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ON THE HADAMARD’S INEQULALITY FOR CONVEX

FUNCTIONS ON THE CO-ORDINATES IN A RECTANGLE

FROM THE PLANE

S. S. Dragomir

Abstract. An inequality of Hadamard’s type for convex functions and convex

functions on the co-ordinates defined in a rectangle from the plane and some

applications are given.

1. INTRODUCTION

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I with a < b. The following double inequality:

f

(
a + b

2

)
≤ 1

b − a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
(1.1)

is known in the literature as Hadamard’s inequality for convex mappings. Note that

some of the classical inequalities for means can be derived from (1.1) for appropriate

particular selections of the mapping f .
In the paper [4] (see also [5] and [9]) is considered the following mapping

naturally connected with Hadamard’s result:

H : [0, 1] → R, H(t) :=
1

b− a

∫ b

a
f

(
tx + (1− t)

a + b

2

)
dx.

The following properties of H hold:

(h) H is convex and monotonic nondecreasing.
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(hh) One has the bounds

sup
t∈[0,1]

H(t) = H(1) =
1

b− a

∫ b

a
f(x)dx

and

inf
t∈[0,1]

H(t) = H(0) = f

(
a + b

2

)
.

Another mapping also closely connected with Hadamard’s inequality is the following

one [5] (see also [9]):

F : [0, 1] → R, F (t) :=
1

(b− a)2

∫ b

a

∫ b

a

f(tx + (1− t)y)dxdy.

The properties of this mapping are the following ones:

(f) F is convex and monotonic nonincreasing on [0, 1
2 ] and nondecreasing on

[12 , 1].

(ff) F is symmetrical relative to the element 1
2 , that is,

F (t) = F (1 − t) for all t ∈ [0, 1].

(fff) One has the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a
f(x)dx

and

inf
t∈[0,1]

F (t) = F

(
1
2

)
=

1
(b− a)2

∫ b

a

∫ b

a
f

(
x + y

2

)
dxdy ≥ f

(
a + b

2

)
.

(ffff) The following inequality holds:

F (t) ≥ max{H(t), H(1− t)} for all t ∈ [0, 1].

In this paper we will point out a similar inequality to Hadamard’s one that will

work for convex mappings on the co-ordinates on a rectangle from the plane R2.
We will also consider some mappings similar in a sense to the mappings H and F

and establish their main properties.

For recent refinements, counterparts, generalizations and new Hadamard - type

inequalities, see the papers [1]-[12] and [14]-[15] and the book [13].
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2. HADAMARD’S INEQUALITY

Let us consider the bidimensional interval ∆ := [a, b]× [c, d] in R2 with a < b
and c < d. A function f : ∆ → R will be called convex on the co-ordinates

if the partial mappings fy : [a, b] → R, fy(u) := f(u, y), and fx : [c, d] → R,
fx(v) := f(u, v), are convex where defined for all y ∈ [c, d] and x ∈ [a, b].

Recall that the mapping f : ∆ → R is convex in ∆ if the following inequality:

f(λx + (1 − λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1 − λ)f(z, w)(2.1)

holds, for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].
The following lemma holds:

Lemma 1. Every convex mapping f : ∆ → R is convex on the co-ordinates,

but the converse is not generally true.

Proof. Suppose that f : ∆ → R is convex in ∆. Consider fx : [c, d] → R,
fx(v) := f(x, v). Then for all λ ∈ [0, 1] and v, w ∈ [c, d] one has:

fx(λv + (1− λ)w) = f(x, λv + (1 − λ)w)
= f(λx + (1 − λ)x, λv + (1− λ)w)
≤ λf(x, v) + (1 − λ)f(x, w)
= λfx(v) + (1− λ)fx(w)

which shows the convexity of fx.

The fact that fy : [a, b] → R, fy(u) := f(u, y), is also convex on [a, b] for all
y ∈ [c, d] goes likewise and we shall omit the details.
Now, consider the mapping f0 : [0, 1]2 → [0,∞) given by f0(x, y) = xy. It’s
obvious that f is convex on the co-ordinates but is not convex on [0, 1]2.
Indeed, if (u, 0), (0, w) ∈ [0, 1]2 and λ ∈ [0, 1], we have:

f(λ(u, 0) + (1 − λ)(0, w)) = f(λu, (1− λ)w) = λ(1− λ)xw

and

λf(u, 0) + (1 − λ)f(0, w) = 0.

