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1 Introduction

The Yang-Baxter σ-model is a one-parameter deformation of the principal chiral model,

first introduced by C. Klimč́ık more than twenty years ago [1]. Its name stems from the

presence of a solution of the modified classical Yang-Baxter equation in its action. The

classical integrability of this model at the Lagrangian level was later proved in [2] by ex-

hibiting a Lax pair, the flatness of which reproduces the equations of motion. Recently, the

Yang-Baxter σ-model was recovered as the simplest case of a general procedure developed

to deform a broad class of integrable σ-models while preserving their integrability [3, 4].

The whole construction is deeply rooted in the Hamiltonian formalism. In particular, one

of its salient features is that the integrability at the Hamiltonian level of the resulting

deformed σ-models is ensured from the very outset.

Recall that proving Hamiltonian integrability requires more than determining a Lax

pair. Indeed, the existence of a Lax pair only implies that there is an infinite number of

conserved quantities. However, the Hamiltonian definition of integrability requires showing

instead that there is an infinite number of quantities Poisson commuting with one another,

not just with the Hamiltonian. Such a property is guaranteed if the Poisson bracket of the

Lax matrix, defined as the spatial component of the Lax pair, can be put in the general

r/s-form [5, 6]. Furthermore, it was shown in [7] for the principal chiral model, and in [8]

for symmetric space σ-models and the AdS5 × S5 superstring theory, that the algebraic

structure behind the r/s-form of these σ-models is encoded in a so called twist function.

The twist function of a given integrable σ-model plays a key role in the study of its in-

tegrable deformations. Indeed, the one-parameter integrable deformations of the principal

chiral model and (semi-)symmetric σ-models constructed in [3, 9] were obtained by deform-

ing their twist functions. More precisely, the focus of [3, 9] was on the so called Yang-Baxter

class of deformations, of which the Yang-Baxter σ-model is the prototype. There exists an-

other way of deforming the σ-models in question, with a completely different Lagrangian de-

scription [10–19]. Nevertheless, in the Hamiltonian framework, the procedure for obtaining

these alternative deformations may also be interpreted as deforming the corresponding twist

functions [11, 20]. For completeness, let us also mention that within the Yang-Baxter class

of integrable deformations there is also a way to deform a given σ-model by using a solution

of the classical Yang-Baxter equation [21–31], but without changing its twist function [20].

The bi-Yang-Baxter σ-model was also proposed in [2] as a two-parameter deformation

of the principal chiral model. Its Lagrangian integrability was only proved relatively re-

cently in [32]. An interesting feature of this model is the following. Whereas the principal

chiral model on a real Lie group G admits an invariance under G × G by left and right

multiplications of the G-valued field, in the Yang-Baxter σ-model one of these two global

symmetries gets deformed to UP
q (g), the Poisson algebra analogue of a quantum group.

Here q is a function of the single deformation parameter. The bi-Yang-Baxter σ-model can

be seen as a further deformation of the Yang-Baxter σ-model in which both left and right

global G-symmetries get deformed [2].

In this article we will focus on the Hamiltonian analysis of the bi-Yang-Baxter σ-model.

In section 2, we begin by recalling the action of the bi-Yang-Baxter σ-model. We start from
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its formulation as a two-parameter deformation of the coset σ-model on G×G/Gdiag, where

Gdiag is the diagonal subgroup of G×G. That is, when both deformation parameters are

turned off we obtain the coset σ-model on G×G/Gdiag. The principal chiral model on G

is then recovered in a particular gauge. This point of view on the bi-Yang-Baxter σ-model

was recently adopted in [33] where the corresponding Lax pair was introduced. Since the

deformation preserves the gauge invariance under Gdiag, a first-class constraint appears in

the canonical analysis. In the presence of such constraints, the Hamiltonian Lax matrix

L(z), with z the spectral parameter, is not fully determined by its Lagrangian counterpart.

Indeed, one has the freedom to add to the latter a term consisting of an arbitrary function

f(z) times the constraint. This freedom was first shown to play an important role in [34, 35]

for the AdS5 × S5 superstring theory.

