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This paper is devoted to the study of the H-function as defined by the
Mellin-Barnes integral

where the function J67*.*(s) is a certain ratio of products of the Gamma-
functions with the argument s and the contour £ specially chosen. The
conditions for the existence of H™ "(z) are discussed and explicit power
and power-logarithmic series expansmns of H™ q"(z) near zero and infinity
are given. The obtained results define more prec1sely the known results.
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1. Introduction

This paper deals with the H-function Hm "(z) introduced by Pincherle in 1888 (see
[3, Section 1.19}). Interest in this fanction appeared in 1961, when Fox [4]
investigated such a function as a symmetrical Fourier kernel. Therefore, the H-
function is often called Fox’s H-function. For integers m,n,p and ¢ such that
0<m<qand 0<n<p, while a;,b,€C and o, 8, ER = (0,00), with 1 <i<p
and 1 < j < g, the function is defined by the Mellin-Barnes integral:

"(z) :é—lﬁ/:}ﬁ;"”q"(s)z_sds, (1.1)
L

where
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H I(b,;+ 8 s)H I'(l1—a;,—a;s)

B (s) = — - . (1.2)
[I T(a;+e;8)[] TA—-b.—-p5s)
i=n+1 j=m+1 J J

The contour L is specially chosen and an empty product, if it occurs, is taken to be
one. The theory of this function may be found in (1, 2, 9 Chapter 2, 10, 11 Section
8.3] and [12, Chapter 1]. We only indicate that most of the elementary and special
functions are particular cases of the H-function H " *(2). In particular, if o’s and B’s
are all equal to 1, the H-function (1.1) reduces to Meijer’s G-function Gorg'(2)-

The condltlons of the existence of the H-function can be made by 1nspect1ng the
convergence of the integral (1.1), which depends on the selection of the contour £ and
on the relations between parameters a; and «; (i =1,...,p) and b, and 8, (j =
1,...,9). Especially, the relations might depend on the numbers A,é and u defined
by

A= Zﬁj—zai, (1.3)

p q ,
5= Lo ]I ﬂfy’ (1.4)

=1 7=1
q p p—q
p=y bi— Zai—l——?——. (1.5)

Such a selection of L and various relations between parameters are indicated in the
handbook [11, Section 8.3.1]; but some of the results there need correction. In this
paper we would like to give such corrections in the following cases.

(a) A >0 and the contour £ = £ _ __ in (1.1) runs from —oo+ip; to —oco+
ip,, With ¢, < ,, such that the poles of the Gamma-functions of the form
I'(b;+ B;5) (=1,...,m) lie on the left of £ _  and those of the functions
of the form I'(1-a;—a;s)(i =1,...,n) lie on the right of £ _ .

(b) A <0 and the contour £ = L, . in (L.1) runs from +oco+ip, to +oo+
ipq, With p; < g, such that the poles of the Gamma-functions of the form
I(b;+B;s) (j=1,...,m) lie on the left of £ | and those of the functions
of the form I'(1 —a; —a;s) (i = 1,...,n) lie on the right of £

Our results are based on the asymptotic behavmr of the function j{)m "(s), given

in (1.2) at infinity. Using the behavior and following [1], we glve the series
representation of Hp" "(z) via residues of the integrand 367" *(s)z 7 °. In this way, we
simplify the proof of Theorem 1 in [1] by applying the former results to find the
explicit series expansions of HJ" "(z) Such power expansions, as corollaries of the
results from [1], were indicated in [12, Chapter 2.2] (see also [11, Section 8.3.1]),
provided that the poles of the Gamma-functions of the forms I'(b;+53;s)
(j=1,...,m)and T(1 —a; —;s) (i = 1,...,n) do not coincide, that is,

Bila;—1—k)#a(b;+1) (i=1,...mj=1..,mkleNy={012..}) (1.6)

in the following cases.
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(c) A>0 with 2#£0 or A=0 with 0< |z]| <4, and the poles of the
Gamma-functions of the form I‘(bj + ,Bjs) (7 =1,...,m) are simple:

B4 k) Bib;+1) (#5605 =1yms kIEN)  (L7)

(d) A <0 with 2#0 or A=0 with |z| > 6, and the poles of the Gamma-
functions of the form I'(1 —a; — a;s) (i = 1,...,n) are simple:

oj(1~a;+ k) #o(l—a;+1) (i#5; 6,5=1,...m k1€N). (1.8)

