝑅2) can be used to describe how well a model fits the 

data. More specifically, 𝑅2 is a measure of how well the variance in the data is described 

by the model. It is defined as 

 𝑅2 = 1 − ∑ (𝑝𝑖 − 𝑓𝑖)2𝑖∑ (𝑝𝑖 − �̅�)2𝑖  Eq. 58 

where 𝑝𝑖 is the set of observed data,  �̅� is the arithmetic mean of the observed data, and 𝑓𝑖 is the output of the model for the same independent variables associated with the 

respective 𝑝𝑖. There are criticisms about 𝑅2 because it is only an index of proximity 

between the data points and the curve and not an index of the correctness of the model 

(Christopoulos & Lew 2000).  
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As a minimum, the use of 𝑅2 should be paired with an analysis of the residuals to ensure 

that the correct model is chosen. Graphical representation of the residuals as histograms 

and scatter plots is often an adequate approach for finding any systematic deviations of 

the data from the model, which would indicate that the model is incorrect. Ideally, the 

residuals would be normally distributed (i.e. histogram of residuals resembles a bell curve) 

and small in magnitude. 

 

Outlier Identification 

Further analysis of the residuals is necessary to identify the possible existence of outliers. 

The use of boxplots for this purpose is simple yet effective, although it does have some 

limitations (Hodge & Austin 2004). In boxplots, the median, lower quartile, and upper 

quartile are plotted to form a box as shown in Figure 27. Then, the inner quartile range is 

calculated as the difference between the upper and lower quartiles. The “extremes” reach 

to the most extreme data points that are within 1.5 times the inner quartile range of the 

upper and lower quartiles. Outliers are any points that lie beyond the extremes.  

 

 
Figure 27. A sample boxplot, from Hodge and Austin (2004). 
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In the present case of fitting data to a nonlinear regression, outliers are identified by 

creating a boxplot of the residuals between the data set and the regression. Any outliers 

that are identified are removed from the data set, and then a new boxplot is made to reflect 

the change. This process is repeated until no outliers are found. Ideally, the final boxplot 

will have no outliers, the median will be located where the residual is zero, and the lower 

and upper quartiles and extremes will display symmetry about the median. The approach 

used here is among the simplest of outlier identification techniques and can easily be 

applied by researchers without a strong background in statistics.  

 

4.2 Baseline Data Set 

The data fitting began with the velocity-based subset of the complete database presented 

in Section 2.5. This reduced data set, named Data Set #0, serves as the baseline for later 

modifications. It includes 41 velocity-based mixing layer thickness growth rate 

observations from 11 sources. The model parameters discussed in Section 3.4 were re-

evaluated using ZunZun to provide an appropriate basis of comparison for the future 

steps. For Data Set #0, the best-fit model parameters are 𝐴 = 0.4428, 𝐵 = 7.9983, and 𝐶 = 4.8881. Data Set #0 and its best-fit regression are shown in Figure 28. For the sake 

of clarity, refer to Appendix C to find a table with the data points and their respective 

citations (Data Set #0 can be derived from the complete, unaltered database by sorting 

out the shear layer, Stanford, and vorticity thicknesses). 
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Figure 28. Data Set #0 – Unmodified velocity-based data set with regression. 

 

The first things one should notice are the two obviously errant data points in the 

incompressible region. These points are addressed in Section 4.3.1. These two points are 

largely responsible for the very low value of 𝑅2 = 0.5444; if they were omitted, the same 

regression would yield 𝑅2 = 0.7974, which is considerably better but still not sufficient for 

accurate prediction. 

 

Figure 29 shows a histogram of residuals (observed value minus model value) for Data 

Set #0. At first glance, the data appear to be shaped as a bell curve. However, one must 

recognize that there is a distinct positive shift in the trend.  
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Figure 29. Data Set #0 - Histogram of residuals. 

 

4.3 Tuning the Incompressible Growth Rate Model 

As suggested by the discussion in Section 3.3, the first step in improving the data set and 

the best-fit model associated with it is to re-evaluate the incompressible growth rate model 

that is used to normalize the observed growth rates. The incompressible model must then 

be consistently applied to the entire data set.  

 

4.3.1 Application of Coefficient Functions for Incompressible Growth Rate 

Model Tuning 

Modern computing capability provides a relatively simple yet accurate approach to the 

tuning of the empirical constant, 𝜎0. The approach used here applies MATLAB’s fminbnd 

function, a robust bounded function minimizer, to determine the optimal value of 𝜎0 
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(however most optimizer algorithms would suffice). The algorithm varied 𝜎0, and the 

function in question determined the sum of squared residuals between a fixed set of 

incompressible observed growth rate data and the growth rate model which was defined 

by 𝜎0. The incompressible data set included all of the viable points from Data Set #0 for 

which 𝑀𝑐 ≤ 0.3. The limit of 0.3 was chosen from visual inspection of the data which 

suggests that the effect of compressibility becomes significant beyond that value, which 

agrees with compressibility analysis of single stream flows. The incompressible data set 

is shown in Table 1. The incompressible growth rate model (see Section 3.3.1) was 

evaluated for each datum at each iteration of 𝜎0. 

 

Table 1. Incompressible mixing layer data set. 

 

 

The optimization algorithm described above was completed multiple times to identify any 

existing outliers, which were eliminated after each repetition. The iteration was continued 

Author Year Thickness Type Mc λs δ'obs

Liepmann & Laufer 1947 Shear Layer 0.026 1.000 0.164

Liepmann & Laufer 1947 Stanford 0.026 1.000 0.120

Liepmann & Laufer 1947 Vorticity 0.026 1.000 0.169

Birch & Eggers (Case 4 - Lee) 1973 Shear Layer 0.046 0.481 0.084

Birch & Eggers (Case 4 - Lee) 1973 Stanford 0.046 0.481 0.061

Brown & Roshko 1974 Vorticity 0.004 0.560 0.107

Brown & Roshko 1974 Vorticity 0.005 0.372 0.060

Brown & Roshko 1974 Vorticity 0.006 1.133 0.187

Brown & Roshko 1974 Vorticity 0.007 1.823 0.134

Brown & Roshko 1974 Vorticity 0.008 0.689 0.241

Brown & Roshko 1974 Vorticity 0.009 0.449 0.089

Brown & Roshko 1974 Vorticity 0.012 0.755 0.134

Brown & Roshko 1974 Vorticity 0.014 1.009 0.180

Chinzei et al. 1986 Stanford 0.270 0.147 0.027

Messersmith et al. 1990 Shear Layer 0.200 0.116 0.021

Goebel & Dutton 1991 Shear Layer 0.200 0.123 0.020
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until no outliers were present to ensure that the remaining data set was not contaminated 

by outliers. 

 

Figure 30 shows a boxplot of the residuals after the first pass of the iteration. In the case 

shown here, two outliers are present (Note: these were the obviously errant data points 

identified in Section 4.2). Analysis of the function outputs identified the two outliers as the 𝜆𝑠 = 1.8229 and 𝜆𝑠 = 0.6890 cases from Brown and Roshko (1974), who noted large 

scatter for their cases with 𝑈2 = 0, of which these are two. Brown and Roshko suggested 

that the 𝑈2 = 0 cases could have caused difficulties in measurement due to increased 

sensitivities within the low-speed environment. 

 

 
Figure 30. Boxplot of residuals for the first pass of incompressible growth rate 

model tuning. 

 

After eliminating the two outliers from Figure 30, the optimization algorithm was repeated. 

As shown in Figure 31, the initial refinement provided the opportunity for a new outlier to 

be identified. This new outlier was the Stanford thickness measured from the experimental 
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case by Liepmann and Laufer (1947). This reference was one of the few for which three 

different thickness definitions could be applied to a single test case. While it is curious that 

only one of the three observations would be identified as an outlier, it does not necessarily 

imply that the other data associated with Liepmann and Laufer’s test case are invalid.  

 

 
Figure 31. Boxplot of residuals for the second pass of incompressible growth rate 

model tuning. 

 

After the elimination of the outlier identified in the second pass, a third and final 

optimization was performed. Figure 32 shows that no new outliers were identified and that 

the median of the residuals (denoted by the red line) is very nearly at 0. Furthermore, the 

defining features of the boxplot are all fairly well centered about the median.  

 



67 
 

 
Figure 32. Boxplot of residuals for the third pass of incompressible growth rate 

model tuning. 

 

The result of the process was a value for 𝜎0 that most closely fits the available aggregate 

of incompressible growth rate data without giving preference to any one experiment. This 

value is 𝜎0 = 10.3773, which is close yet notably less than the conventionally accepted 

value of 𝜎0 = 11.0. Table 2 shows the difference in model coefficients for the different 

thickness definitions for the conventional and new values of 𝜎0. 

 

Table 2. Comparison of incompressible model coefficients for 𝝈𝟎 = 𝟏𝟏. 𝟎 and 𝝈𝟎 =𝟏𝟎. 𝟑𝟕𝟕𝟑. 
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The resulting coefficient of determination for this tuned model, 𝑅2 = 0.9856, is a marked 

improvement over the value of 𝑅2 = 0.5603 found when using 𝜎0 = 11.0 for the entire 

incompressible data set listed in Table 1. It is also a slight improvement over the value of 𝑅2 = 0.9731, which was found for 𝜎0 = 11.0 but with the outliers removed. 

 

Figure 33 shows a histogram of residuals as another diagnostic plot for the incompressible 

model. Ideally, a histogram of residuals would have a normal distribution. The present 

model is afflicted by an underwhelming amount of data points, and as such, does not 

display the iconic bell curve that is desired. In spite of the unfortunate scarcity, certain 

features of the plot which suggest normalcy can be identified. For instance, the highest 

frequency is found very close to zero. Furthermore, all of the residuals seem moderately 

well centered about zero.  

 

 
Figure 33. Histogram of residuals for the incompressible growth rate model. 
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4.3.2 Updated Data Set with Consistently Applied Incompressible Growth 

Rate Model 

The coefficients from Table 2 were used to predict incompressible mixing layer growth 

rates (according to Eq. 41, page 46) for all of the cases in Data Set #0. These 

incompressible growth rates then replaced the existing values that the authors originally 

predicted in their publications. The outliers that were identified from the incompressible 

data set in Section 4.3.1 were removed from the Data Set #0. The result of these 

modifications, called Data Set #1, was processed in ZunZun to produce a new best-fit 

model, as shown in Figure 34. For Data Set #1, the best-fit model parameters are 𝐴 =0.4636, 𝐵 = 17.0677, and 𝐶 = 7.4541. As before, refer to Appendix C to find a table with 

the data points and their respective citations. 

 

 
Figure 34. Data Set #1 – Consistently normalized by incompressible growth rate 

model, 𝝈𝟎 = 𝟏𝟎. 𝟑𝟕𝟕𝟑. 
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The above modifications had a profound effect on the data set. Many cases that previously 

appeared to match the trend were shifted toward higher normalized growth rates. Some 

of these indicated normalized growth rates above unity at convective Mach numbers up 

to 𝑀𝑐 ≈ 0.5. On average, however, the data appear to have moved closer to one another, 

and the new model has a tighter fit. This is statistically evident by the higher value of 𝑅2 =0.8338. 

 

The histogram of residuals for Data Set #1 is presented in Figure 35. When compared to 

Figure 29, this plot appears to be much more closely centered about zero. Furthermore, 

the bell curve shape is more prominent, although there is still a slight shift towards positive 

residuals. 

 

 
Figure 35. Data Set #1 – Histogram of residuals. 
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4.4 Identification and Removal of Outliers 

Although the processes described in Section 4.3 effectively reduced a considerable 

portion of the scatter found in Data Set #0 and provided a more reliable best-fit model, the 

resulting model could still have been affected by the contamination of possible outliers 

within the compressible regime. The effort described in this section identified any possible 

outliers present in Data Set #1 using the same process that was applied in Section 4.3.1 

to the incompressible data set. The cases that remain after the outliers were removed are 

grouped as Data Set #2, the final data set.  

 

The first boxplot, shown in Figure 36, identified three outliers. One of the two positive-

residual outlier cases was the 𝑀𝑐 = 0.27 case from Chinzei et al. (1986), which had 

previously been identified as anomalous by Barone et al. (2006) who noted pressure 

waves and/or freestream turbulence in the secondary stream that was visible in the 

Schlieren images. The second positive-residual outlier case was the vorticity thickness 

growth rate at 𝑀𝑐 = 0.51 from Samimy and Elliott (1990). The shear layer thickness growth 

rate associated with that same case is not necessarily affected by the anomalous report 

for vorticity thickness growth rate, although a physical explanation for the outlier could not 

be determined. The single negative-residual outlier was the 𝑀𝑐 = 0.46 case by Göebel 

and Dutton (1991), who noted that this case had streamwise deviations in freestream 

velocity as high as 13%. 
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Figure 36. Boxplot of residuals for the first pass of outlier identification for Data 

Set #1. 