Thus, for all λ ∈ (0, 1), u,w ∈ (0, 1), we have

f(λ(u, 0)+ (1− λ)(0, w)) > λf(u, 0) + (1− λ)f(0, w),

which shows that f is not convex on [0, 1]2.

The following inequalities of Hadamard type hold:
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Theorem 1. Suppose that f : ∆ = [a, b] × [c, d] → R is convex on the co-

ordinates on ∆. Then one has the inequalities:

f

(
a + b

2
,
c + d

2

)

≤ 1
2

[
1

b − a

∫ b

a
f

(
x,

c + d

2

)
dx +

1
d− c

∫ d

c
f

(
a + b

2
, y

)
dy

]

≤ 1
(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy

≤ 1
4

[
1

b − a

∫ b

a
f(x, c)dx +

1
b− a

∫ b

a
f(x, d)dx

+
1

d − c

∫ d

c
f(a, y)dy +

1
d − c

∫ d

c
f(b, y)dy

]

≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)
4

.

(2.2)

The above inequalities are sharp.

Proof. Since f : ∆ → R is convex on the co-ordinates, it follows that the

mapping gx : [c, d] → R, gx(y) = f(x, y), is convex on [c, d] for all x ∈ [a, b].
Then by Hadamard’s inequality (1.1) one has:

gx

(
c + d

2

)
≤ 1

d− c

∫ d

c
gx(y)dy ≤ gx(c) + gx(d)

2
, x ∈ [a, b].

That is,

f

(
x,

c + d

2

)
≤ 1

d − c

∫ d

c
f(x, y)dy ≤ f(x, c) + f(x, d)

2
, x ∈ [a, b].

Integrating this inequality on [a, b], we have:

1
b− a

∫ b

a
f

(
x,

c + d

2

)
dx

≤ 1
(b− a)(d − c)

∫ b

a

∫ d

c
f(x, y)dxdy

≤ 1
2

[
1

b − a

∫ b

a
f(x, c)dx +

1
b − a

∫ b

a
f(x, d)dx

]
.

(2.3)
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By a similar argument applied for the mapping gy : [a, b] → R, gy(x) := f(x, y),
we get

1
d − c

∫ d

c
f

(
a + b

2
, y

)
dy

≤ 1
(b− a)(d− c)

∫ b

a

∫ d

c

(x, y)dxdy

≤ 1
2

[
1

d − c

∫ d

c
f(a, y)dy +

1
d − c

∫ d

c
f(b, y)dy

]
.

(2.4)

Summing the inequalities (2.3) and (2.4), we get the second and the third inequalities

in (2.2).

By Hadamard’s inequality, we also have:

f

(
a + b

2
,
c + d

2

)
≤ 1

b − a

∫ b

a
f

(
x,

c + d

2

)
dx

and

f

(
a + b

2
,
c + d

2

)
≤ 1

d − c

∫ d

c
f

(
a + b

2
, y

)
dy,

which give, by addition, the first inequality in (2.2).

Finally, by the same inequality we can also state:

1
b − a

∫ b

a
f(x, c)dx ≤ f(a, c) + f(b, c)

2
,

1
b − a

∫ b

a
f(x, d)dx ≤ f(a, d) + f(b, d)

2
,

1
d − c

∫ d

c
f(a, y)dy ≤ f(a, c) + f(a, d)

2
,

and
1

d − c

∫ d

c
f(b, y)dy ≤ f(b, c) + f(d, b)

2
,

which give, by addition, the last inequality in (2.2).

If in (2.2) we choose f(x) = xy, then (2.2) becomes an equality, which shows that

(2.2) are sharp.
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3. SOME MAPPINGS ASSOCIATED TO HADAMARD’S INEQUALITY

Now, for a mapping f : ∆ = [a, b] × [c, d] → R as above, we can define the

mapping H : [0, 1]2 → R,

H(t, s) :=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f

(
tx + (1− t)

a + b

2
, sy + (1− s)

c + d

2

)
dxdy.

The properties of this mapping are embodied in the following theorem.

Theorem 2. Suppose that f : ∆ ⊂ R2 → R is convex on the co-ordinates on

∆ := [a, b]× [c, d]. Then:

(i) The mapping H is convex on the co-ordinates on [0, 1]2.

(ii) We have the bounds:

sup(t,s)∈[0,1]2 H(t, s) =
1

(b− a)(d − c)

∫ b

a

∫ d

c
f(x, y)dxdy = H(0, 0),

inf(t,s)∈[0,1]2 H(t, s) = f

(
a + b

2
,
c + d

2

)
= H(1, 1).

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.