When the poles of the Gamma-functions in (¢) and (d) coincide, explicit series ex-
pansions of Hm "(z) should be more complicated power- logarlthmlc expansmns
Such expanswns in partlcular cases of the Meijer’s G-functions, Gp 9 and Gp’p, and
of the H-functions, Hp’ and ngp, were given in [7] and [8], respectwely

We obtain exphmt expansmns of the H-function of general form H" *(z) under
the conditions in (1.6). We show that, if the poles of the Gamma- functlons of the
forms I'(b; + B8;s) (= 1,...,m) and I'(1 —a; —a;s) (i = 1,...,n) coincide in the cases
(¢) and (]d, respectlvely, then the H-function (1.1) has power logarithmic series
expansions. In particular, we give asymptotic expansions of Hj ms "(z) near zero. We
note that the obtained results will be different in the cases when either A >0 or
A <O0.

The paper is organized as follows. Section 2 is devoted to the conditions of the
existence of the H-function (1.1) which are based on the asymptotic behavior of
¥67v . (s) at infinity. Here we also give the representations of (1.1) via the residues of
the lntegrand The latter result is applied in Sections 3 and 4 to obtain the explicit
power and power-logarithmic series expansions of H?, q”(z) and its asymptotic esti-
mates near zero.

2. Existence and Representations of Hp"(z)

First, we give the asymptotic estimate of the Gamma-function I'(z), z = z + iy, [3,
Chapter 1] at infinity on lines parallel to the coordinate axes.

Lemma 1: Let z=«+iy with 2,y €ER=(—00,00). Then the following
asymptotic estimates at infinity are valid

|T(z+iy)| ~ /21 |z |5 27— (1 —signajy/2

; (lz]—00; y#0 if 2 <0) (2.1)
IT(e+iy) | ~v/2r|y| =" 2oVl (1] 500), (2:2)

Proof: Applying the Stirling formula [3, 1.18(2)],

[(z) ~ /2me7 A8 GE)e =2 (|2 | Soo; |arg(z) | < m), (2.3)

we have

IF(1'+ZZ~/)| N\/2_7T ‘e(z+iy—1/2)[log|z+iy| +iarg(z+iy)]e—(z+iy)l
(2.4)

~\/27r|.7;+iy|x~1/26_w_yarg(x+iy) (|z+iy| —o0; y#0if x <0).
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Let y € R be fixed and |z |—oo. Then |z+iy] ~ |z|, and arg(z +iy)—0 as
z— + oo and arg(x + iy)—m as £— — co. Therefore, (2.4) implies

d IT(z +iy)| ~ 27 |2|" "2 (a—+o0) (2.5)
IT(@+iy)| ~V2r|2|" 722" (2 —c0j y #0), (2.6)

which yield (2.1).

Turning to the case where ¢ € R is fixed and |y | —oo, we find |z +iy| ~ |y ]|
and arg(z +iy)—7w/2 as y—oo, and arg(x +iy)— —7n/2 as y— —oo. Thus (2.4)
implies (2.2).

Remark 1: In view of (2.2), the relation [3, (1.18.6)] needs correction with
addition of the multiplier €¢® on the left-hand side and it must be replaced by

Jim | Dz +iy) | 271912y | 1/2-2 = for, (2.7)
y | —o0

The next assertion gives the asymptotic behavior of 367" *(s), defined in (1.2), at
infinity on lines parallel to the real axis.

Lemma 2: Let A,6 and p be defined as in (1.3) to (1.5) and let t,c € R. Then
the following estimates hold:

— At
| ™t +io) | ~ A(g) steRel) (15 4 00) (2.8)
with

A:(zw)m+n—(P+Q)/26q—m—n

g [(ﬂj)Re(bj) ~1/2 - Re(bj)] ] erloes +m(a;)]
3=1 i=1
i=1 j=m+1 (2.9)
" |56t 4 i0) | ~ B~ s = 1eh ¢ Re) (g 2.10
~H(1ir) T (tmmee) 210
with
B=(nymtr-(P+a/lg-m-n
g [( g et =112, - Re(bp} B oot ima)
j=1 t=n+1
X .
IPT l:(ai)Re(ai) -1/2, —-Re(ai)] i ew[aﬂj +1Im(b )]
i=1 i=1 (2.11)

Proof: By virtue of (2.1), we have, for a variable s = ¢{ + ic and a complex con-
stant k = ¢ + id,

) IT(s+ k)| ~/2rtt T2 =Fe) (1,4 oo) (2.12)
an

IT(s+k)| ~+/2r|t]tHe 12 CHe)=mlotd) () (2.13)
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Substituting these estimates into (1.2) and using (1.3) to (1.5), we obtain (2.8) and
(2.10).