In section 3 we show that the Poisson bracket of L(z) and L(z′) takes the desired r/s-

form ensuring Hamiltonian integrability for a specific choice of the function f(z). More

precisely, since we are considering a deformation of the coset σ-model on G×G/Gdiag, the

Lax matrix naturally takes values in the twisted loop algebra of the real doubleDg = g⊕g of

the Lie algebra g of G. However, in this particular case it is possible to work instead with a

Lax matrix taking values in the loop algebra of a single copy of g. The corresponding r- and

s-matrices are the skew-symmetric and symmetric parts, respectively, of an R-matrix of the

standard form depending on a two-parameter twist function ϕbYB(z) which we determine.

To complete the analysis, in section 4 we indicate how the result obtained may be

understood when working with a Lax matrix valued in the twisted loop algebra of Dg. In

this formalism, the Poisson bracket of the Lax matrix with itself is still of the r/s-form but

where the R-matrix takes on a novel form depending on both the twist function ϕbYB(z)

and its “mirror” image ϕbYB(−z). This R-matrix is shown to correspond to the kernel of

the standard solution of the modified classical Yang-Baxter equation on the twisted loop

algebra of Dg but with respect to an non-standard inner product on the latter. All these

results show that the bi-Yang-Baxter σ-model belongs to the same class of deformations

as those constructed in [3]. Indeed, it corresponds to a deformation of the twist function

of the G×G/Gdiag coset σ-model.

In section 5, we recall the importance of studying the poles of the twist function.

Specifically, we show that the Lax matrix L(z) evaluated at the poles of the twist function

ϕbYB(z) yields a pair of Poisson commuting Kac-Moody currents valued in the complexi-

fication gC = g ⊗ C of the real Lie algebra g. We go on to show how the canonical fields

of the bi-Yang-Baxter σ-model may be recovered from the Lax matrix at the poles of the

twist function. The upshot of this analysis is that the bi-Yang-Baxter σ-model also fits

the general scheme described in [20]. As another important output of studying the (gauge

transformed) monodromy matrix at the poles of ϕbYB(z), it immediately follows that the

global G × G symmetry of the principal chiral model gets deformed to UP
q (g) × UP

q̃ (g).

We indicate how we recover the values of q and q̃ first given in [33]. This generalises the

situation in [3] recalled above, and which first appeared in the context of the Yang-Baxter

σ-model on SU(2), also known as the squashed S3 σ-model [36, 37].

Finally, in section 6 we study the fate of the r/s-form of the Lax matrix algebra

when gauge fixing the local Gdiag-symmetry of the bi-Yang-Baxter σ-model. We do this
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by regarding the gauge fixing as a gauge transformation on the Lax matrix. This enables

one to determine how the r/s-form behaves under this gauge fixing. We show that the r-

and s-matrices are no longer fully determined by a twist function but depend also on the

R-matrices characterising the Yang-Baxter type deformation.

2 The bi-Yang-Baxter σ-model

2.1 Lagrangian analysis

2.1.1 Action

Let G be a semi-simple real Lie group with Lie algebra g. Let R and R̃ be two skew-

symmetric solutions of the modified classical Yang-Baxter equation (mCYBE) on g, i.e.

endomorphisms of g such that for every x, y ∈ g, we have

κ(x,Ry) = −κ(Rx, y), (2.1a)

[Rx,Ry] = R
(
[Rx, y] + [x,Ry]

)
+ [x, y], (2.1b)

and similarly for R̃. Here κ denotes the Killing form on g defined as κ(x, y) = −Tr
(
adxady

)

for any x, y ∈ g.