 

After the three outliers identified in Figure 36 were removed from the data set, the model 

parameters were re-evaluated to best fit the remaining data. The residuals associated with 

this new model are summarized in the boxplot in Figure 37. Since no further outliers were 

identified, this data set is finalized and named Data Set #2. Had the new boxplot identified 

further outlier cases, the process would have been repeated. Figure 38 highlights all six 

of the identified outliers alongside Data Set #2. The model included in this graph was fit to 

only Data Set #2, and is the final model for the normalized growth rate. 
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Figure 37. Boxplot of residuals for the second pass of outlier identification for 

Data Set #2. 

 

 
Figure 38. Six outliers shown alongside Data Set #2. 
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4.5 Final Data Set and Fitted Model 

No further modifications were made to Data Set #2. This final data set is shown with its 

best-fit model in Figure 39. For Data Set #2, the best-fit model parameters are 𝐴 = 0.4592, 𝐵 = 10.7010, and 𝐶 = 6.3143. After the tuning and consistent application of the 

incompressible growth rate model and the removal of statistically identified outliers, the 

resulting data display considerably reduced variance. In fact, some of the largest residuals 

are found in the incompressible regime. The improved fit of the model is further supported 

by the respectable (although still not ideal) value of 𝑅2 = 0.9004. In full equation form, the 

model is 

 �̂� = (1 − 0.4592)𝑒−10.7010(𝑀𝑐)6.3143 + 0.4592 Eq. 59 

 

 
Figure 39. Data Set #2 – Final data set – Outliers removed. 
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The histogram of residuals for Data Set #2, shown in Figure 40, exhibits good behavior. 

The overall shape of the curve exhibits normality. Although the residuals are still on 

average slightly skewed to the positive end, the magnitude of this shift is far improved 

from that of the baseline data set. Furthermore, the width of the histogram curve is much 

smaller than before. The largest residual in Data Set #2 is only 0.173, associated with the 

vorticity thickness growth rate measured by Samimy and Elliott (1990) for their 

underexpanded case. 

 

 
Figure 40. Data Set #2 - Histogram of residuals. 

 

A plot of percent difference between Data Set #2 and its associated model is shown in 

Figure 41 as yet another diagnostic tool. From this plot, it can be easily seen that the 

model is accurate to roughly ±20%. 



76 
 

 
Figure 41. Percent difference between Data Set #2 and its associated model. 

 

Although this data set and model are considerably more trustworthy than those presently 

available in the literature, there is still room for improvement. First and foremost, there is 

a clear need for more data. The qualification rubric discussed in Section 2.2 was a 

necessary evil in this regard. It effectively prohibited numerous studies from inclusion 

within the baseline data set in order to ensure that the model was uncontaminated by 

additional parameters. Further studies that prove some of the requirements to be 

unnecessary could considerably increase the size of the data set. Moreover, a study that 

validates a functional relationship between the velocity-based mixing layer growth rates 

and those of either the visual or density-based definitions would have a similar (and 

perhaps more profound) effect. To validate such a relationship, one would need to test it 

for both incompressible and compressible cases. Fortunately, the process described in 

Section 4 should easily accommodate larger data sets; a new yet comparable model can 

be fitted with each forthcoming study.  
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Another shortcoming of the present data set is the utter lack of error analysis for the 

individual data points. In comparison to the visual thickness data set, wherein 18 of the 27 

cases were reported with uncertainty of the observed mixing layer growth rate, only 1 of 

the 41 velocity-based growth rates was reported with uncertainty information. It is an 

embarrassment to the original author and the research community as a whole when the 

uncertainty of the data acquisition is not propagated to the ultimate output of a report. 
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5 Conclusions 

The work discussed herein introduced an improved parametric model for the growth rate 

of turbulent mixing layers. The model was made using statistical regression of data from 

a collection of 162 related references. A data qualification rubric was established and used 

to narrow the variety of studies to the manageable subset of planar, spatial, nonreacting, 

free shear layers that were not affected by artificial mixing enhancement techniques. In 

keeping with existing practice, the model is two-fold; the growth rate (𝛿′) can be predicted 

by determining an incompressible growth rate estimate (𝛿0′ ) and a compressibility factor 

(i.e. normalized growth rate, 𝜙) such that 𝛿′ = 𝜙𝛿0′ . The model for the incompressible 

growth rate was derived from the error function velocity profile for three different velocity-

based mixing layer thickness definitions and tuned to match the incompressible subset of 

cases from the database. Afterwards, a parametric model for the normalized growth rate 

as a function of the convective Mach number (𝑀𝑐) was optimized to best fit the entire 

viable database. The two parts of the model are summarized in the following equations: 

 

 𝜙 = 𝛿′𝛿0′ ≅ (1 − 0.4592)𝑒−10.7010(𝑀𝑐)6.3143 + 0.4592 Eq. 60 

 𝛿0′ = 𝐶𝛿 (1 + 𝑟)(1 + 𝑟√𝑠)1 + √𝑠 = 𝐶𝛿𝜆𝑠 Eq. 61 

 𝐶𝑏 ≅ 1.8124𝜎0  , 𝐶𝑆 ≅ 1.4923𝜎0  , 𝐶𝜔 ≅ √𝜋 𝜎0  Eq. 62 

 𝜎0 = 10.3773 Eq. 63 

 

Both aspects of the model displayed improved goodness of fit, with 𝑅2 = 0.9856 for the 

incompressible growth rate model (up from baseline 𝑅2 = 0.5603) and 𝑅2 = 0.9004 for the 

normalized growth rate model (up from baseline 𝑅2 = 0.5444). These improvements are 
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attributed to the following theoretical and statistical findings which were reflected in the 

modeling process:  

 

 The greatest impact on the 𝑅2 values was achieved through the identification and 

removal of six outlier observations from Liepmann and Laufer (1947), Brown and 

Roshko (1974), Chinzei et al. (1986), Samimy and Elliott (1990), and Göebel and 

Dutton (1991).  

 Despite contemporary thought, a systematic difference was found between 

normalized growth rates for the different thickness definitions based on the velocity 

profile, the density profile, and visualizations. Only the velocity-based thicknesses 

were carried into the modeling process because of the existence of the error 

function velocity profile, which was paramount to the development of the 

incompressible growth rate model. No comparable models presently exist for 

density profiles or visualization techniques. 

 The process used by Slessor to re-evaluate the incompressible growth rates was 

shown to utilize an inappropriate assumption. If the assumption is disregarded, the 

benefits of Slessor’s compressibility parameter (Π𝑐) are substantially reduced. 

 The derivation for the convective Mach number was assessed for the errors 

introduced through assumptions and mathematical simplifications. The parameter 

was deemed generally acceptable with errors smaller than ±2% for most 

scenarios, however caution is recommended for rare scenarios in which errors can 

exceed ±10%. In particular, the model becomes invalid if strong pressure 

gradients exist. 
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 The normalized growth rate model from Dimotakis (1991a) was generalized into a 

parametric function, and its adequacy as a model for the present data was 

confirmed. The function met all four sensitivity criteria that were identified.  

 Considerable inconsistencies regarding the application of an incompressible 

growth rate model as a normalizing agent were recognized throughout the 

literature. The data from Chinzei et al. (1986) served as a case example of the 

extent to which later authors effectively modified the representation of the 

observed growth rates through inconsistent normalization. The present analysis 

resolved this issue by normalizing the entire set of observed growth rates by a 

single incompressible growth rate model. 

 

The logical continuation of this effort would be to somehow add more data to the set being 

modeled, which can be accomplished in a number of ways. The obvious method would 

involve novel studies that target parameter combinations that are not well populated in the 

present database. Care should be taken to ensure that such studies meet the criteria listed 

in the data qualification rubric. Another approach could be an even more thorough search 

of the literature, perhaps focusing on the older, more difficult to obtain studies. Of course, 

such an approach would inevitably suffer from diminishing returns. Theoretical 

investigations could also be used to achieve the desired effect by somehow providing 

justification for the relaxation of one or more of the criteria used to isolate the pertinent 

parameters. As data both new and old are added to the database, the systematic 

approach described herein will provide a simple, effective, and robust method for refining 

the turbulent mixing layer growth rate model. 
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Appendix B: Data Qualification Rubric 

The following multi-page table assesses whether each reference contributed qualifying data. Values of “1” (green) meet the 

metric. Values of “0” (red) fail the metric. Each reference must meet all of the criteria to qualify, so frivolous time was not spent 

on a reference if it failed a metric. The references are organized by year. See Section 2.2 for an explanation of each metric. 
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Liepmann & Laufer 1947 1 Experiment 1 1 1 1 1 1 1 1 1 1
Maydew & Reed 1963 0 Experiment 1 0 1 1 1 0 1 1 1 1

Sabin 1965 0 Experiment 1 1 1 1 1 1 1 0 1 1
Growth rates from 
comparison of just two x-
locations.

Bradshaw 1966 0 Experiment 0
Wygnanski & Fiedler 1970 0 Experiment 1 1 1 1 0 1 1 1 1 1
Tam 1971 0 Theory
Birch & Eggers 1973 1 Experiment 1 1 1 1 1 1 1 1 1 1 Consortium
Morrisette & Birch 1973 0 Experiment 0
Brown & Roshko 1974 1 Experiment 1 1 1 1 1 1 1 1 1 1 Seminal work
Ikawa & Kubota 1975 1 Experiment 1 1 1 1 1 1 1 1 1 1
Bradshaw 1977 0 Review
Schlichting 1979 0 Textbook
Bogdanoff 1983 0 Theory
Kline et al. 1983 0 Experiment 0 Consortium
Bogdanoff 1984 1 Experiment 1 1 1 1 1 1 1 1 1 1
Petrie et al. 1985 0 Experiment 0 Countercurrent
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Chinzei et al. 1986 1 Experiment 1 1 1 1 1 1 1 1 1 1

Effort made during post-
processing transformed 
results to constant 
pressure. 

Dimotakis 1986 0 Theory

Papamoschou & 
Roshko

1986 0 Superseded 0 1 1 1 1 1 1 1 1 1
Results Superseded by 
higher quality 1988 
paper by same authors.

Guirguis et al. 1987 0 Numerical 0 Non-DNS
Guirguis 1988 0 Numerical Non-DNS

Papamoschou & 
Roshko

1988 0 Experiment 1 1 1 1 1 1 1 1 0 1
Significant disagreement 
between figures for 
certain data points

Lele 1989 0 3D DNS 0 1 1 1 1 1 1 1 1 1
Ragab & Wu 1989 0 LSA
Tam & Hu 1989 0 Numerical 0 Non-DNS

Bell & Mehta 1990 0 Experiment 0
Abnormal thickness 
definition

Dutton et al. 1990 0 Superseded 1 1 1 1 1 1 1 1 0 1
Superseded by Goebel 
& Dutton (1991)

Elliott & Samimy 1990 0 Experiment 0 1 1 1 1 1 1

Elliott et al. 1990 0 Experiment 1 1 1 1 1 1 1 0 1 1
Growth rates determined 
from comparison of just 
two x-locations.