Remark 2: The asymptotic estimate of the function 367" "(s) at infinity on lines
parallel to the imaginary axis T}G;",’q"(a—k it) as |t|—oo was given in our paper with
Shlapakov [5].

By appealing to Lemma 2, we give conditions of the existence of the H-function
(1.1) with the contour £ being chosen as indicated in (a) and (b) in Section 1.

Theorem 1: Let A6 and p be given by (1.3) to (1.5). Then the function
Hgl,’q"(z) defined by (1.1) and (1.2) exzists in the following cases:

L=2__,A>0, z#0; (2.14)
L=L__, A=0, 0<|z| <6 (2.15)
L=2__, A=0, |z| =6 Re(p)< -1; (2.16)
L=2, ., A0, z#£0; (2.17)
L=2,, A=0, |z|>§ (2.18)
L=2,., A=0, |z]|] =46 Re(p)< —1. (2.19)

Proof: Let us first consider the case (a) of Section 1 for which A >0 and
=4 We have to investigate the convergence of the integral (1.1) on the lines

L={teRt+ip,} and |, = {t e Rit +ip,} for p; < ¢, (2.20)

as t— —oo. According to (2.10), we have the following asymptotic estimate for the
integrand of (1.1):

|t]
m,n -5 . nPid8% e Alt] |z|) Re(u)
| 365 (s)z =% ~ Bje (m) <T It

(t——o00; tel, (1=1,2)),

(2.21)

where B, and B, are given by (2.11) with o being replaced by ¢, and ¢,, respective-
ly. It follows from (2.21) that the integral (1.1) is convergent if and only if one of
the conditions (2.14) to (2.16) is satisfied.

In the case (b), A <0 and the contour £ is taken to be £ | . So we have to in-
vestigate the convergence of the integral (1.1) on the lines {; and [, in (2.20) as t—
+o0o. By virtue of (2.8) and (2.9), we have the asymptotic estimate:

mong oy — piarg 2\~ At (5 \' Re(u)
70~ AT ()

t 2] (2.22)

(t—+o0; tel, (1=1,2)),

where A; and A, are given by (2.9) with ¢ being replaced by ¢, and ¢,, respectively.
Thus (2.22) implies that the integral (1.1) converges if and only if one of the condi-
tions (2.17) to (2.19) holds.

Corollary 1: The estimate (2.21) holds for t— — oo uniformly on sets which have
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a positive distance to each point,

by= —2— (j=1...m; €Ny, (2.23)

and which do not contain points to the right of L _ .

The estimate (2.22) holds for t— + oo uniformly on sets which have a positive dis-
tance to each point, l—a +k

ay =it o1 keNy), (2.24)
2

and which do not contain points to the left of £ .

Remark 3: In [11, Section 8.3.1], for the existence of the H-function (1.1) the con-
ditions,

n P m q
o= > e+ > B;— Y, B;>0and Re(p) <0, (2.25)

t=1 t=n-41 1=1 j=m+1

are given in the cases when £=2_ _, A=0 and |z| =6 and when £ =2 _
A =0 and |z| =6. But according to (2.16) and (2.19), (2.25) can be replaced by
the condition,

Re(p) < — 1. (2.26)

The next statement follows from Theorem 1, Corollary 1 and the theory of resi-
dues.

Theorem 2: (A) If the conditions in (1.6) and (2.14) or (2.15) are satisfied, then
the H-function (1.1) is an analytic function of z in the corresponding domain
indicated in (2.14) or (2.15), and

Hgtq"(z)zil i_o: 13 3{;'" I(s)z 77, (2.27)

J
where each b, is given in (2.23).
(B) If the conditions in (1.6) and (2.17) or (2.18) are satisfied, then the H-
function (1.1) is an analytic function of z in the corresponding domain indicated in
(2.17) or (2.18), and

Hpot = Z Z Res [J67"7(s)z ], (2.28)

=1 kK=o ° %k
where each a;y, is given in (2.24).