We then consider the bi-Yang-Baxter σ-model associated with R and R̃, defined by

the following action for a field (g, g̃) valued in the double group G×G [33]

S[g, g̃] = K

∫
dτdσ κ

(
j+ − j̃+,

(
1−

η

2
Rg −

η̃

2
R̃g̃

)−1

(j− − j̃−)

)
. (2.2)

K, η and η̃ are real parameters, ∂± = ∂τ ± ∂σ, and we have introduced the following

notations

j± = g−1∂±g, j̃± = g̃−1∂±g̃,

Rg = Ad−1
g ◦R ◦Adg, R̃g̃ = Ad−1

g̃ ◦ R̃ ◦Adg̃,

Adg(M) = gMg−1.

Let us notice here that Rg and R̃g̃ are also skew-symmetric solutions of the mCYBE.

When η = η̃ = 0 we recover the coset σ-model on the quotient G × G/Gdiag by the

diagonal subgroup Gdiag of G × G. It is direct to check that, like the coset σ-model,

the bi-Yang-Baxter σ-model is invariant under gauge transformations taking values in the

subgroup Gdiag, namely

g 7→ gh−1 and g̃ 7→ g̃h−1, (2.3)

with h a field valued in the group G. We may impose the gauge fixing condition g̃ = Id,

which is attained by performing the gauge transformation (2.3) with h = g̃. This leads

to a model for the G-valued field g′ = gg̃−1, which coincides with the two-parameter

deformation of the principal chiral model first introduced in [2].
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2.1.2 Equations of motion

The equation of motion for the field g derived from the action (2.2) can be written as

EOM = ∂+J− + [a+, J−] + ∂−J+ + [a−, J+] = 0, (2.4)

where we introduced

J± =

(
1±

η

2
Rg ±

η̃

2
R̃g̃

)−1

(j± − j̃±) (2.5)

and a “gauge field”

a± = j± ∓
η

2
RgJ± =

(
1±

η̃

2
R̃g̃

)
J± + j̃±. (2.6)

Notice that a transformation

a± 7→ a± + αJ± (2.7)

of the gauge field does not change the equation of motion (2.4).

The action (2.2) is not changed when one exchanges η, R and g with η̃, R̃ and g̃. Thus

the equation of motion for g̃ takes the same form:

ẼOM = ∂+J̃− + [ã+, J̃−] + ∂−J̃+ + [ã−, J̃+] = 0,

with

J̃± =

(
1±

η

2
Rg ±

η̃

2
R̃g̃

)−1

(j̃± − j±),

ã± = j̃± ∓
η̃

2
R̃g̃J̃± =

(
1±

η

2
Rg

)
J̃± + j±.

It is then easy to check that

J̃± = −J± and ã± = a± − J±. (2.8)

Thus, using the freedom (2.7) on a±, we see that ẼOM = −EOM . Therefore, the equation

of motion for g̃ is equivalent to the one for g.

2.1.3 Lax pair

In this subsection, we recall that the equation of motion (2.4) can be cast in the form of a

zero curvature equation

∂+L−(z)− ∂−L+(z)− [L+(z),L−(z)] = 0 (2.9)

for a Lax pair L±(z) depending on a spectral parameter z [33]. Starting from the Maurer-

Cartan equation on j±,

∂+j− − ∂−j+ + [j+, j−] = 0,

we re-express it in terms of J± and a± using (2.6), giving

∂+a− − ∂−a+ + [a+, a−] +
η2

4
[J+, J−]−

η

2
Rg(EOM) = 0, (2.10)
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where we used the mCYBE on Rg. In the same way, the Maurer-Cartan equation on j̃±
reads

∂+ã− − ∂−ã+ + [ã+, ã−] +
η̃2

4
[J+, J−] +

η̃

2
R̃g̃(EOM) = 0, (2.11)

where we have used J̃± = −J± and ẼOM = −EOM . Taking the difference between (2.10)

and (2.11) and using (2.8), we obtain

∂+J− + [a+, J−]− ∂−J+ − [a−, J+]−

(
1−

η2 − η̃2

4

)
[J+, J−]−

1

2
(ηRg + η̃R̃g̃)(EOM) = 0.