Fourguette et al. 1990 0 Superseded 0 0
Superseded by 
Fourguette et al. (1991) 
of similar title

Goebel et al. 1990 0 Superseded 1 1 1 1 1 1 1 1 0 1
Superseded by Goebel 
& Dutton (1991)

Hataue 1990 0 3D DNS 0
Hermanson & Winter 1990 0 Experiment 1 1 1 1 1 0 1 1 1 1
Jackson & Grosch 1990 0 Theory
Kim 1990 0 Theory
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Kwok et al. 1990 0 Superseded 0 1 0
Superseded by 1991 
journal article of same 
name

Messersmith et al. 1990 1 Experiment 1 1 1 1 1 1 1 1 1 1
Nixon et al. 1990 0 Theory
Ragab & Sheen 1990 0 LSA & 2D DNS 0 1 1 1 1 1 1 1 1 1
Samimy & Elliot 1990 1 Experiment 1 1 1 1 1 1 1 1 1 1
Samimy & Lele 1990 0 Experiment 0 1 1 1 1 1 1 1 1 1
Sandham & 
Reynolds

1990 0 LSA & 2D DNS 1 1

Sarkar & 
Balakrishnan

1990 0 CFD

Zeman 1990 0 Numerical Non-DNS
Zhuang et al. 1990 0 LSA
Clemens et al. 1991 0 Experiment 0 1 1 1 1 1 1 1 1 1
Dimotakis 1991 0 Theory 1 1 "On the convection …"
Dimotakis 1991 0 Review 1 1 "Turbulent free shear …"
Fourguette et al. 1991 0 Experiment 1 1 0 1 1 1 1 1 1 1 "Time evolution …"
Fourguette et al. 1991 0 Experiment 1 0 1 1 1 1 1 1 1 1 "Concentration Meas. …"

Goebel & Dutton 1991 1 Experiment 1 1 1 1 1 1 1 1 1 1

Discard Case 1d - 
Increased secondary 
freestream turbulent 
intensity

Hall et al. 1991 1 Experiment 1 1 1 1 1 1 1 1 1 1

Data points with 
significantly different 
static pressures are 
omitted

Kwok et al. 1991 0 Experiment 1 1 1 1 0 1 1 1 1
Lu & Wu 1991 0 2D DNS 1 1 1 1 1 1 1 1 1 1
Papamoschou 1991 0 Experiment 0
Sandham & 
Reynolds

1991 0 3D DNS 1 0 1

Sarkar et al. 1991 0 3D DNS 0
Viegas & Rubesin 1991 0 CFD
Abe et al. 1992 0 Experiment 0
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Barlow et al. 1992 0 Experiment 0
Clemens & Mungal 1992 0 Experiment 0 "Effects of sidewall …"
Clemens & Mungal 1992 1 Experiment 1 1 1 1 1 1 1 1 1 1 "Two- and three-dim. …"

Gruber et al. 1992 0 Superseded 1 1 1 1 1 1 1 1 0 1
Superseded by Gruber 
et al. (1993)

Erdos et al. 1992 0 Experiment 1 1 1 1 1 0 0 0 1 1
Elliott et al. 1992 0 Experiment 0 1 1 1 1
Hataue & Takami 1992 0 3D DNS 0 1 1 1 1
Papamoschou 1992 0 Theory
Ragab & Sheen 1992 0 3D DNS 0 1 1 1
Samimy et al. 1992 0 Experiment 0 1 1 1 1 1 1
Viswanathan & 
Morris

1992 0 Theory

Zeman 1992 0 Theory
Bonnet et al. 1993 0 Experiment 0
Glawe & Samimy 1993 0 Experiment 0 1 1 1 1
Gruber et al. 1993 1 Experiment 1 1 1 1 1 1 1 1 1 1
Hedges & Eberhardt 1993 0 Numerical 0 Non-DNS
Leep et al. 1993 0 Numerical 0 Non-DNS

Naughton et al. 1993 0 Superseded 1 0 1 1 1 1 1 1 0 1
Superseded by 
Naughton et al. (1997)

Papamoschou 1993 0 Numerical Non-DNS
Settles & Dodson 1993 0 Database 1 1

Shau et al. 1993 0 Experiment 1 1 1 1 1 0 1 1 1 1
Shock impingement on 
mixing layer has 
considerable effect

Strykowski et al. 1993 0 Experiment 1 1 1 1 0 1 1 1 1 1 Countercurrent
Barre 1994 0 Theory 0 1 1
Barre et al. 1994 0 Experiment 1 1 1 1 1 1 1 0 1 1
Debisschop et al. 1994 1 Experiment 1 1 1 1 1 1 1 1 1 1
Kennedy & Gatski 1994 0 Numerical 1 1 Non-DNS
Lele 1994 0 Review 1 1
Lu & Lele 1994 0 LSA 1 1
Papamoschou 1994 0 Theory 1 1
Alvi et al. 1995 0 Experiment 0 1 1 Countercurrent
Alvi et al. 1995 0 Experiment 0 1 1 Countercurrent
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Bowersox & Schetz 1995 0 Experiment 1 1 1 1 1 0 1 1 1 1

Buttsworth et al. 1995 0 Experiment 1 1 1 1 1 1 1 1 0 1

Authors claim inaccurate 
determination of edge 
between mixing layer 
and secondary stream

Clemens & Paul 1995 0 Experiment 0 1 1
Clemens & Mungal 1995 1 Experiment 1 1 1 1 1 1 1 1 1 1
Elliott et al. 1995 0 Experiment 0 1 1 1 1 1 1
Liou et al. 1995 0 Numerical 1 1 1 1 1 1 Non-DNS
Oh & Loth 1995 0 Numerical 1 1 1 1 1 1 Non-DNS
Papamoschou 1995 0 Experiment 0 Countercurrent
Clemens et al. 1996 0 Experiment 0 1 1 1 1 1 1
Kozusko et al. 1996 0 Numerical Non-DNS
Messersmith & 
Dutton

1996 0 Experiment 0 1 1 1 1 1 1

Nuding 1996 0 Experiment 0
Osland et al. 1996 1 Experiment 1 1 1 1 1 1 1 1 1 1
Poggie & Smits 1996 0 Experiment 0 1 1 1 1 1
Ramaswamy & Loth 1996 0 Experiment 0
Strykowski et al 1996 0 Experiment 0
Vreman et al. 1996 0 3D DNS 0

Barre et al. 1997 1 Experiment 1 1 1 1 1 1 1 1 1 1

Using equal static 
pressures case only. 
Static pressure ratios 
presented in text used to 
calculate density ratio.

Brummund & Nuding 1997 0 Experiment 0
Shock-induced mixing 
enhancement

Deralue & Pope 1997 0 PDF
Freund et al 1997 0 3D DNS 0
Naughton et al. 1997 0 Experiment 1 0 1 1 1 1 1 1 1 1
Papamoschou & 
Bunyajitradulya

1997 0 Experiment 0 1 1

Yu & Schadow 1997 0 Experiment 0 0
AGARD Fluid 
Dynamics Panel

1998 0 Database
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Day et al. 1998 0 LSA

Island et al. 1998 1 Experiment 1 1 1 1 1 1 1 1 1 1
Control case of mixing 
enhancement study 
qualifies here

Slessor 1998 0 Experiment 1 1 1 1 1 1 1 1 0 1
Inconsistent 
presentation of results

Urban et al. 1998 0 Experiment 0 1 1 1
Debiève et al. 2000 0 Experiment 0
Doty & McLaughlin 2000 0 Experiment 0
Freund et al 2000 0 3D DNS 0 0
Fujiwara 2000 0 CFD
Slessor et al. 2000 0 Theory
Thurow et al. 2000 0 Experiment 0
Cottrell & Plesniak 2001 0 RANS
Lui & Lele 2001 0 3D DNS 0 1 1 1

Rossmann 2001 1 Experiment 1 1 1 1 1 1 1 1 1 1

Could not include 
dozens  of data points 
because of insufficient 
data. 

Rossmann et al. 2001 0 Experiment 0 1 1 1 1 1 1
Kourta & Sauvage 2002 0 3D DNS 0
Pantano & Sarkar 2002 0 3D DNS 0
Rossmann et al. 2002 0 Experiment 0
Li & Fu 2003 0 Numerical Non-DNS
Olsen & Dutton 2003 0 Experiment 0 1 1 1 1 1 1 1 1 1
Thurow et al. 2003 0 Experiment 0
Aupoix 2004 0 RANS
Sarkar 2004 0 Numerical Non-DNS
Bodi 2005 0 LES
Dimotakis 2005 0 Review
Thurow et al. 2005 0 Experiment 0
Barone et al. 2006 0 Theory
Blohm et al. 2006 0 Experiment 0

Fu & Li 2006 0 Numerical 1 1
Non-DNS (Simplified 
gas-dynamic BGK 
scheme)
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Author(s) Date Qual 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Notes

Oberkampf & Barone 2006 0 Theory

Smits & Dussuage 2006 0 Textbook
Reichert & Biringen 2006 0 3D DNS 0 1 1 1 1 1 1
Elzawawy et al. 2007 0 Experiment 0 1 1 1 1 1 1
Simon et al. 2007 0 Numerical Non-DNS
Sparks & Wu 2008 0 Theory
Thurow et al. 2008 0 Experiment 0
Aso et al. 2009 0 Experiment 0
Yang et al. 2009 1 Experiment 1 1 1 1 1 1 1 1 1 1
Gatski & Bonnet 2009 0 Textbook
Bouzada et al. 2010 0 RANS
Foysi & Sarkar 2010 0 LES
Wang & 
Andreopoulos

2010 0 Experiment 0

Zhao et al. 2010 0 Experiment 0 1 1
Hadjadj et al. 2011 0 LES 0
Martha 2011 0 LES 1
Yee et al. 2011 0 LES 0
Li et al. 2012 0 3D DNS 0

Zhou et al. 2012 1 3D DNS 1 1 1 1 1 1 1 1 1 1

Periodic forcing used for 
the computational 
production of large 
structures, not 
considered artificial 
enhancement
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Appendix C: Database 

Complete, Unaltered Database 

The following multi-page table presents the complete, unaltered database. Due to its length, the table is split into two parts. The 

first part of the table includes top level parameters such as gas compositions, measures of compressibility, the mixing 

parameter, and the observed, predicted incompressible, and normalized growth rates. The second part includes details about 

the case definition, including primary and secondary Mach numbers, and the secondary-to-primary ratios for velocity, density, 

total temperature, acoustic speeds, and static pressure. A prediction for the convective velocity (as a fraction of the primary 

velocity) is also included. Some cases (marked by red text) assumed equal static pressures based on a comment that was 

made in the reference. This was done only when the static pressure ratio was required to calculate some other missing 

parameter. In cases where an incompressible growth rate model was not applied by the author, some other model was used in 

its place (typically from Papamoschou & Roshko 1988). These cases are identified by green highlight. Since these highlighted 

values are all revised in Section 4.3, the model selection here was purely for preliminary plotting. As such, caution should be 

used when reading the normalized growth rates from this database. There were a few density-based thickness definitions for 

which this could not be done due to a lack of existing models. The thickness definitions are color coded by velocity-based 

(green), density-based (orange), and visual (blue) thicknesses. Wherever applicable, values are reported in SI units. 
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Part 1 

 

 

Author Year Thickness Type Mc Πc

Comp. 

Factor (Φ) Error (δ/x)obs (δ/x)o λr λs Gas 1 γ1 R1 Gas 2 γ2 R2

Liepmann & Laufer 1947 Shear Layer 0.026 0.033 0.997 None 0.164 0.165 1.0000 1.000 Air 1.400 286.9 Air 1.400 286.9

Stanford 0.026 0.033 0.884 None 0.120 0.136 1.0000 1.000 Air 1.400 286.9 Air 1.400 286.9

Vorticity 0.026 0.033 1.047 None 0.169 0.161 1.0000 1.000 Air 1.400 286.9 Air 1.400 286.9

Birch & Eggers (#4 Lee) 1973 Shear Layer 0.046 0.057 1.059 None 0.084 0.079 0.4815 0.481 Air 1.400 286.9 Air 1.400 286.9

Stanford 0.046 0.057 0.934 None 0.061 0.065 0.4815 0.481 Air 1.400 286.9 Air 1.400 286.9

Birch & Eggers (#5 Hill) 1973 Shear Layer 0.882 1.322 0.578 None 0.082 0.143 1.0000 0.865 Air 1.400 286.9 Air 1.400 286.9

Stanford 0.882 1.322 0.521 None 0.061 0.117 1.0000 0.865 Air 1.400 286.9 Air 1.400 286.9

Brown & Roshko 1974 Visual 0.004 0.011 1.106 +/-10% 0.211 0.190 0.4472 0.560 He 1.667 2077.0 N2 1.400 297.0

0.006 0.016 1.050 +/-10% 0.405 0.385 0.7498 1.133 He 1.667 2077.0 N2 1.400 297.0

0.009 0.011 1.141 +/-10% 0.174 0.153 0.4472 0.449 N2 1.400 297.0 Air 1.400 286.9

0.012 0.016 1.108 +/-10% 0.284 0.257 0.7498 0.755 N2 1.400 297.0 Air 1.400 286.9

0.014 0.018 0.997 +/-10% 0.342 0.343 1.0000 1.009 N2 1.400 297.0 Air 1.400 286.9

0.005 0.011 0.938 +/-10% 0.119 0.127 0.4472 0.372 N2 1.400 297.0 He 1.667 2077.0

0.007 0.016 1.179 +/-10% 0.225 0.190 0.7498 0.560 N2 1.400 297.0 He 1.667 2077.0

0.008 0.018 1.107 +/-10% 0.259 0.234 1.0000 0.689 N2 1.400 297.0 He 1.667 2077.0

Vorticity 0.004 0.011 1.127 None 0.107 0.095 0.4472 0.560 He 1.667 2077.0 N2 1.400 297.0

0.006 0.016 0.969 None 0.187 0.193 0.7498 1.133 He 1.667 2077.0 N2 1.400 297.0

0.007 0.018 0.433 None 0.134 0.310 1.0000 1.823 He 1.667 2077.0 N2 1.400 297.0

0.009 0.011 1.166 None 0.089 0.076 0.4472 0.449 N2 1.400 297.0 Air 1.400 286.9

0.012 0.016 1.047 None 0.134 0.128 0.7498 0.755 N2 1.400 297.0 Air 1.400 286.9

0.014 0.018 1.052 None 0.180 0.172 1.0000 1.009 N2 1.400 297.0 Air 1.400 286.9

0.005 0.011 0.956 None 0.060 0.063 0.4472 0.372 N2 1.400 297.0 He 1.667 2077.0

0.008 0.018 2.056 None 0.241 0.117 1.0000 0.689 N2 1.400 297.0 He 1.667 2077.0
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Author Year Thickness Type Mc Πc

Comp. 