Proof. (i) Fix s ∈ [0, 1]. Then for all α, β ≥ 0 with α + β = 1 and t1, t2 ∈
[0, 1], we have:

H(αt1 + βt2, s) =
1

(b − a)(d− c)

×
∫ b

a

∫ d

c

f

(
(αt1 + βt2)x + [1− (αt1 + βt2)]

a + b

2
, sy + (1 − s)

c + d

2

)
dxdy

=
1

(b − a)(d− c)

∫ b

a

∫ d

c
f

(
α

(
t1x + (1 − t1

a + b

2

)

+β

(
t2x + (1 − t2)

a + b

2

)
, sy + (1 − s)

c + d

2

)
dxdy

≤α · 1
(b − a)(d− c)

∫ b

a

∫ d

c
f

(
t1x + (1− t1)

a + b

2
, sy + (1− s)

c + d

2

)
dxdy

+β · 1
(b− a)(d− c)

∫ b

a

∫ d

c
f

(
t2x + (1 − t2)

a + b

2
, sy + (1− s)

c + d

2

)
dxdy

=αH(t1, s) + βH(t2, s).
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If t ∈ [0, 1] is fixed, then for all s1, s2 ∈ [0, 1] and α, β ≥ 0 with α + β = 1,

we also have:

H(t, αs1 + βs2) ≤ αH(t, s1) + βH(t, s2)

and the statement is proved.

(ii) Since f is convex on the co-ordinates, we have, by Jensen’s inequality for
integrals, that:

H(t, s)=
1

b − a

∫ b

a

[
1

d − c

∫ d

c
f

(
tx + (1− t)

a + b

2
, sy + (1− s)

c + d

2

)
dy

]
dx

≥ 1
b − a

∫ b

a

f

(
tx + (1− t)

a + b

2
,

1
d − c

∫ d

c

[
sy + (1− s)

c + d

2

]
dy

)
dx

=
1

b − a

∫ b

a
f

(
tx + (1− t)

a + b

2
,
c + d

2

)
dx

≥ f

(
1

b − a

∫ b

a

[
tx + (1− t)

a + b

2

]
,
c + d

2

)
dx

= f

(
a + b

2
,
c + d

2

)
.

By the convexity of H on the co-ordinates, we have:

H(t, s)≤ 1
b − a

∫ b

a

[
1

d − c

∫ d

c
f

(
tx + (1− t)

a + b

2
, y

)
dy

+ (1 − s) · 1
d − c

∫ d

c

f

(
tx + (1− t)

a + b

2
,
c + d

2

)
dy

]
dx

≤ s · 1
d − c

∫ d

c

[
t · 1

b − a

∫ b

a
f(x, y)dxdy

+ (1 − t) · 1
b − a

∫ b

a

f

(
a + b

2
, y

)
dx

]
dy

+(1 − s) · 1
d − c

∫ d

c

[
t · 1

b − a

∫ b

a
f

(
x,

c + d

2

)
dx

+ (1 − t) · f
(

a + b

2
,
c + d

2

)]
dy

= st · 1
(b − a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy + s(1− t) · 1

d− c

∫ b

a
f

(
a + b

2
, y

)
dy

+(1 − s)t · 1
b− a

∫ b

a
f

(
x,

c + d

2

)
dx + (1 − s)(1− t) · f

(
a + b

2
,
c + d

2

)
.
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By Hadamard’s inequality, we also have:

f

(
a + b

2
, y

)
≤ 1

b − a

∫ b

a
f(x, y)dx, y ∈ [c, d]

and

f

(
x,

c + d

2

)
≤ 1

d − c

∫ d

c

f(x, y)dy, x ∈ [a, b].

Thus, by integration, we get that:

1
d − c

∫ d

c

f

(
a + b

2
, y

)
dy ≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dxdy

and

1
b − a

∫ b

a
f

(
x,

c + d

2

)
dx ≤ 1

(b − a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy.

Using the above inequality, we deduce that

H(t, s)

≤ [st + s(1 − t) + (1 − s)t + (1 − s)(1− t)]
1

(b− a)(d − c)

∫ b

a

∫ d

c
f(x, y)dxdy

=
1

(b − a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy, (s, t) ∈ [0, 1]2,

and the second bound in (ii) is proved.