Remark 4: Theorem 2(A) was proved in [1, p. 278, Theorem 1] for the H-
function represented by the integrand obtained from (1.1) and (1.2) after replacing s
by —s. It sproof is rather complicated and is based on a lemma, where the asympto-
tic estimate at infinity of the function hy(s) defined by

ho(s) =22 (2.29)
n L(1—b,+B;s)

71=1

is given. But our proof of Theorem 2 along the ideas of [1] is simpler and is based on
the asymptotic estimate of }G?’q"(s) itself at infinity given in Lemma 2.
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3. Explicit Power Series Expansions

In this section we apply Theorem 2 to obtain explicit power series expansions of the
H-function (1.1) under the conditions of (1.6) in the cases of (1.7) and (1.8), indivi-
dually.

First, we consider the former case. By Theorem 2(A), we have to evaluate the
residue of J6(s)z ™ * at each point s = b, given in (2.23); in what follows we simplify
J67v.'(s) by J(s). To evaluate these residues we use the property of the Gamma-
function [6, (3.30)], that is, in a neighborhood of the pole z = —k (k€N), the
Gamma-function I'(z) can be expanded in powers of z + k = € so that

_(=D* 2 _I'(z)
I'(z) = T[l +ep(1 + k) + O(e”)], where ¢(2) = ) (3.1)
Since each pole by is simple, i.e., the conditions in (1.7) hold,
x b; .
Sliebs‘l[}fa(s)z"s] =h%z T (=1,...ml eNp), (3.2)
J

where
h% = lim [(s —b,;)36(s)]
Temby ! (3.3)

-t i (b—[b +1]§—)1;[ (1—a+[b +1]ﬁ—)

i=1,147

prla"qFlbblﬁ"‘
AL T e ) L T b

Thus we obtain the following theorem.
Theorem 3: Let the conditions (1.6) and (1.7) be satisfied and let either A >0
and z#0 or A=0 and 0< |z| <é. Then the H-function (1.1) has the power

SETIES eTPANSION

m,n NN s (D8
Hyg (= ):Z Zhjlz ’ g (3.4)

7=1 1l=0

where each constant h%; is given by (3.3).

Corollary 2: If the conditions (1.6) and (1.7) are satisfied and A >0, then (3.4)
gives the asymptotic expansion of HZ’,’q"(z) near zero, and the main terms of this asy-
mptotic formula have the form:

H™ Z{h*z % 4 of . -+1)/ﬂ,-)] (20), (3.5)

where

(3.6)

1 g
_F b.o: q bﬂ
! ﬁ T a,— 2 1 1f1-b+-2>
i=n+1 Bi | iz=m+1 B
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Corollary 3: Let the conditions (1.6) and (1.7) be satisfied, and let A >0 and j,
(1 £ jo < m) be an integer such that

Re(b; ) Re(b;

00 min (t;) . (3.7)
5j0 1<j<m B
Then there holds the asymptotic estimate:

b. /B, b, /8,
Hpg'(z) = hj = 70 J°+o(z ‘o ]O) (z—0), (38)

where h;o is given by (3.6) with j = j,. In particular,
H™"(7) = O o* 0) with p* = mi Re(bj) 3.9
pq ()= 0G")  (20) with p* = iy 5| (3.9)

Now we consider the case (1.8) when the poles of the Gamma-functions of the
form I'(1 —a; —a,;8) (i =1,...,n) are simple. By (3.1), evaluating the residues of
¥(s)z 7 ® considering each point a;; given in (2.24), we have similarly to the previous
argument that

Res [J6(s)z ™ %= —hyz Yk (i=1,..,mkeN,), (3.10)

S—Gk

where a,; is given by (2.24) and

hig ‘sgrank[ (s — az)%6(s)] (3.11)
B, n ;
(=1t ,Uf(” cl1-a 1) I (e e )
= k!ai P q ﬂ] .
j=g+1r(a 1 -ai+ ke )J_g+1 (1‘63'—[1—“,"1"“]@7)