Factor (Φ) Error (δ/x)obs (δ/x)o λr λs Gas 1 γ1 R1 Gas 2 γ2 R2

Ikawa & Kubota 1975 Shear Layer 0.992 1.562 0.465 None 0.064 0.138 1.0000 0.835 Air 1.400 286.9 Air 1.400 286.9

Momentum 0.992 1.562 None 0.007 1.0000 0.835 Air 1.400 286.9 Air 1.400 286.9

Bogdanoff 1984 Max. Concent. 0.137 0.346 None 0.377 1.0000 1.846 He 1.667 2077.0 Air 1.400 286.9

0.135 0.162 None 0.189 1.0000 0.906 CO2 1.289 189.0 Air 1.400 286.9

0.101 0.100 None 0.114 1.0000 0.723 SF6 1.094 56.9 Air 1.400 286.9

Chinzei et al. 1986 Stanford 0.945 1.455 0.300 None 0.057 0.191 1.0000 0.849 Air 1.400 286.9 Air 1.400 286.9

0.825 1.283 0.320 None 0.050 0.156 0.7857 0.690 Air 1.400 286.9 Air 1.400 286.9

0.668 1.020 0.425 None 0.047 0.111 0.5385 0.494 Air 1.400 286.9 Air 1.400 286.9

0.589 0.888 0.479 None 0.043 0.090 0.4388 0.410 Air 1.400 286.9 Air 1.400 286.9

0.519 0.771 0.563 None 0.040 0.072 0.3605 0.342 Air 1.400 286.9 Air 1.400 286.9

0.270 0.378 0.794 None 0.027 0.034 0.1494 0.147 Air 1.400 286.9 Air 1.400 286.9

Messersmith et al. 1990 Shear Layer 0.200 0.274 1.095 None 0.021 0.019 0.1173 0.116 Air 1.400 286.9 Air 1.400 286.9

0.446 0.641 0.997 None 0.045 0.045 0.2658 0.274 Air 1.400 286.9 Air 1.400 286.9

Samimy & Elliott 1990 Shear Layer 0.510 0.735 0.988 None 0.079 0.080 0.4706 0.447 Air 1.400 286.9 Air 1.400 286.9

0.640 0.933 0.767 None 0.077 0.100 0.6000 0.555 Air 1.400 286.9 Air 1.400 286.9

Vorticity 0.510 0.735 0.979 None 0.093 0.095 0.4706 0.447 Air 1.400 286.9 Air 1.400 286.9

0.640 0.933 0.753 None 0.087 0.116 0.6000 0.555 Air 1.400 286.9 Air 1.400 286.9

Momentum 0.510 0.735 0.960 None 0.016 0.017 0.4706 0.447 Air 1.400 286.9 Air 1.400 286.9

0.640 0.933 0.650 None 0.014 0.021 0.6000 0.555 Air 1.400 286.9 Air 1.400 286.9

Goebel & Dutton 1991 Shear Layer 0.200 0.273 0.989 None 0.020 0.020 0.1236 0.123 Air 1.400 286.9 Air 1.400 286.9

0.460 0.645 0.816 None 0.038 0.047 0.2739 0.282 Air 1.400 286.9 Air 1.400 286.9

0.690 1.014 0.564 None 0.059 0.105 0.6949 0.633 Air 1.400 286.9 Air 1.400 286.9

0.720 1.046 0.633 None 0.058 0.092 0.6000 0.555 Air 1.400 286.9 Air 1.400 286.9

0.860 1.241 0.457 None 0.050 0.109 0.7241 0.663 Air 1.400 286.9 Air 1.400 286.9

0.990 1.293 0.400 None 0.049 0.122 0.7241 0.742 Air 1.400 286.9 Air 1.400 286.9
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Author Year Thickness Type Mc Πc

Comp. 

Factor (Φ) Error (δ/x)obs (δ/x)o λr λs Gas 1 γ1 R1 Gas 2 γ2 R2

Hall et al. 1991 Visual 0.962 2.699 0.234 None 0.100 0.428 0.8248 1.260 He 1.667 2077.0 Argon 1.667 208.0

0.906 1.882 0.274 None 0.108 0.394 0.8315 1.159 He 1.667 2077.0 N2 1.400 297.0

0.511 0.706 0.570 None 0.114 0.200 0.6194 0.589 N2 1.400 297.0 N2 1.400 297.0

0.175 0.437 0.656 None 0.062 0.094 0.3245 0.278 N2 1.400 297.0 He 1.667 2077.0

0.106 0.447 0.601 None 0.040 0.067 0.2225 0.196 Argon 1.667 208.0 He 1.667 2077.0

0.093 0.221 0.909 None 0.097 0.107 0.3680 0.314 N2 1.400 297.0 He 1.667 2077.0

Clemens & Mungal 1992 Pitot 0.280 0.382 0.580 +/- 10% 0.036 0.062 0.2270 0.224 Air 1.400 286.9 Air 1.400 286.9

0.620 0.901 0.410 +/- 10% 0.061 0.149 0.5625 0.524 Air 1.400 286.9 Air 1.400 286.9

0.790 1.098 0.360 +/- 10% 0.063 0.175 0.6393 0.614 Air 1.400 286.9 Argon 1.667 208.0

Gruber et al. 1993 Shear Layer 0.792 1.242 0.500 None 0.052 0.104 0.7094 0.624 Air 1.400 286.9 Air 1.400 286.9

Debisschop et al. 1994 Vorticity 0.522 0.725 1.000 None 0.102 0.102 0.6327 0.599 Air 1.400 286.9 Air 1.400 286.9

0.535 0.753 0.766 None 0.069 0.091 0.5625 0.533 Air 1.400 286.9 Air 1.400 286.9

0.576 0.827 0.879 None 0.082 0.094 0.5873 0.550 Air 1.400 286.9 Air 1.400 286.9

0.638 0.939 0.798 None 0.072 0.090 0.5748 0.532 Air 1.400 286.9 Air 1.400 286.9

1.039 1.804 0.488 None 0.055 0.112 0.8018 0.659 Air 1.400 286.9 Air 1.400 286.9

Clemens & Mungal 1995 Visual 0.284 0.382 0.720 +/- 17% 0.055 0.076 0.2270 0.224 Air 1.400 286.9 Air 1.400 286.9

0.419 0.580 0.630 +/- 17% 0.090 0.143 0.4286 0.414 Air 1.400 286.9 Air 1.400 286.9

0.494 0.670 0.560 +/- 17% 0.100 0.179 0.5504 0.529 Air 1.400 286.9 Air 1.400 286.9

0.634 0.934 0.390 +/- 17% 0.073 0.187 0.5748 0.535 Air 1.400 286.9 Air 1.400 286.9

0.802 1.108 0.420 +/- 17% 0.090 0.214 0.6393 0.614 Air 1.400 286.9 Argon 1.667 208.0

Osland et al. 1996 Visual 0.253 0.340 0.767 None 0.051 0.066 0.1976 0.195 N2 1.400 297.0 N2 1.400 297.0

0.430 0.320 0.620 None 0.081 0.131 0.3986 0.385 N2 1.400 297.0 N2 1.400 297.0

0.627 0.936 0.460 None 0.073 0.159 0.5038 0.467 N2 1.400 297.0 N2 1.400 297.0

Barre et al. 1997 Vorticity 1.000 1.804 0.467 +/- 10% 0.052 0.112 0.8039 0.661 Air 1.400 286.9 Air 1.400 286.9

Island et al. 1998 Visual 0.627 0.936 0.723 +/- 3% 0.115 0.159 0.5038 0.467 Air 1.400 286.9 Air 1.400 286.9
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Author Year Thickness Type Mc Πc

Comp. 

Factor (Φ) Error (δ/x)obs (δ/x)o λr λs Gas 1 γ1 R1 Gas 2 γ2 R2

Rossmann 2001 Visual 0.930 1.588 0.399 +/- 0.03 0.090 0.225 0.8655 0.663 * 1.302 256.8 He 1.667 2077.0

1.790 2.560 0.212 +/- 0.04 0.079 0.373 0.9763 1.096 * 1.302 256.8 Air 1.400 286.9

2.640 4.594 0.228 +/- 0.04 0.075 0.331 0.9048 0.974 ** 1.638 211.9 *** 1.660 208.6

Yang et al. 2009 Visual 0.505 0.823 0.775 +/- 0.5% 0.057 0.074 0.2274 0.216 Air 1.400 286.9 Air 1.400 286.9

Zhou et al. 2012 Momentum 0.700 0.885 0.350 None 0.0112 0.032 0.3333 0.333 Air 1.400 286.9 Air 1.400 286.9

*Gas Mixture I: 22% Acetone, 78% Air

**Gas Mixture II: 95% Argon, 5% Air

*** Gas Mixture III: 98.8% Argon, 1.2% O2
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Part 2 

 

Author Year Thickness Type M1 M2 U2/U1 ρ2/ρ1 Tt2/Tt1 a2/a1 Ps2/Ps1 Uc/U1

Liepmann & Laufer 1947 Shear Layer 0.053 0.000 0.000 1.000 1.000 1.000 1.001 0.500

Stanford 0.053 0.000 0.000 1.000 1.000 1.000 1.001 0.500

Vorticity 0.053 0.000 0.000 1.000 1.000 1.000 1.001 0.500

Birch & Eggers (#4 Lee) 1973 Shear Layer 0.140 0.050 0.350 1.000 1.000 1.002 1.003 0.675

Stanford 0.140 0.050 0.350 1.000 1.000 1.002 1.003 0.675

Birch & Eggers (#5 Hill) 1973 Shear Layer 2.090 0.000 0.000 0.534 1.000 1.369 1 0.578

Stanford 2.090 0.000 0.000 0.534 1.000 1.369 1 0.578

Brown & Roshko 1974 Visual 0.010 0.011 0.382 7.000 1.000 0.347 1.001 0.552

0.010 0.004 0.143 7.000 1.000 0.347 1.001 0.378

0.029 0.011 0.382 1.036 1.000 0.983 1.001 0.688

0.029 0.004 0.143 1.036 1.000 0.983 1.001 0.568

0.029 0.000 0.000 1.036 1.000 0.983 1.001 0.496

0.029 0.004 0.382 0.143 1.000 2.886 0.999 0.830

0.029 0.001 0.143 0.143 1.000 2.886 0.999 0.765

0.029 0.000 0.000 0.143 1.000 2.886 0.999 0.726

Vorticity 0.010 0.011 0.382 7.000 1.000 0.347 1.001 0.552

0.010 0.004 0.143 7.000 1.000 0.347 1.001 0.378

0.010 0.000 0.000 7.000 1.000 0.347 1.001 0.274

0.029 0.011 0.382 1.036 1.000 0.983 1.001 0.688

0.029 0.004 0.143 1.036 1.000 0.983 1.001 0.568

0.029 0.000 0.000 1.036 1.000 0.983 1.001 0.496

0.029 0.004 0.382 0.143 1.000 2.886 0.999 0.830

0.029 0.000 0.000 0.143 1.000 2.886 0.999 0.726

Ikawa & Kubota 1975 Shear Layer 2.470 0.000 0.000 0.450 1.000 1.490 0.999 0.599

Momentum 2.470 0.000 0.000 0.450 1.000 1.490 0.999 0.599

Bogdanoff 1984 Max. Concent. 0.187 0.000 0.000 7.250 1.000 0.343 1.013 0.271

0.301 0.000 0.000 0.659 1.000 1.293 1.013 0.552

0.327 0.000 0.000 0.199 1.000 2.546 1.008 0.692

Chinzei et al. 1986 Stanford 2.300 0.000 0.000 0.486 1.000 1.435 1 0.589

2.300 0.190 0.120 0.489 1.000 1.429 1 0.638

2.300 0.490 0.300 0.509 1.000 1.401 1 0.708

2.300 0.650 0.390 0.527 1.000 1.378 1 0.743

2.300 0.800 0.470 0.548 1.000 1.351 1 0.775

2.300 1.400 0.740 0.676 1.000 1.216 1 0.883
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Author Year Thickness Type M1 M2 U2/U1 ρ2/ρ1 Tt2/Tt1 a2/a1 Ps2/Ps1 Uc/U1