(2.12)

We introduce new gauge fields

A± = a± −
1

2

(
1−

η2 − η̃2

4

)
J±. (2.13)

In terms of these, the equation of motion (2.4) keeps the same form

EOM = ∂+J− + [A+, J−] + ∂−J+ + [A−, J+] (2.14)

and the equation (2.12) becomes

∂+J− + [A+, J−]− ∂−J+ − [A−, J+]−
1

2
(ηRg + η̃R̃g̃)(EOM) = 0. (2.15)

Coming back to the expression (2.10) and using the definition (2.13) of A±, we find

0 = ∂+A− − ∂−A+ + [A+, A−] +
ζ2

4
[J+, J−]

+
1

4

(
1−

η2 − η̃2

4

)(
ηRg + η̃R̃g̃

)
(EOM)− ηRg(EOM) (2.16)

where

ζ =

√(
1 +

1

4
(η + η̃)2

)(
1 +

1

4
(η − η̃)2

)
. (2.17)

Finally, taking the equation (2.16) on shell (EOM = 0) and the sum and the difference of

equations (2.14) and (2.15) also on shell, we arrive at

∂+A− − ∂−A+ + [A+, A−] +
ζ2

4
[J+, J−] = 0,

∂+J− + [A+, J−] = 0 and ∂−J+ + [A−, J+] = 0.

It is easy to see that these three equations are equivalent to the zero curvature equation (2.9)

for the Lax pair:

L±(z) = −A± −
ζ

2
z±1J±. (2.18)

– 6 –
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2.2 Hamiltonian analysis

2.2.1 Conjugate momentum

Let us introduce a basis Ta of the Lie algebra g and coordinates φi on the group G. We de-

note ∂i the derivation with respect to the coordinate φi. We can then introduce La
i such that

g−1∂ig = La
i Ta.

From the action (2.2), we compute the conjugate momenta πi of the coordinates φi to be

πi = KLa
i

[
κ

(
Ta,

(
1−

η

2
Rg −

η̃

2
R̃g̃

)−1

(j− − j̃−)

)

+ κ

(
j+ − j̃+,

(
1−

η

2
Rg −

η̃

2
R̃g̃

)−1

Ta

)]
.

Using the skew-symmetry of R and (2.5), we have

πi = KLa
i κ(Ta, J− + J+). (2.19)

with the metric κab = κ(Ta, Tb). It is more convenient to introduce the following g-valued

field

X = Li
aπiκ

abTb, (2.20)

where Li
a is the inverse of La

i and κab is the inverse of the metric κab. In particular, one

can check that these fields are independent of the choice of coordinates φi and of basis Ta.

It is then easy to deduce the expression of X from (2.19) to be

X = K(J+ + J−). (2.21)

In the same way, one would find X̃ = K(J̃+ + J̃−) = −K(J+ + J−). Thus, we have the

constraint

X + X̃ = 0. (2.22)

This is a consequence of the gauge symmetry (2.3) of the model.

2.2.2 Poisson brackets and Hamiltonian density

We start with the canonical Poisson brackets

{πi(σ), φ
j(σ′)} = δji δσσ′ . (2.23)

where δσσ′ is the Dirac δ-distribution. From those canonical Poisson brackets and the

definition (2.20) of X, we deduce the classical brackets on the fields g and X parametrising

the cotangent bundle T ∗LG, with LG the loop group associated with G, to be

{
g1(σ), g2(σ

′)
}
= 0, (2.24a)

{
g1(σ), X2(σ

′)
}
= −g1(σ)C12δσσ′ , (2.24b)

{
X1(σ), X2(σ

′)
}
= −

[
C12, X2(σ)

]
δσσ′ . (2.24c)

– 7 –
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We used standard tensorial notations with subscripts 1 and 2 and C12 = κabTa ⊗ Tb is

the split Casimir. The fields g̃ and X̃ parametrising another copy of T ∗LG verify the

same Poisson brackets. All other brackets vanish. Moreover, as long as we are calculating

Poisson brackets, we must consider X and X̃ as independent variables in the phase space,

without imposing the constraint (2.22).