(iii) Firstly, we will show that

H(t, s) ≥ H(0, s) for all (t, s) ∈ [0, 1]2.(3.1)

By Hadamard’s inequality, we have:

H(t, s)≥ 1
d− c

∫ d

c
f

(
1

b− a

∫ b

a

[
tx + (1 − t)

a + b

2

]
dx, sy + (1− s)

c + d

2

)
dy

=
1

d− c

∫ d

c

f

(
a + b

2
, sy + (1− s)

c + d

2

)
dy = H(0, s)

for all (t, s) ∈ [0, 1]2.
Now let 0 ≤ t1 < t2 ≤ 1. By the convexity of the mapping H(·, s) for all
s ∈ [0, 1], we have

H(t2, s)− H(t1, s)
t2 − t1

≥ H(t1, s)− H(0, s)
t1

≥ 0.

Note that, for the last inequality we have used (3.1).
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The following theorem also holds.

Theorem 3. Suppose that f : ∆ = [a, b]× [c, d] → R is convex on ∆. Then

(i) The mapping H is convex on ∆.

(ii) Define the mapping h : [0, 1] → R, h(t) = H(t, t). Then h is convex,

monotonic nondecreasing on [0, 1] and one has the bounds:

sup
t∈[0,1]

h(t) = h(1) =
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy

and

inf
t∈[0,1]

h(t) = h(0) = f

(
a + b

2
,
c + d

2

)
.

Proof.

(i) Let (t1, s1), (t2, s2) ∈ [0, 1]2 and α, β ≥ 0 with α+β = 1. Since f : ∆ → R
is convex on ∆ we have:

H(α(t1, s1) + β(t2, s2))

= H(αt1 + βt2, αs1 + βs2)

=
1

(b − a)(d− c)

×
∫ b

a

∫ d

c

f

(
α

(
t1x + (1 − t1)

a + b

2
, s1y + (1− s1)

c + d

2

)

+β

(
t2x + (1− t2)

a + b

2
, s2y + (1 − s2)

c + d

2

))
dxdy

≤ α · 1
(b− a)(d− c)

×
∫ b

a

∫ d

c
f

(
t1x + (1 − t1)

a + b

2
, s1y + (1− s1)

c + d

2

)
dxdy

+β · 1
(b− a)(d− c)

×
∫ b

a

∫ d

c
f

(
t2x + (1 − t2)

a + b

2
, s2y + (1− s2)

c + d

2

)
dxdy

= αH(t1, s1) + βH(t2, s2),

which shows that H is convex on [0, 1]2.
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(ii) Let t1, t2 ∈ [0, 1] and α, β ≥ 0 with α + β = 1. Then

h(αt1, βt2)= H(αt1 + βt2, αt1 + βt2)
= H(α(t1, t1) + β(t2, t2))
≤ αH(t1, t1) + βH(t2, t2)
= αh(t1) + βh(t2),

which shows the convexity of h on [0, 1].
We have, by the above theorem, that

h(t) = H(t, t) ≥ H(0, 0) = f

(
a + b

2
,
c + d

2

)
, t ∈ [0, 1],

and

h(t) = H(t, t) ≤ H(1, 1) =
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy, t ∈ [0, 1],

which prove the required bounds.

Now, let 0 ≤ t1 < t2 ≤ 1. Then, by the convexity of h, we have that

h(t2) − h(t1)
t2 − t1

≥ h(t1)− h(0)
t1

≥ 0,

and the theorem is proved.

Next, we shall consider the following mapping, which is closely connected with

Hadamard’s inequality: H̃ : [0, 1]2 → [0,∞) given by

H̃(t, s)

:=
1

(b− a)2(d− c)2

∫ b

a

∫ b

a

∫ d

c

∫ d

c
f(tx + (1 − t)y, sz + (1 − s)u)dxdydzdu.

The next theorem contains the main properties of this mapping.

Theorem 4. Suppose that f : ∆ ⊂ R2 → R is convex on the co-ordinates on

∆. Then:

(i) We have the equalities:

H̃

(
t +

1
2
, s

)
= H̃

(
1
2
− t, s

)
for all t ∈

[
0,

1
2

]
, s ∈ [0, 1];

H̃

(
t, s +

1
2

)
= H̃

(
t,

1
2
− s

)
for all t ∈ [0, 1], s ∈

[
0,

1
2

]
;

H̃(1− t, s) = H̃(t, s) and H̃(t, 1 − s) = H̃(t, s) for all (t, s) ∈ ∆.
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(ii) H̃ is convex on the co-ordinates.

(iii) We have the bounds

inf(t,s)∈[0,1]2 H̃(t, s)= H̃

(
1
2
,
1
2

)

=
1

(b− a)2(d− c)2

∫ b

a

∫ b

a

∫ d

c

∫ d

c

f

(
x + y

2
,
z + u

2

)
dxdydzdu

and

sup(t,s)∈[0,1]2 H̃(t, s)= H̃(0, 0) = H̃(1, 1)

=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, z)dxdz.