Messersmith et al. 1990 Shear Layer 2.040 1.400 0.790 0.760 1.000 1.147 1.000 0.902

1.910 1.370 0.580 1.560 0.510 0.801 1.001 0.767

Samimy & Elliott 1990 Shear Layer 1.800 0.510 0.360 0.640 1.000 1.252 1.003 0.716

1.960 0.370 0.250 0.580 1.000 1.312 0.998 0.676

Vorticity 1.800 0.510 0.360 0.640 1.000 1.252 1.003 0.716

1.960 0.370 0.250 0.580 1.000 1.312 0.998 0.676

Momentum 1.800 0.510 0.360 0.640 1.000 1.252 1.003 0.716

1.960 0.370 0.250 0.580 1.000 1.312 0.998 0.676

Goebel & Dutton 1991 Shear Layer 2.010 1.380 0.780 0.760 1.000 1.144 0.995 0.898

1.910 1.360 0.570 1.550 0.510 0.803 0.999 0.762

1.960 0.270 0.180 0.570 1.000 1.320 0.993 0.647

2.220 0.430 0.250 0.580 0.905 1.316 1.005 0.676

2.350 0.300 0.160 0.600 0.806 1.290 0.999 0.633

2.270 0.380 0.160 1.140 0.444 0.937 1.000 0.566

Hall et al. 1991 Visual 1.500 0.350 0.096 5.950 1.000 0.410 1.002 0.359

1.480 0.300 0.092 4.120 1.000 0.452 1.001 0.392

1.460 0.290 0.235 0.713 1.000 1.184 1.000 0.650

1.480 0.230 0.510 0.101 1.000 3.430 0.998 0.882

1.500 0.230 0.636 0.058 1.000 4.144 0.996 0.929

0.650 0.100 0.462 0.132 1.000 3.000 0.998 0.857

Clemens & Mungal 1992 Pitot 1.640 0.910 0.630 0.770 0.981 1.138 0.997 0.827

1.970 0.420 0.280 0.590 0.981 1.297 0.993 0.687

2.150 0.380 0.220 0.770 0.981 1.247 1.006 0.635

Gruber et al. 1993 Shear Layer 2.360 0.270 0.170 0.460 1.036 1.469 0.993 0.665

Debisschop et al. 1994 Vorticity 1.48 0.28 0.225 0.7 1.000 1.190 0.991 0.647

1.65 0.375 0.28 0.67 1.000 1.226 1.007 0.676

1.76 0.36 0.26 0.63 1.000 1.256 0.995 0.673

2.03 0.41 0.27 0.57 1.000 1.328 1.006 0.686

3.2 0.2 0.11 0.33 1.000 1.739 0.998 0.675

Clemens & Mungal 1995 Visual 1.64 0.91 0.63 0.77 0.981 1.138 0.997 0.827

1.52 0.51 0.4 0.72 1.004 1.181 1.004 0.725

1.5 0.38 0.29 0.75 0.956 1.161 1.010 0.670

2 0.4 0.27 0.59 0.981 1.308 1.010 0.683

2.2 0.39 0.22 0.77 0.981 1.259 1.026 0.635

Osland et al. 1996 Visual 1.64 0.97 0.67 0.77 0.996 1.136 0.993 0.846

1.65 0.98 0.43 0.71 1.052 1.168 0.968 0.739

2.22 0.54 0.33 0.53 0.999 1.369 0.993 0.718
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Author Year Thickness Type M1 M2 U2/U1 ρ2/ρ1 Tt2/Tt1 a2/a1 Ps2/Ps1 Uc/U1

Barre et al. 1997 Vorticity 3.20 0.20 0.109 0.331 1.000 1.739 1.000 0.675

Island et al. 1998 Visual 2.22 0.54 0.33 0.53 1.000 1.370 0.994 0.718

Rossmann 2001 Visual 3.1 0.09 0.072 0.228 0.214 2.327 0.965 0.700

3.25 0.045 0.012 1.568 0.202 0.794 0.919 0.451

5.12 0.3 0.050 1.369 0.081 0.860 0.998 0.488

Yang et al. 2009 Visual 3.51 1.4 0.6294 0.4023 1.000 1.578 1.001 0.856

Zhou et al. 2012 Momentum 2.8 1.4 0.5 1 0.542 1 1.000 0.750
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Data Set #1 (as discussed in Section 4.3.2) 

 

Author Year Thickness Type Mc

Comp. 

Factor (Φ) (δ/x)obs (δ/x)o λs

Liepmann & Laufer 1947 Shear Layer 0.026 0.941 0.164 0.175 1.000

Birch & Eggers (#4 Lee) 1973 Shear Layer 0.046 0.999 0.084 0.084 0.481

Birch & Eggers (#5 Hill) 1973 Shear Layer 0.882 0.545 0.082 0.151 0.865

Ikawa & Kubota 1975 Shear Layer 0.992 0.439 0.064 0.146 0.835

Messersmith et al. 1990 Shear Layer 0.200 1.033 0.021 0.020 0.116

Messersmith et al. 1990 Shear Layer 0.446 0.941 0.045 0.048 0.274

Samimy & Elliott 1990 Shear Layer 0.510 1.011 0.079 0.078 0.447

Samimy & Elliott 1990 Shear Layer 0.640 0.794 0.077 0.097 0.555

Goebel & Dutton 1991 Shear Layer 0.200 0.934 0.020 0.021 0.123

Goebel & Dutton 1991 Shear Layer 0.460 0.771 0.038 0.049 0.282

Goebel & Dutton 1991 Shear Layer 0.690 0.533 0.059 0.111 0.633

Goebel & Dutton 1991 Shear Layer 0.720 0.598 0.058 0.097 0.555

Goebel & Dutton 1991 Shear Layer 0.860 0.432 0.050 0.116 0.663

Goebel & Dutton 1991 Shear Layer 0.990 0.378 0.049 0.130 0.742

Gruber et al. 1993 Shear Layer 0.792 0.477 0.052 0.109 0.624

Birch & Eggers (#4 Lee) 1973 Stanford 0.046 0.881 0.061 0.069 0.481

Birch & Eggers (#5 Hill) 1973 Stanford 0.882 0.492 0.061 0.124 0.865

Chinzei et al. 1986 Stanford 0.945 0.470 0.057 0.122 0.849

Chinzei et al. 1986 Stanford 0.825 0.503 0.050 0.099 0.690

Chinzei et al. 1986 Stanford 0.668 0.663 0.047 0.071 0.494

Chinzei et al. 1986 Stanford 0.589 0.731 0.043 0.059 0.410

Chinzei et al. 1986 Stanford 0.519 0.821 0.040 0.049 0.342

Chinzei et al. 1986 Stanford 0.270 1.284 0.027 0.021 0.147

Liepmann & Laufer 1947 Vorticity 0.026 0.988 0.169 0.171 1.000

Brown and Roshko 1974 Vorticity 0.004 1.122 0.107 0.096 0.560

Brown and Roshko 1974 Vorticity 0.006 0.965 0.187 0.194 1.133

Brown and Roshko 1974 Vorticity 0.009 1.161 0.089 0.077 0.449

Brown and Roshko 1974 Vorticity 0.012 1.042 0.134 0.129 0.755

Brown and Roshko 1974 Vorticity 0.014 1.047 0.180 0.172 1.009

Brown and Roshko 1974 Vorticity 0.005 0.952 0.060 0.064 0.372

Samimy & Elliott 1990 Vorticity 0.510 1.218 0.093 0.076 0.447

Samimy & Elliott 1990 Vorticity 0.640 0.918 0.087 0.095 0.555

Debisschop et al. 1994 Vorticity 0.522 0.995 0.102 0.102 0.599

Debisschop et al. 1994 Vorticity 0.535 0.763 0.069 0.091 0.533

Debisschop et al. 1994 Vorticity 0.576 0.875 0.082 0.094 0.550

Debisschop et al. 1994 Vorticity 0.638 0.795 0.072 0.091 0.532

Debisschop et al. 1994 Vorticity 1.039 0.486 0.055 0.113 0.659

Barre et al. 1997 Vorticity 1.000 0.464 0.052 0.113 0.661
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Data Set #2 (as discussed in Section 4.5) 

 

 

Author Year Thickness Type Mc

Comp. 

Factor (Φ) (δ/x)obs (δ/x)o λs

Liepmann & Laufer 1947 Shear Layer 0.026 0.941 0.164 0.175 1.000

Birch & Eggers (#4 Lee) 1973 Shear Layer 0.046 0.999 0.084 0.084 0.481

Birch & Eggers (#5 Hill) 1973 Shear Layer 0.882 0.545 0.082 0.151 0.865

Ikawa & Kubota 1975 Shear Layer 0.992 0.439 0.064 0.146 0.835

Messersmith et al. 1990 Shear Layer 0.200 1.033 0.021 0.020 0.116

Messersmith et al. 1990 Shear Layer 0.446 0.941 0.045 0.048 0.274

Samimy & Elliott 1990 Shear Layer 0.510 1.011 0.079 0.078 0.447

Samimy & Elliott 1990 Shear Layer 0.640 0.794 0.077 0.097 0.555

Goebel & Dutton 1991 Shear Layer 0.200 0.934 0.020 0.021 0.123

Goebel & Dutton 1991 Shear Layer 0.690 0.533 0.059 0.111 0.633

Goebel & Dutton 1991 Shear Layer 0.720 0.598 0.058 0.097 0.555

Goebel & Dutton 1991 Shear Layer 0.860 0.432 0.050 0.116 0.663

Goebel & Dutton 1991 Shear Layer 0.990 0.378 0.049 0.130 0.742

Gruber et al. 1993 Shear Layer 0.792 0.477 0.052 0.109 0.624

Birch & Eggers (#4 Lee) 1973 Stanford 0.046 0.881 0.061 0.069 0.481

Birch & Eggers (#5 Hill) 1973 Stanford 0.882 0.492 0.061 0.124 0.865

Chinzei et al. 1986 Stanford 0.945 0.470 0.057 0.122 0.849

Chinzei et al. 1986 Stanford 0.825 0.503 0.050 0.099 0.690

Chinzei et al. 1986 Stanford 0.668 0.663 0.047 0.071 0.494

Chinzei et al. 1986 Stanford 0.589 0.731 0.043 0.059 0.410

Chinzei et al. 1986 Stanford 0.519 0.821 0.040 0.049 0.342

Liepmann & Laufer 1947 Vorticity 0.026 0.988 0.169 0.171 1.000

Brown and Roshko 1974 Vorticity 0.004 1.122 0.107 0.096 0.560

Brown and Roshko 1974 Vorticity 0.006 0.965 0.187 0.194 1.133

Brown and Roshko 1974 Vorticity 0.009 1.161 0.089 0.077 0.449

Brown and Roshko 1974 Vorticity 0.012 1.042 0.134 0.129 0.755

Brown and Roshko 1974 Vorticity 0.014 1.047 0.180 0.172 1.009

Brown and Roshko 1974 Vorticity 0.005 0.952 0.060 0.064 0.372

Samimy & Elliott 1990 Vorticity 0.640 0.918 0.087 0.095 0.555

Debisschop et al. 1994 Vorticity 0.522 0.995 0.102 0.102 0.599

Debisschop et al. 1994 Vorticity 0.535 0.763 0.069 0.091 0.533

Debisschop et al. 1994 Vorticity 0.576 0.875 0.082 0.094 0.550

Debisschop et al. 1994 Vorticity 0.638 0.795 0.072 0.091 0.532

Debisschop et al. 1994 Vorticity 1.039 0.486 0.055 0.113 0.659

Barre et al. 1997 Vorticity 1.000 0.464 0.052 0.113 0.661
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Appendix D: Pertinent Article Summaries and 

Comments on Data Extraction 

This article offers individual reports on the content of each of the references that 

contributed qualifying data. Within these reports, special attention is given to the process 

followed to extract the data for the present database. Similar write-ups are also provided 

for references that presented data that did not qualify because of Qualification Metric #10 

(The paper must be of sufficient quality), except for those that were superseded by similar 

articles. Unless otherwise noted, “Figure” and “Table” callouts in the following summaries 

refer to objects in the cited document and not within the present report. 