The Legendre transform of the Lagrangian in (2.2) is the “naive” Hamiltonian density

H0 =
K

2

(
κ (J+, J+) + κ (J−, J−)

)
. (2.25)

As we are considering a constrained system, we have to follow the Dirac procedure and

add a term proportional to the constraint to define the Hamiltonian density of the system

H = H0 + κ
(
Λ, X + X̃

)
, (2.26)

where Λ is a g-valued field playing the role of a Lagrange multiplier. There is no secondary

constraint.

2.2.3 Hamiltonian Lax matrix

Let us now determine the form of the Hamiltonian Lax matrix of the model. At the

Lagrangian level, the Lax matrix is given by the spatial component of the Lax pair, i.e.

by 1
2(L+ − L−). As we are considering a constrained Hamiltonian system, we have the

freedom of adding a term proportional to the constraint, thus getting

L(z) =
1

2

(
L+(z)− L−(z)

)
+ f(z)(X + X̃),

where f is some function of z, which will be fixed later to ensure the Hamiltonian integra-

bility of the model. One could potentially add other extra terms, for instance proportional

to Rg(X + X̃) and R̃g̃(X + X̃), but as we will see in the next section, they turn out not to

be necessary.

Using equations (2.18) and (2.13), we get

L(z) = −
1

2
(a+ − a−) +

1

4

(
1−

η2 − η̃2

4

)
(J+ − J−)−

ζ

4

(
zJ+ −

1

z
J−

)
+ f(z)(X + X̃).

The definition (2.6) of a± can be re-written in a more symmetric way as

a± =
1

2

(
j± + j̃± + J± ∓

η

2
RgJ± ±

η̃

2
R̃g̃J±

)
,

thus giving

a+ − a− =
1

2

(
j+ − j− + j̃+ − j̃− + J+ − J− −

(
η

2
Rg −

η̃

2
R̃g̃

)
(J+ + J−)

)
.

Denoting j = 1
2(j+ − j−) and j̃ = 1

2(j̃+ − j̃−), we obtain

L(z) = −
1

2
(j + j̃)−

(
η2 − η̃2

16
+

ζ

8

(
z +

1

z

))
(J+ − J−)−

ζ

8

(
z −

1

z

)
(J+ + J−)
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+

(
η

8
Rg −

η̃

8
R̃g̃

)
(J+ + J−) + f(z)(X + X̃).

Using (2.5), we have

J+ − J− = 2j − 2j̃ −

(
η

2
Rg +

η̃

2
R̃g̃

)
(J+ + J−),

which gives

L(z) = −
1

2

(
1 +

η2 − η̃2

4
+

ζ

2

(
z +

1

z

))
j −

1

2

(
1 +

η̃2 − η2

4
−

ζ

2

(
z +

1

z

))
j̃

+
η

8

(
1 +

η2 − η̃2

4
+

ζ

2

(
z +

1

z

))
Rg(J+ + J−)

−
η̃

8

(
1 +

η̃2 − η2

4
−

ζ

2

(
z +

1

z

))
R̃g̃(J+ + J−)

−
ζ

8

(
z −

1

z

)
(J+ + J−) + f(z)(X + X̃). (2.27)

In order to finish re-expressing (2.27) in terms of the Hamiltonian fields alone, we make

use of equations (2.21) and (2.22) namely J+ + J− = X/K = −X̃/K. For reasons of

symmetry and simplicity, we will use X (respectively X̃) when Rg (respectively R̃g̃) is

applied to J++J−, and we will use the linear combination 1
2(X− X̃) when J++J− stands

alone. This last “prescription” does not change the expression of the Lax matrix, as any

other choice can be re-absorbed in the function f(z) which is so far arbitrary. Beyond the

arguments of symmetry, the resulting form of the Hamiltonian Lax matrix will be justified

in the following section to prove the Hamiltonian integrability of the model.

The final result can be written in terms of the set of fields O = {j,X,RgX, j̃, X̃, R̃g̃X̃}

as

L(z) =
∑

Q∈O

AQ(z)Q, (2.28)

with coefficients AQ whose expressions are given in appendix A.