(iv) The mapping H̃(·, s) is monotonic nonincreasing on [0, 1
2) and nondecreasing

on [12 , 1] for all s ∈ [0, 1]. A similar property has the mapping H̃(t, ·) for all
t ∈ [0, 1].

(v) We have the inequality

H̃(t, s) ≥ max{H(t, s), H(1− t, s), H(t, 1− s), H(1− t, 1 − s)}(3.2)

for all (t, s) ∈ [0, 1]2.

Proof. (i), (ii) are obvious.

(iii) By the convexity of f in the first variable, we get that

1
2
[f(tx + (1− t)y, sz + (1− s)u) + f((1− t)x + ty, sz + (1− s)u)]

≥f

(
x + y

2
, sz + (1 − s)u

)

for all (x, y) ∈ [a, b]2, (z, u) ∈ [c, d]2 and (t, s) ∈ [0, 1]2.
Integrating on [a, b]2, we get

1
(b− a)2

∫ b

a

∫ b

a
f(tx + (1 − t)y, sz + (1 − s)u)dxdy

≥ 1
(b− a)2

∫ b

a

∫ b

a
f

(
x + y

2
, sz + (1 − s)u

)
dxdy.
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Similarly,

1
(d − c)2

∫ d

c

∫ d

c
f

(
x + y

2
, sz + (1 − s)u

)
dzdu

≥ 1
(d − c)2

∫ d

c

∫ d

c
f

(
x + y

2
,
z + u

2

)
dzdu.

Now, integrating this inequality on [a, b]2 and taking into account the above
inequality, we deduce:

H̃(t, s) ≥ 1
(b − a)2(d− c)2

∫ b

a

∫ b

a

∫ d

c

∫ d

c
f

(
x + y

2
,
z + u

2

)
dxdydzdu

for (t, s) ∈ [0, 1]. The first bound in (iii) is therefore proved.
The second bound goes likewise and we shall omit the details.

(iv) The monotonicity of H̃(·, s) follows by a similar argument as in the proof of
Theorem 2, (iii) and we shall omit the details.

(v) By Jensen’s inequality, we have successively for all (t, s) ∈ [0, 1]2 that

H̃(t, s)

≥ 1
(b− a)(d− c)2

×
∫ b

a

∫ d

c

∫ d

c
f

(
1

b− a

∫ b

a
[tx + (1− t)y]dy, sz + (1− s)u

)
dxdzdu

=
1

(b− a)(d− c)2

∫ b

a

∫ d

c

∫ d

c
f

(
tx + (1− t)

a + b

2
, sz + (1 − s)u

)
dxdzdu

≥ 1
(b− a)(d− c)

∫ b

a

∫ d

c
f

(
tx + (1− t)

a + b

2
, sz + (1 − s)

c + d

2

)
dxdz

=H(t, s).

In addition, as

H̃(t, s) = H̃(1− t, s) = H̃(t, 1− s) = H̃(1− t, 1− s) for all (t, s) ∈ [0, 1]2,

by the above inequality we deduce (3.2).

The theorem is thus proved.

Finally, we can also state the following theorem which can be proved in a similar

fashion to Theorem 3 and we will omit the details.

Theorem 5. Suppose that f : ∆ ⊂ R2 → R is convex on ∆. Then we have:
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( i ) The mapping H̃ is convex on ∆.

(ii) Define the mapping h̃ : [0, 1] → R, h̃(t) := H̃(t, t). Then h̃ is convex,

monotonic nonincreasing on
[
0, 1

2

]
and nondecreasing on

[
1
2 , 1

]
and one has

the bounds:

sup
t,∈[0,1]

h̃(t) = h̃(1) = h̃(0) =
1

(b − a)(d− c)

∫ b

a

∫ d

c
f(x, y)dxdy

and

inft∈[0,1] h̃(t)= h̃
(

1
2

)

=
1

(b− a)2(d− c)2

∫ b

a

∫ b

a

∫ d

c

∫ d

c
f

(
x + y

2
,
z + u

2

)
dxdydzdu.

(iii) One has the inequality:

h̃(t) ≥ max{h(t), h(1− t)} for all t ∈ [0, 1].

REFERENCES

1. S. S. Dragomir, Two refinements of Hadamard’s inequalities, Coll. Pap. of the Fac.

of Sci. Kragujevac (Yugoslavia) 11 (1990), 23-26. ZBL No. 729: 26017.
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