 

Liepman & Laufer, 1947, Investigations of free turbulent mixing 

The 1947 NACA technical note by Liepmann and Laufer is the earliest report included in 

this database. Within this note, the authors present both analytical and experimental 

investigations into the incompressible mixing layer. The analytical study provides a 

discussion of the fundamentals of laminar and turbulent mixing layers. Meanwhile, the 

experimental study established the “gold standard” at the time for the collection and 

presentation of mean and turbulent velocity details.  

 

The experiment presented a single planar mixing layer formed by a jet of room 

temperature air at 18 m/s mixing on one side with a stationary body of room temperature 

air and constrained on the other side by a solid wall. A dual hot-wire technique was used 

to measure all mean velocity components, all fluctuating velocity components, and all 

double correlations. The location of the hot-wires was known to within ±0.02 cm, and the 

ocular micrometer that was used to determine the distance between the hot-wires was 
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accurate to ±0.006 cm. These accuracies were not carried through the calculations to 

determine the total uncertainty in the velocity values or the growth rates themselves. 

 

To extract mixing layer growth rate values from this paper, Figure 13 was digitized. This 

figure provided the normalized velocity profile plotted against a non-dimensional location, 𝜂 = 𝜎𝑦 𝑥⁄ , with 𝜎 defined as 12.0. During the early investigations of mixing layers, the 

growth rate was often reported in terms of 𝜎, which could be determined by tuning a model 

until it fit the data. The value of 𝜎 that made the model match the experiment was deemed 

the mixing parameter of the experiment. To match with the current database, this mixing 

parameter was used to back out the now-standard values of 𝛿𝑏′ , 𝛿𝑆′, and 𝛿𝜔′ . 

 

Birch & Eggers, 1973, Free turbulent shear flows volume II – Summary of data 

This reference contains the proceedings for the Langley Working Conference on Free 

Turbulent Shear Flows, which was held at NASA Langley Research Center on July 20-21, 

1972. This conference is responsible for the so-called “Langley Curve,” which was 

compiled from experimental data from roughly one dozen studies on free shear flows. 

Within Volume II, detailed velocity profile information was provided for two planar free 

shear flow experiments. Namely, these experiments were Test Case #4 (Lee 1966) and 

Test Case #5 (Hill & Page 1969). These tables of velocity measurements for x- and y-

locations was transcribed into an Excel spreadsheet and processed to determine the 

shear layer thicknesses and Stanford thicknesses at each available x-location. A linear 

regression was then used to determine the growth rate of each thickness type. 
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Brown and Roshko, 1974, On density effects and large structures in turbulent 

mixing layers 

In this benchmark report, Brown and Roshko presented a thorough study of the effects of 

density ratio on the growth rates of turbulent mixing layers. Their apparatus was designed 

to allow incompressible mixing of 𝑁2, He, and air so as to create density ratios of 1/7, 1, 

and 7 along with velocity ratios of 1/7, 1 √7⁄ , and 0. Measurements were taken at high 

pressure (7 atm), with the streams provided by 2000 psi bottles stored at room 

temperature which were then regulated down to the desired pressure. Shadowgraph 

imaging was used to determine the visual thickness of the mixing layers, while sweeps of 

a Pitot-static probe and a custom density probe were used to determine the vorticity 

thickness (𝛿𝜔) of the mixing layers. The visual thicknesses were reported to be accurate 

to within 10%, while the combination of mean pressure and density is claimed to determine 

mean velocity to within 4%. The authors did not propagate the uncertainty in their velocity 

measurements to establish overall uncertainty in their reported vorticity thickness growth 

rate values. The temperature of both streams was assumed to be equal at 293 K due to 

the state of the stored supply containers. Because of the incompressible nature of the 

experiment, uncertainty with respect to temperature is assumed negligible. 

 

The visual thickness measurements and the vorticity thickness measurements agreed 

upon the conclusion that the effect of density ratio on the growth of the mixing layer is 

noteworthy yet less substantial than that of velocity ratio. 

 

The mixing layer thickness growth rates were determined for the database via digitization 

of Figures 7, 10, 14, and 15. Slight differences emerged after the figures were digitized, 

however these differences were not significant enough to question the reporting 
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consistency. The most direct representation of each growth rate is included in the 

database to minimize the effect of digitization error. 

 

The resulting mixing layer growth rates from the experimental study displayed significant 

differences from prior experiments in which the density ratios were achieved from 

compressibility effects. This finding supported a detailed derivation of the energy equation 

for plane turbulent mixing layers, which suggested that “compressibility introduces effects 

which do not occur in the low-speed flows.” Through this derivation, the authors also found 

that whether a density ratio arises from temperature differences or from molecular-weight 

differences is irrelevant. 

 

Large coherent structures were discovered and analyzed via shadowgraph images. They 

were shown to grow in size as they pass downstream. The mean eddy spacing was 

suggested to correlate linearly with the mean thickness and not directly on velocity ratio 

or density ratio. The eddies terminated via amalgamation with one another, although eddy 

lifespan was shown to be poorly correlative.  

 

Ikawa & Kubota, 1975, Investigation of supersonic turbulent mixing layer with zero 

pressure gradient 

Ikawa and Kubota studied the effects of compressibility on a turbulent mixing layer with 

zero pressure gradient. Their flow condition consisted of a jet at Mach 2.47 flowing over a 

backward-facing step such that the velocity ratio was zero. The pressure of the stagnant 

stream was adjusted via mass injection in the transverse direction in order to negate any 

static pressure gradient. Pitot pressure, static pressure, and hot-wire surveys were 

conducted to determine the velocity and density profiles of the mixing layer. Deviations of 

the static pressure were found to be within 2% of mean. According to the authors, these 
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deviations “did not appreciably alter the velocity profile or the spreading rate.” The density 

ratio was reported as 0.45. The high-speed and low-speed flows were composed of air 

with equal total temperatures near room temperature. Mixing layer growth rates were 

reported as shear layer thicknesses as well as momentum thicknesses.  

 

Bogdanoff, 1984, Interferometric measurement of heterogeneous shear-layer 

spreading rates 

Bogdanoff used interferometric measurement to study the density profiles of 

incompressible shear layers made from various gas compositions. The apparatus was 

originally designed for a different purpose and therefore created some hurdles for 

Bogdanoff to overcome in the data reduction process. There were two side-by-side 

nozzles, oriented vertically downward, which exhausted incompressible streams of 

working gas into stagnant air. The six working gases included He, 84% He / 16% Ar, 62% 

He / 38% Ar, CO2, 50% 𝑆𝐹6 / 50% 𝑁2, and 𝑆𝐹6. These working gases produced density 

ratios ranging from 0.199 to 7.25. Interferometric measurements were taken at roughly 

four streamwise locations for each trial in order to plot the normalized density 

(concentration) profiles. Bogdanoff used the maximum concentration thickness (𝛿𝜌𝑚) as a 

mixing layer thickness. It is calculated by joining the 20% and 80% points of the 

concentration profiles with a straight line and measuring the distance between the 

intercepts of this line with the 0% and 100% concentration levels. 

 

Uncertainty associated with the data within the article was said to be caused by distortion 

of the interferogram readings as well as human error in reading the data. The distortion 

was said to cause errors up to ±0.01 for about 95% of the data and up to ±0.01-0.02 for 

the high-curvature regions of some profiles. For the SF6 profile, the corresponding 

numbers are ±0.02 and ±0.025-0.037. The magnitude of the human errors were not 
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quantified. These uncertainties were not propagated to values corresponding to the mixing 

layer growth rates. 

 

Only two of the six mixing layer growth rates were explicitly reported in the article. To 

determine all six growth rates, the concentration profiles had to be digitized from Figure 4. 

They were then processed to find the maximum concentration thicknesses. A comparison 

between the digitized results and the reported results was made to confirm accuracy in 

the extraction process. 

 

The primary Mach numbers were calculated from the primary velocities reported in Table 

1 while assuming that the static temperature equaled the total temperature (room 

temperature = 293 K) for these incompressible gases. Isentropic flow relations were used 

to determine that the error in static temperature associated with this assumption was 

between 0.4% and 1.4%, which is well within the accuracy of the database. 

 

Bogdanoff supported his experiment with an assessment of the effects of buoyancy and 

the momentum defect at the beginning of the shear layer on shear layer behavior. He 

concluded that his study was not significantly affected by either of these phenomena, but 

that some earlier experimental results (e.g. Brown & Roshko 1974) may have been 

affected by buoyancy. 

 

Chinzei et al., 1986, Spreading of two-stream supersonic turbulent mixing layers 

Chinzei et al. were among the first researchers to publish data on compressibility effects 

in two-stream turbulent mixing layers (note the distinction from single-stream compressible 

turbulent mixing layers, of which many prior studies had been conducted). Both streams 

in their experiment were driven by a singular source of pressurized air held at room 
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temperature. The high-speed stream was held at Mach 2.3 while the low-speed stream 

varied in speed from Mach 0 to Mach 1.4. Pressure and velocity measurements were 

taken from transverse Pitot and static pressure probes, and the flows were imaged using 

Schlieren photographs. The static pressure field was corrected to negate the effects of 

reflective waves to ensure that the pressure gradient was negligible, however the exact 

values were not reported. This correction was used as justification for Qualification Metric 

#7 in the rubric. 

 

Neither the measured mixing layer thickness growth rates nor the normalized mixing layer 

thickness growth rates were explicitly listed in the article. However, a plot of the Stanford 

mixing layer thickness versus x-location was provided in Figure 3. To retrieve the growth 

rates found in this study, the mixing layer thicknesses of Figure 3 were digitized and 

subjected to a linear least-squares regression. Additionally, the density ratios were not 

listed for any of the cases. The density ratios for these cases was derived assuming ideal 

gasses and equal static pressures to be 𝜌2𝜌1 = 𝛾2𝛾1 (𝑎2𝑎1)−2
  

This assumption restricted the ability to confirm that the static pressure gradient was 

negligible, so some trust has been placed on the authors’ claim. 

 

Papamoschou & Roshko, 1988, The compressible turbulent shear layer: an 

experimental study 

Papamoschou and Roshko’s pioneering article in 1988 marked the clearly derived the 

convective Mach number, Mc, which would become the chief independent variable for 

compressible turbulent mixing layer studies.  

 



118 
 

Mixing layer growth rates were also normalized against estimations for the incompressible 

growth rate for the same velocity and density ratios in an effort to isolate the effects of 

compressibility. This incompressible growth rate was calculated as 

𝛿′𝑝𝑖𝑡,0 = 0.14 (1 − 𝑟)(1 + √𝑠)1 + 𝑟√𝑠   

where the coefficient, 0.14, was obtained experimentally and can vary between 

apparatuses and thickness definitions. 

 

Papamoschou & Roshko also measured mixing layer growth rates for ten arrangements 

of various gas compositions and Mach numbers. The composition of each stream varied 

between 𝑁2, Ar, and He. The total temperatures within the chambers of both streams were 

measured to show insignificant differences from room temperature. Additionally, the Mach 

number in either stream ranged between 0.2 and 3.4. These conditions allowed for velocity 

ratios between 0.04 and 0.93 and density ratios between 0.24 and 9.2. The ten cases 

tested in this study were defined in Table 1.  

 

The mixing layer thicknesses were defined as the Pitot thickness (𝛿𝑝𝑖𝑡). A traversing Pitot 

probe setup was used to measure the total pressure profiles of the cases at various 

streamwise locations. Schlieren images were taken to supplement the data. (Note: A 

selection of these Schlieren images was used to infer visual thickness growth rates in a 

1986 article by the same authors, but these growth rates were “deemed subjective and of 

limited accuracy” by the authors. It appears that the authors elected to supersede their 

prior work with the Pitot thickness measurements of their 1988 study.) 

 

The mixing layer Pitot thicknesses and corresponding growth rates were presented in 

three separate forms throughout the article. Figure 9 presented the thicknesses plotted 
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against the x-axis and mentioned that the growth rates were calculated from linear, least-

squares regressions of data points downstream of x = 75mm. Figure 14 presented the 

calculated mixing layer growth rates plotted against 𝑀𝑐1. Finally, Figure 16 presented the 

normalized mixing layer growth rates plotted against 𝑀𝑐1. A growth rate was not presented 

by the authors for Case 1 because it was a wake flow and, hence, was not expected to 

grow linearly. 