Thus from Theorem 2(B) we have the following theorem.
Theorem 4: Let the conditions (1.6) and (1.8) be satisfied and let either A <0
and 2 #0 or A=0 and | z| > 6. Then the H-function (1.1) has the power series ez-

panston: k- 1V/o
H™ I (z) = Z th e, (3.12)

1i=1k=0
where each constant h,y, is given by (3.11).
Corollary 4: If the conditions (1.6) and (1.8) are satisfied and A <0, then (3.12)
gwes the asymptotic expansion of H;""q”(z) near infinity, and the main terms of this
asymptotic formula have the form:

H;n,qn(z) — Zl:hiz(ai —1)/a; + O(z(ai - 2)/0‘1‘)} ( ] z | —00), (3.13)

1=1
where
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Corollary 5: Let the conditions (1.6) and (1.8) be satisfied, and let A <0 and iy
(1 <iy<n) be an integer such that

Re(e; )—1 Re(a;) -1
S ¢ it S Pt
% - énlag n{ ; } (3.15)
Then there holds the asymptotic estimate:
{a; —1)/a; ( (a; —1)/a; )
Hypdz)=hz © " 4oz 0 0] (Jz]-o0),  (3.16)
where hio is given by (3.14) with i =iy. In particular,
Re(a,) — 1]
m,n Q v
H W (2) = 0(22) (] 2] —00) with o= r<nza><{ . [ a; . (3.17)

4. Explicit Power-Logarithmic Series Expansions

Now, let us discuss cases when the conditions in (1.6) hold, but either (1.7) or (1.8) is
violated.
(e) L=4__, A>0 and some poles of the Gamma-functions of the form
L(b,;+8;s) (j =1,...,m) coincide.
() L=2, ., A<0 and some poles of the Gamma-functions of the form
I'(1 —a;—o;s) (i =1,...,n) coincide.
First, we consider the case (e). Let b = b ; be one of points (2.23) for which some
poles of the Gamma-functions of the form F(b +8;s) (j = 1,...,m) coincide and let

N* = N7, be the order of a coinciding pole. Then there must exist jj,...,jy=€
,ml} and l “ j € N, such that
N*
b, +1. bj +lj .
b= -1 N o NT NT (4.1)
B, B
Then 36(s)z ™ ° has the pole of order N™ at b and hence
Res [¥6(s)z = ° L lim(s — 5)M "% —S}(N*_l) 4.2
s=esi>[ (s)z ]_(NTT)_! sﬂ(s—) (s)z (4.2)
We denote
JN* :}{;( )
* S
H3(s) = (s = b)Y 1:[ L'(b; + B;s) and 365(s) = T (4.3)
T 1 10+ 8
Using the Leibniz rule, we have s
* (N*"l) NI=1 * N*—1— " — eidn
=0z ] = 3 (V) eI ez )
n=0

=N;‘=f: (V' i R M) IO L0
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N ~-1 [N*-1 N * . .
=:7'% { DRI G (e300 -1“">[:}e;<s>]<"‘“}[log(z)r-
1 =0

n=1

Substituting this into (4.2), we obtain

-1
_ b +1y/8; N
SI_{ebs' [H(s)z " %] = J Z H7,,(log ()], (4.4)
= Y3l i=0
where
i = Hu(Nbsp) (4.5)

N]l"1 *.l—l (N*f—l-—n) ‘
51 X, () (e i P e

n=:z

In particular, if /=0 and 7= N;O 1, then by setting N ]O = N and using (3.1),
(4.1) and (4.3), we have
N; -1

Hy = ) s, (N5ib0) = G 100,003 5) (4.5)
=

m b-ﬂi ) b-az-
* * . . H . Fbi—é4 .Hrl_ai_i_J.
(_1)Nj_1 Nj(—l)jk) 1:1’2¢]1""’]N3‘- 7 1=1 7

TN ) L1 508 o b o p b4
? Rl 0k I 1 e-2- [I T 1—bi+—’—ﬂl

Thus, in view of Theorem 2(A), we have the following.
Theorem 5: Let the conditions in (1.6) be satisfied and let either A >0 and
z2#0 or A=0and 0< |z| <8. Then the H-function (1.1) has the power-logarith-

mic Series expansion:

=3 e Cit 0l s Z w4t g . @)

7,0 i=0

Here E' and 32" are summations taken over j and l (j=1,...,m;l € Ny) such that
the Gamma-functions of the form I‘(b —+—ﬂ s) have simple poles and poles of order
N*l at the points of the form b j respectwely, while each constant h*l is given by (3.3)
and each constant H7y, is given by (4.5).