 

All three of the figures mentioned above were digitized in order to collect growth rate 

values for the database, and the process described here was performed two separate 

times to determine a rough order of magnitude for the accuracy associated with the 

digitization process. The x-locations from Figure 9 could be read to within 2%, and the 

thicknesses were read to within approximately 10%. After digitizing each case in Figure 9, 

the thicknesses downstream of x = 75mm were subjected to a least-squares regression 

to determine the growth rates. Repeating this process twice, the growth rate values 

determined from Figure 9 were known to within approximately 7%. In comparison, the 

growth rate values digitized directly from Figure 14 and Figure 16 were reproducible to 

well within 1%. The table below shows the values determined from the second of two 

readings. 
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When investigating the percent differences between the growth rates reported in Figure 

14 and Figure 16, some anomalies were discovered (identified with red ink in the above 

table). The Figure 9 data was not used in this comparison due to the relatively large 

digitization error, however its results show even more significant disparities. The 

differences between the various representations of what should be the same exact data 

are larger than can be explained by the experimental error reported in the article of ±10% 

or the digitization error. Because of the irreconcilable disparities between reporting 

instances within the article, the otherwise suitable data points from Papamoschou & 

Roshko (1988) are not included in the present database.  

 

Messersmith et al., 1990, Investigation of supersonic mixing layers 

Messersmith et al. studied reactive and nonreactive mixing layers in a dual-stream, 

supersonic wind tunnel. Using this apparatus, they collected data for two cases with 

density ratios of 0.76 and 1.56, velocity ratios of 0.79 and 0.58, and convective Mach 

numbers of 0.20 and 0.45, respectively. The primary and secondary gases were both air, 

and one of the tests was run with the primary gas heated to produce a different density. 

Laser Doppler velocimetry (LDV) was used to measure the velocity profiles. The shear 

layer thickness growth rate was measured and presented in tabular format with other 

pertinent data. Measurement uncertainties for these growth rates were not included. 

Case #

Digitized from Figure 9

Fit Using Data for x >= 75mm

Digitized from Figure 14 Digitized from Figure 16

Reverse Engineered

% Difference 

Fig. 14 vs. Fig. 16

1 0.012 - - -

2 0.0341 0.034886 0.028821076 -19.04003362

3 0.0265 0.047865 0.028659398 -50.19471414

4 0.0241 0.027896 0.029051141 4.056887145

5 0.0272 0.02593 0.028039935 7.818928606

6 0.0217 0.022992 0.02222695 -3.383758842

7 0.0369 0.036796 0.038176815 3.683508363

8 0.0371 0.038042 0.038746853 1.835821805

9 0.0224 0.028102 0.030286342 7.482116872

10 0.0692 0.068844 0.071890934 4.330032534

Experimental Mixing Layer Thickness Growth Rates from Papamoschou & Roshko (1988)
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Samimy & Elliott, 1990, Effects of compressibility on the characteristics of free 

shear layers 

Samimy and Elliott conducted a series of experiments at the Ohio State University 

Aeronautical and Astronautical Research Laboratory. This supersonic blowdown tunnel 

fed cold, dry, and compressed air to a pair of independently controlled streams. The top 

side had a nominal Mach 2 nozzle, and the bottom side had a converging nozzle. The two 

streams were separated by a 1° splitter plate with a trailing edge thickness of 0.5 mm. The 

total temperatures of the two streams were equal and fluctuated slightly around room 

temperature. Static pressures were measured on the top and bottom walls of the tunnel 

to indicate that pressure variation at the inlet was within 6% of the mean pressure for the 

underexpanded case (Case 2). Schlieren photographs were taken to qualitatively describe 

the flow. Laser Doppler Velocimetry (LDV) was used to determine the velocity profiles at 

a number of different streamwise locations. 

 

The article presented two cases at convective Mach numbers of 0.51 and 0.64. The 

convective Mach numbers, the Mach numbers of the individual streams, the velocity ratios, 

and the density ratios were provided in Table 1. However, the density ratio for Case 2 was 

reported as 9.58, which is impossible for mixing layers with equal gas composition, equal 

total temperature, and nearly equal static pressures. This was therefore assumed to be a 

typographical error and recorded in the database as 0.58, which agrees with the other 

associated parameters. 

 

Mixing layer growth rates and normalized growth rates were reported in the form of shear 

layer thickness, vorticity thickness, and momentum thickness.  
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Within the article, momentum thicknesses and normalized momentum thicknesses were 

reported in Table 2. Figure 7 presented all three sets of growth rates in both graphical and 

text format. Figures 8 and 9 compared experiments from the literature to this experiment’s 

normalized shear layer thickness growth rates and vorticity thickness growth rates, 

respectively. These two plots were digitized in order to determine the normalized growth 

rates used by the authors. All representations within the article agreed with one another. 

 

The authors also measured the extent of the level and lateral turbulence fluctuations and 

Reynolds stresses. This article showed preliminary yet inconclusive results suggesting 

that these parameters are reduced when the convective Mach number is increased. A 

follow-up report by the same authors later that year (Elliott & Samimy 1990) further 

supported this claim with the addition of a case at 𝑀𝑐 = 0.86. Unfortunately, this follow-up 

article did not provide mixing layer growth rate measurements, and hence, could not be 

added to the database. 

 

Göebel and Dutton, 1991, Experimental study of compressible turbulent mixing 

layers  

Goebel and Dutton’s article was among the first experimental investigations to provide 

accurate and detailed measurements of the mean and turbulent velocity fields in 

developed, compressible mixing layers. In this experiment, the mixing of two air streams 

of equal total temperature was investigated using pressure measurements, Schlieren 

photographs, and a two-component laser Doppler velocimeter (LDV) system. Mixing layer 

thicknesses were measured according to the shear layer thickness definition. A total of 

seven cases were reported, with Mach numbers ranging between 0.3 and 2.35, velocity 

ratios between 0.16 and 0.79, and density ratios between 0.57 and 1.55. All of the 

necessary data for these cases were provided in tabular format. 
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Hall et al., 1991, Experiments in non-reacting compressible shear layers 

The experiment of Hall et al. was an investigation of the validity of the convective Mach 

number’s derivation and its use as an independent variable while also recording mixing 

layer growth data for dissimilar gases. The experiment employed a two-stream blowdown 

wind tunnel with mixtures of 𝑁2, He, and Ar gases. A majority of the cases had the high 

speed Mach number, 𝑀1, near 1.5, while some cases had 𝑀1 near 0.6. The low speed 

Mach number varied between 0.10 and 0.44. Velocity ratios varied between 0.092 and 

0.636, while density ratios varied between 0.058 and 5.950. The mixing layer thickness 

was presented as the visual thickness, which was measured from Schlieren photographs. 

The conditions and mixing layer growth rate measurements which were needed for the 

database were presented in tabular format. 

 

The authors found that the measured convective velocities of travelling shock waves were 

considerably higher than those predicted by models of isentropic pressure recovery at 

stagnation points in the convective frame. When considering the convective Mach number, 𝑀𝑐1, to be an averaged measure of compressibility in the flow, the authors suggest that it 

could still be a valid measure of the overall compressibility of the shear layer despite 

having different underlying physical principles. 

 

The results showed abnormally low mixing layer growth rates for conditions characterized 

by very low density ratios combined with a subsonic low-speed flow interacting with a 

supersonic high-speed flow (Cases 7, 8, and 9). This is in contrast to the dual subsonic 

case with low density ratio that displayed no abnormal growth rate reduction (Case 11). 
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The authors suggested that there were one or more additional elements at play that were 

not known. 

 

Clemens & Mungal, 1992, Two- and three-dimensional effects in the supersonic 

mixing layer 

Clemens and Mungal presented planar laser Mie scattering visualizations for three cases 

ranging from low to moderate compressibility in an effort to analyze the two- and three-

dimensional nature of the turbulent structures. Additionally, they measured total pressure 

profiles with a Pitot probe and presented Pitot thickness growth rates in tabular format 

along with other pertinent data. The authors reported uncertainties of 10% in the high-

speed side Pitot pressure non-uniformities, and this uncertainty was translated through to 

the reported normalized growth rates. The nominal values and the 10% uncertainty were 

presented in Figure 4. 

 

The authors’ images suggest that the large coherent structures first noted by Brown and 

Roshko (1974) are less prominent in cases with high compressibility. Moreover, 

compressibility was found to increase the degree of three-dimensional effects within the 

mixing layer. 

 

Gruber et al., 1993, Three-dimensional velocity field in a compressible mixing layer 

Gruber et al. used a two-component laser Doppler velocimeter (LDV) to measure the 

streamwise, transverse, and spanwise velocity field and turbulence statistics at a number 

of streamwise locations in an air-to-air, two stream mixing layer of moderate 

compressibility. A shear layer thickness growth rate was presented in tabular format 

alongside the experimental conditions. This LDV study showed that the peak streamwise 

and spanwise turbulence intensity remains relatively constant as compressibility 
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increases, while peak transverse turbulence intensity and normalized primary Reynolds 

shear stress both decrease with increasing compressibility. These findings imply that the 

primary effect of compressibility on the mixing layer is to suppress transverse velocity 

fluctuations. 

 

Debisschop et al., 1994, Velocity field characteristics in supersonic mixing layers 

Debisschop et al. used their 1994 article to present the results of an experimental study 

on compressible mixing layers. They used a blow-down, high-pressure wind tunnel to 

create five different supersonic-subsonic mixing layers. Air in the supersonic stream varied 

in Mach number from 1.48 to 3.2, while air in the subsonic stream stayed between Mach 

numbers of 0.2 and 0.41. The authors assumed constant total temperatures to calculate 

velocity ratios between 0.11 and 0.28 and density ratios between 0.33 and 0.7. Among 

these test cases, four trials had convective Mach numbers between 0.525 and 0.64, while 

the fifth trial had a convective Mach number of 1.04. 

 

The accuracy of the instrumentation was carefully identified. The Mach numbers obtained 

from Pitot-static measurements had associated errors of less than 1%. The total 

temperatures were shown to be within 5% of each other. The relative error in the measure 

of the interfringe was 0.3%, and the resolution of the signal processor was less than 4 m/s. 

The resulting error for 1000 sample data was estimated to be better than 1% of the 

average mean velocity (400 m/s) and 4% on the RMS quantities. These uncertainties were 

not propagated to the observed growth rates. 

 

Mean velocity profiles were obtained for several positions downstream of the splitter plate 

by use of static and total pressure probes. The authors analyzed this data within the self-

similar region to determine the vorticity thickness growth rate for each case. All of the 
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growth rates were normalized according to the process proposed by Papamoschou and 

Roshko (1988) and were then reported in graphical format. 

 

The authors also used laser-Doppler anemometry (LDA) to obtain detailed measurements 

of the mean and fluctuating velocity fields. The LDA measurements were shown to agree 

with the pressure measurements of mean velocity profiles. Furthermore, the LDA 

measurements confirmed that the levels of velocity fluctuation decrease with increasing 

convective Mach number. 

 

Buttsworth et al., 1995, A gun tunnel investigation of hypersonic free shear layers 

in a planar duct 

Buttsworth et al. performed an experimental study of free shear layers between a Mach 

7.11 primary stream created in a gun tunnel and four Mach 3.24 secondary streams with 

different mixtures of 𝑁2 and 𝐻2. The shear layers were studied with a horizontal knife-edge 

Schlieren system and a Pitot pressure probe. The Schlieren images were used to visually 

study the flow characteristics, while the Pitot probe was used to evaluate mixing layer 

thicknesses, which were split into upper and lower portions and plotted in Figure 11. 

During their discussion of the data quality, the authors stated that “it is clear that the actual 

secondary-stream mixing layer edge is not accurately determined by the Pitot results, 

while the primary-stream free shear layer edge is correctly located by the Pitot pressure.” 

For this reason (and this reason only), the cases were disqualified from the present 

database. 
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Clemens & Mungal, 1995, Large-scale structure and entrainment in the supersonic 

mixing layer  

In this highly-cited experiment, Clemens and Mungal investigated a set of planar mixing 

layers ranging from low (𝑀𝑐 = 0.28) to moderate (𝑀𝑐 = 0.79) compressibility using a 

combination of Pitot probe measurements, Schlieren photography, planar laser Mie 

scattering (PLMS) from a condensed alcohol fog, and planar laser-induced fluorescence 

(PLIF) of nitric oxide. Mixing layer growth rates were determined for the Pitot thickness 

and visual thickness definitions. Refer to Clemens & Mungal (1992) for the original 

presentation of their Pitot thickness data. Sufficient data for the case definition and growth 

rate results were neatly reported in tabular format. Error bars were presented in graphical 

format, suggesting ±10% for the normalized Pitot thickness growth rates and 

approximately ±17% for the normalized visual thickness growth rates. The PLMS and PLIF 

techniques were used to study the large-scale structure, entrainment motions, and mixture 

fraction fluctuations of the five cases. 

 

Osland et al., 1996, Quantitative scalar measurements in compressible mixing 

layers  

Osland et al. studied mixing efficiency and mixing layer growth rates of planar mixing 

layers with low to moderate compressibility. They measured the growth rates of visual 

mixing layers using nitric oxide seeded planar laser-induced fluorescence (PLIF), and the 

mixing efficiencies were calculated from concentration measurements. Three cases were 

tested, with convective Mach numbers of 0.25, 0.39, and 0.63.  

 

Data for the three cases were provided in tabular format. The total temperatures of each 

flow were calculated from the provided Mach numbers and static temperatures using 

isentropic flow relations. Estimates of incompressible growth rates were not provided. 
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Barre et al., 1997, Influence of inlet pressure conditions on supersonic turbulent 

mixing layers  

Barre et al. investigated the effects of non-isobaric conditions within compressible 

turbulent mixing layers to provide a more realistic understanding of practical applications 

such as scramjets and near-body flows. The examined configuration mixed the high speed 

flow at 𝑀1  =  3.2 with a low speed flow at 𝑀2  =  0.2 while using head losses in the 

subsonic stream to adjust the pressures. Both streams were generated from a common 

settling chamber. Pitot-static tubes, wall pressure measurements, Schlieren imaging, and 

laser Doppler velocimeter (LDV) measurements were used to examine the flows. The 

vorticity thickness definition was used to describe the mixing layer thickness growth rates. 

 

The measured mixing layer growth rates of the isobaric case and the non-isobaric case 

were both within the measurement uncertainty of ±10%, suggesting that the effects of the 

pressure conditions are not significant. The authors claimed that the only apparent effect 

of the initial pressure ratio is to accelerate the transition between the initial boundary-layer 

state and the asymptotic mixing-layer configuration. Further studies of this kind are 

recommended to confirm their claim. 

 

Although the overall conclusion of the study was clearly stated, neither the case 

characteristics nor the measured mixing layer growth rates were well defined. The gas 

content of the two streams was not mentioned in the text, however it was stated that the 

streams had a shared origin. Therefore, it was determined that the ratios of specific gas 

constants (𝑅2 𝑅1⁄ ), ratios of specific heats (𝛾2 𝛾1⁄ ), and total temperatures (𝑇𝑡,2 𝑇𝑡,1⁄ ) were 

all unity.  
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In order to continue determining the remaining case characteristics, it was necessary to 

assume that the gas used was air. Using this assumption, the ratio of acoustic speeds 

was calculated as 

𝑎2𝑎1 = √(𝛾2𝛾1) (𝑅2𝑅1) (𝑇𝑡,2𝑇𝑡,1) (1 + 𝛾1 − 12 𝑀12)(1 + 𝛾2 − 12 𝑀22) 

Neither the velocity ratios nor the density ratios were listed for any of the cases. An 

equation for velocity ratio was determined using the definition of Mach number to be 𝑈2𝑈1 = 𝑀2𝑀1 (𝑎2𝑎1) 

Similarly, an equation for density ratio was determined using the ideal gas law for two 

flows of the same gas to be 𝜌2𝜌1 = (𝑃1𝑃2) (𝑎1𝑎2) 

For isobaric experiments, the ratio of static pressures is unity. The article reports that the 

pressure in the supersonic stream was 25% lower than the pressure in the subsonic flow 

for the non-isobaric case, thus (𝑃2 𝑃1⁄ ) = 0.75. 

 

The normalized mixing layer growth rates were digitized from Figure 4. Although the exact 

parameters used for the incompressible growth rate estimations were not explicitly 

mentioned, the text did refer to an article by Papamoschou and Roshko (1988). This 

reference suggests that for vorticity thicknesses, the incompressible mixing layer growth 

rate can be calculated as 

𝛿′𝜔,0 = 0.085 (1 − 𝑟)(1 + √𝑠)1 + 𝑟√𝑠   
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where the coefficient stems from the recommendation by Brown and Roshko (1974) that 

the vorticity thickness is about half of the visual thickness in incompressible mixing layers. 

The reported normalized mixing layer growth rates and the predicted incompressible 

mixing layer growth rates were used together to determine the experimentally measured 

mixing layer growth rates. 

 

Island et al., 1998, Mixing enhancement in compressible shear layers via sub-

boundary layer disturbances 

In this paper, Island et al. discuss the impressive results from their experiment on mixing 

enhancement. By applying a variety of small disturbance geometries within the boundary 

layer of the supersonic stream of a moderately compressible (𝑀𝑐 = 0.63) turbulent mixing 

layer, Island et al. were able to increase mixing layer growth rate and mixing efficiency by 

47% and 7%, respectively, while incurring minimal momentum losses. These disturbances 

were as thin as 5% of the boundary layer displacement thickness. 

 

Planar laser Mie scattering (PLMS) was used to measure visual thicknesses of the mixing 

layers, wherein the thickness was defined as the distance between 5% and 95% intensity 

levels. This method was shown to be repeatable to within ±3%. Additionally, Toepler 

Schlieren imaging was performed to obtain clear images of the shock and turbulent 

structures of the mixing layers, and planar laser induced fluorescence (PLIF) was used as 

an additional means of imaging. 

 

Only the unperturbed control case (Case 0) is included in the present database in order 

to comply with Qualification Metric #6. The growth rate of this case was acquired by 

digitizing Figure 24 and fitting a linear trendline to the plot of mixing layer thickness versus 

streamwise location. 
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Slessor, 1998, Aspects of turbulent-shear-layer dynamics and mixing 

Slessor’s doctorate thesis is most known for the introduction of a new compressibility 

parameter (see Section 3.1, page 34). In addition to this, he performed two separate 

experiments. The first was on the effects of inflow conditions on the mixing layer, which 

had interesting results that did not apply to the present database. The second experiment 

was a study of the effects of compressibility on mixing layer growth rates, with an interest 

in studying the differences between bi-supersonic, bi-subsonic, and supersonic/subsonic 

mixing layers.  

 

Visual mixing layer thickness growth rates were determined from Schlieren imaging and 

reported in Table 4.2, however a number of discrepancies could be found that 

considerably diminish the credibility of the report. First, attempting to reproduce Slessor’s 

values for 𝛿𝑣𝑖𝑠/𝛿0 by dividing the 𝛿𝑣𝑖𝑠/𝑥 column by the 𝛿0/𝑥 column fails. It appears that 

switching the numerator and denominator (i.e. 𝛿0/𝛿𝑣𝑖𝑠) sufficiently resolves this issue. 

Second, attempting to reproduce the reported values for 𝛿0/𝑥 by using Equation 1.2 and 

the value mentioned in Appendix B for 𝐶𝛿 = 0.174 should be possible, however the results 

do not match. It appears that the reader must first double the value of the constant to 𝐶𝛿 =0.348. Although the discrepancies found within this one table could supposedly be 

remedied through relatively simple means, their existence seeds doubt into the quality of 

the other aspects of the experiment and report. Therefore, these cases were disqualified 

from the present database. 
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Rossmann, 2001, An experimental investigation of high compressibility mixing 

layers 

Rossmann’s doctorate thesis studied high compressibility mixing layers with a shock tube 

facility. By combining a variety of gases at considerably different speeds, Rossmann was 

able to achieve a wealth of data at compressible Mach numbers reaching as high as 2.89. 

Images of the shear layer were achieved by Schlieren imaging and planar laser induced 

fluorescence (PLIF) of seeded tracer species. These images were used to determine the 

visual mixing layer growth rate. 

 

The report presented images of dozens of cases, with convective Mach number and 

associated normalized growth rates presented in tabular format in Appendix D (page 202). 

These cases provide perhaps the strongest experimental argument for the asymptotic 

behavior of turbulent mixing layers at high compressibility. Unfortunately, most of them 

were not presented with adequate information to make complete entries into the present 

database.  

 

The three cases that were studied with PLIF imaging were accompanied by enough 

information in tabular format to include in the database. In these cases, the case 

parameters were collected from Tables 5.3 and 6.2, while the normalized growth rates 

attained from Schlieren imaging were collected from Appendix D. This conglomeration of 

information relies on the assumption that the cases studied with PLIF directly correspond 

to the nearest cases studied with Schlieren imaging. 

 

The uncertainty for the convective Mach number was reported as ± 0.05 for 𝑀𝑐 < 1.5 and 

± 0.07 for 𝑀𝑐 > 1.5. The uncertainty for the normalized growth rates through Schlieren 

imaging was reported as ± 0.03 for 𝑀𝑐 < 1.5 and ± 0.04 for 𝑀𝑐 > 1.5. 
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Yang et al., 2009, Experimental and numerical study on instability structure of the 

supersonic mixing layer (Mc = 0.5) 

Yang et al. completed a study of planar mixing layers via parallel experimental and 

numerical efforts. The experimental effort utilized a high spatiotemporal resolution flow 

visualization technique called Nano-based Planar Laser Scattering (NPLS), and the 

numerical effort utilized two-dimensional direct numerical simulation (DNS) to reproduce 

the same case. The single case that they studied was a dual-supersonic mixing layer with 

a convective Mach number of 0.5. The experimental measurements reported a visual 

mixing layer thickness growth rate averaged over 20 trials. Based on pixel size, the relative 

error for the growth rates was determined to be roughly 0.5%. 

 

Unfortunately, the DNS study only reported mean vortex spacing and not mixing layer 

growth rate. In addition to the non-perturbed case which was included in the present 

database, Yang et al. also studied the effect of harmonic disturbances on the mean vortex 

spacing of the mixing layer with equivalent aerodynamic properties. 

 

Zhou et al., 2012, Direct numerical simulation of a spatially developing 

compressible plane mixing layer: flow structures and mean flow properties 

Zhou et al. investigated a moderately compressible (𝑀𝑐 = 0.7) mixing layer using 3D DNS. 

The primary focus of their study was to use the numerical technique to develop three-

dimensional images of the turbulent structures within the mixing layer. Through this 

process, a progression of Λ-vortices, hairpin vortices, and “flower” structures was 

discovered. Along with this result, the spatial growth rate of the mixing layer’s momentum 

thickness was determined and presented graphically. 

 



134 
 

A considerable portion of the parameters that define the case were “hidden” within the 

text. The primary and secondary Mach numbers were reported as 2.8 and 1.4, 

respectively. The authors failed to mention the gasses that were being modeled, however 

they did report that the specific heat ratios of the two streams equaled 1.4, so the gasses 

were inferred to be air for this database. Furthermore, the authors claimed that their 

assumptions of “equal specific heats and temperatures” led to the simplified convective 

Mach number equation of 𝑀𝑐 = (𝑀1 − 𝑀2)/2, which implies that the acoustic speeds were 

also equivalent. Based on this, it was understood that the specific gas constants were 

equivalent and that the authors’ equal temperatures assumption referred to static 

temperature. Using this, the total temperature ratio was calculated as 

𝑇𝑡,2𝑇𝑡,1 = (𝑎2𝑎1)2
(𝛾2𝛾1) (𝑅2𝑅1) (1 + 𝛾2 − 12 𝑀221 + 𝛾1 − 12 𝑀12)  

Since the acoustic speeds were equivalent, the velocity ratio was calculated as the ratio 

of Mach numbers (𝑀2/𝑀1). The authors also claimed that “the pressures of both free 

streams are the same.” Using this and the equivalent acoustic speed assumption, the 

density ratio was known to be unity. The remaining case definition parameters were 

determined using typical processes. 

 

One point of concern for the appropriateness of this study within the database is regarding 

the investigators’ use of periodic forcing of the mixing layer. The authors claimed that the 

mixing layer was “periodically forced by a pair of the linearly most unstable oblique waves 

of equal amplitudes.” This forcing was deemed allowable because the authors cited 

Sandham & Reynolds (1991), who “have shown that simulations with forcing of linear 

instability waves produced the development of large-scale structures similar to a fully 

nonlinear computation with a random initial condition.” Therefore, it was understood that 
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the authors used the forcing to facilitate the computational creation of large-scale 

structures rather than to artificially enhance the mixing growth rate. 

 

 