Corollary 6: If the condztzons in (1.6) are satisfies and A >0, then (4.7) gives
the asymptotic expansion of H (z) near zero, and the main terms of this asympto-
tic formula have the form:

HVMz) = zm: I:h;-zbj/ﬂj + O(Z(bj * l)/ﬂj)] (4.8)
=1
+) [H;zbj/ﬂj[log(z)]Nj_1+O (z(bj+l)/ﬂj[log(z)]Nj—lﬂ (2=0).
3=1

Here ' and > " are summations taken over j (7 =1,...,m) such that the Gamma-
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functions of the form I‘(bj + ﬁjs) have simple poles and poles of order N7 = N7, at
the points of the form b, respectively, while each h; is given by (3.6) and each H; is
given by (4.6).

Corollary 7: Let the conditions in (1.6) be satisfied, and let A >0 and b;; be the
pole of the Gamma-function of the form I‘(bj-i-,Bjs) (7=1,...,m). Let jy and jy
(1 < jois Jog £ m) be integers such that

Re(b; ) [Re(b,
pl = —Ju in (b5) (4.9)
i LIS P
when the pole of the form bjl (7=1,...,m; L €Ny) is simple, and
Re(b; ) Re(b;
pr=—2292 = mip ) (4.10)
5]'02 I<yjsm ﬁj

when the poles of the form b, (j=1,...,m; l € Ny) coincide.
(a) If pI < p3, then the asympotitc expansion of the H-function has the form:
b, /B, ( b, /8B, )
J J J J
HyW(2) = h;mz 01 70144 \z 701 -01 (z—0), (4.11)
where h;m is given by (3.6) with j = jy;. In particular, the relation (3.9)
holds.
(b)  If pI > p; and bjoz’o is the pole of order N;m, then the asymptolic ezpan
ston of the H-function has the form:

*

m,n x bjo2/ﬁj02 Niog
HyMz) = Hj02z [log (2)]

vo (0 sopoge o)
(z—0), (4.12)

where H}‘- is given by (4.6) with j = jo,. In particular, if N* is the
largest order of general poles of the Gamma-functions of the form
I‘(bj+/3js) (i=1,...,m), then

* * . x . Re(b )
Hp ' (2) =0 (z” [log(z)]¥ 1) (z—0) with p* = min I: ﬂjJ } (4.13)

1<j<m

Now we consider the case (f). Let a = a;; be one of points (2.24) for which some
poles of the Gamma-functions of the form I'(1 —a; — ¢;s) coincide and let N = N
be the order of this common pole. Then there exist ¢,...,iy € {1,...,,n} and
k; ,...k; €N,such that

1 N
—_——y e ==, 4.14
Thus the integrand 36(s)z ~* of the integrand (1.1) has the pole of order N at a.
Similarly to (4.3), we denote

a

I

‘N
¥%,(8) =(s— a)]\{H (1 —a,—a;s) and J,(s) = v
! H I'l—a; —a;s)

(4.15)
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and, then, we find similarly to (4.4) and (4.5) that

zk"1
slzieas'k[f}f:(s)z"s]:z(a THRIGNY g Tlog(2)Y, (4.16)
p =0
where
Hpi=Hy (N agg) (4.17)
N -1
i (N -1 e L
:(_1_—1)' > (‘1)J( % )(?)[j{;l(aik)](le a9,
n=j

In particular, if we set k =0, j = N;;—1 and N,y = N, then, using (4.15) and (3.1),
we have
1)Ni_1 (_1)Ni_1

Hy=H; o N, -1(Njap)= (—(ﬁ‘—)—:}%(aio):}{’z(“io) =T ST

8. n o
. . H b, +1-qlzt) I T 1——aj—[1—ai]—%
5 z(_l)'k_l j=1 ' J=1yJ¢11y 'zNi
i loy p a q :
k=1 k% 11 F(aj+[1—ai]—(¥—J_> 11 (l—b -—[1—-cl]gj~
j=n41 Yoj=m4l '
4.18)

Therefore, Theorem 2(B) implies the following result similar to Theorem 5.

Theorem 6: Let the conditions in (1.6) be satisfied and let either A <0 and
z2#£0 or A=0 and |z| >6. Then the H-function (1.1) has the power-logarithmic
series erpansion:

Nik_l
mn —-k)/ o, " — a.—1—-kY o .
Hy Zih EAED I 0, Hyp 7 iog())i. (419
2, J=

Here 3" and 3" are summations taken over i and k (i =1,...,njk € Ng) such that
the Gamma-functions of the form I'(1 —a; — o;s) have simple poles and poles of order
N, at the points of the form a;; respectively, while each constant h; is given by
(3.11) and each constant Hy ; is given by (4.17).

Corollary 8: If the conditions in (1.6) are satisfied and A <0, then (4.19) gives
the asymptotic expansion of H;’f’q"(z) near nfinity, and the main terms of this asymp-
totic formula have the form:

:"’[_ ~O/a; | o (o )/a}
5 el

(4.20)
SN N;-1 - 2)/a, N;-1
o 30 L g™ o 4 og(e )] (1210
Here " and 3" are summations taken over i (i =1,...,n) such that the Gamma-

functions of the form T'(1 —a,— «,s) have simple poles and poles of order N, = N,
at the points of the form a,y in (2.24) respectively, while each h; is given by (3.14)
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and each H, is given by (4.18).

Corollary 9: Let the conditions in (1.6) be satisfied, and let A <0 and a,;, be the
pole of the Gamma-function of the form I'(1 —a; —a;s) (1 =1,...,n). Let iy and iy,
(1 <iyy, P9y < n) be integers such that

Re(aim) -1 Re(a;)—1
191 1<i<n

<
when the pole of the form a;, (i =1,...,n; k € Ny) is simple, and

-

)—1
Bele) 1| (122)
when the poles of the form a; (i =1,...,n;k € Ny) coincide.
(a) If py > py, then the asymptotic expansion of the H-function has the form:

(a; —1)/e; (a; —1)/e;
H™™Mz)=h, 2 01 01—}-0(2 01 01) (] z]—00), (4.23)

P, q 01

where hi01 is given by (3.14) with i =1iy,. In particular, the relation

(3.17) holds.
b If p, < and a; is the pole of order N, , then asymplotic expansion
1 P 102,0 193

of the H-function has the form:

a; —1)/a, N, -1 a, —1}/a; N, -1
“igs 0log(z)] ‘02 4o (Z( 0™ 02(log(z)] ‘02 )
4)

Hyoi(z) = H; =
(12]—00), (4.

q 2

where Hi02 is given by (4.18) with i =1y,. In particular, if N is the

smallest order of general poles of the Gamma-functions of the form
I'(l—a,—q;s) (i=1,...,n), then

Re(a;)—1
HY(z) = O(z‘-’[log(z)]N - 1) (| 2] —00) with o = Smla)S( n[——(—d'—z)—} (4.25)
In conclusion, we give the following consequence of Corollaries 3, 5, 7 and 9,
which unifies the power and power-logarithmic asymptotic behavior of H ;"Y*q"(z) near
zero and infinity.

Theorem 7: Let the conditions in (1.6) be satisfied.

(a) If A>0 and the poles of the Gamma-functions of the form I‘(bj—i-,Bjs)
(j=1,...,m) are simple, then the H-function (1.1) has the asymptotic
estimate (3.9) at zero. If some of the poles of the Gamma-functions of the
form T(b;+ B;s) (j =1,...,m) coincide, then HZ’q"(z) has the asymptotic
estimate either (3.9) or (4.13) at zero.

(b)  If A <0 and the poles of the Gamma-functions of the form I'(1 —a, — a;s)
(i=1,...,n) are simple, then the H-function (1.1) has the asymptotic
estimate (3.17) at infinity. If some of the poles of the Gamma-functions of
the form T'(1—a;—a;s) (i=1,..,n) coincide, then H7"*(z) has the
asymptotic estimate (3.17) or (4.25) at infinity.

Remark 5: The power-logarithmic expansions and more complicated results than

those in (4.7) were indicated in [9, Section 3.7] (see also [8, Section 5.8]); and the
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particular cases, H(’)”g(z) and Hz’;’g(z), are shown in [7].
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