2.3 One-parameter deformation limit

By fixing η = η̃ we obtain a one-parameter deformation of the coset model on G×G/Gdiag.

It is given by the action

S[g, g̃] = K

∫
dσdτ κ

(
j+ − j̃+,

(
1−

η

2
Rg −

η

2
R̃g̃

)−1
(j− − j̃−)

)
. (2.29)

Let us consider the double Lie group DG = G×G and the corresponding double Lie

algebra Dg = g⊕g. The latter comes naturally equipped with the exchange automorphism

δ : Dg −→ Dg

(x, y) 7−→ (y, x)
. (2.30)

We may decompose Dg into eigenspaces of this involution as Dg = Dg(0) ⊕ Dg(1), with

Dg(0) = ker(δ − Id) and Dg(1) = ker(δ + Id). We can notice here that Dg(0) = gdiag, the
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Lie algebra of the diagonal subgroup Gdiag, so that the quotient G×G/Gdiag is indeed the

coset DG/DG(0).

We will denote P0 and P1 the projectors associated with this decomposition, defined by

P0 : Dg −→ Dg and P1 : Dg −→ Dg

(x, y) 7−→ 1
2(x+ y, x+ y) (x, y) 7−→ 1

2(x− y, y − x)
(2.31)

In this formulation on the double Lie group and Lie algebra, it is natural to introduce the

field h = (g, g̃) ∈ DG and the solution R = (R, R̃) ∈ End(Dg) of the mCYBE on Dg. The

action (2.29) can then be re-expressed as

S[g, g̃] = 2K

∫
dσdτ κ

(
(h−1∂+h)

(1), (1− ηRh ◦ P1)
−1 (h−1∂−h)

(1)
)
. (2.32)

This is nothing but the one-parameter deformation of the coset σ-model introduced in [3]

when the quotient considered is G×G/Gdiag and with K = 1
4(1 + η2).

3 Hamiltonian integrability

In this section, we will compute the Poisson bracket of the Lax matrix (2.28) with itself

and show that it can be cast in the r/s-form (more precisely an r/s-system involving twist

function), thus proving the Hamiltonian integrability of the bi-Yang-Baxter σ-model.

3.1 r/s-form and twist functions

Let R12(z, z
′) be a rational function of z and z′ valued in gC ⊗ gC, where gC is the com-

plexification of g, and satisfying the classical Yang-Baxter equation with spectral param-

eters. We do not assume that R12(z, z
′) is skew-symmetric, i.e. that it has the property

R12(z, z
′) = −R21(z

′, z). We introduce its skew-symmetric and symmetric parts as

r12(z, z
′) =

1

2

(
R12(z, z

′)−R21(z
′, z)

)
and s12(z, z

′) =
1

2

(
R12(z, z

′) +R21(z
′, z)

)
.

(3.1a)

The Poisson bracket of the Lax matrix with itself is said to be of the r/s-form, associated

with this matrix R, if it can be written as [5, 6]

{
L1(z, σ),L2(z

′, σ′)
}
=
[
r12(z, z

′),L1(z, σ) + L2(z
′, σ′)

]
δσσ′

+
[
s12(z, z

′),L1(z, σ)− L2(z
′, σ′)

]
δσσ′ + 2s12(z, z

′)δ′σσ′ , (3.1b)

where δ′σσ′ = ∂σδσσ′ .

The non-ultralocality of this Poisson bracket, namely the presence of δ′-terms, is com-

pletely characterised by the symmetric part of the R-matrix being non-zero. For a very

broad class of integrable σ-models, the R-matrix R12(z, z
′) is given by the kernel of an

abstract solution of the mCYBE on the loop algebra g((z)), with respect to the standard

inner product on g((z)) modified by a rational function ϕ(z), called the twist function (see

for instance [8] or section 4.2.1 for the case when g is replaced by the double Dg). In this
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situation the failure of R to be skew-symmetric is encoded in the twist function. In the

simplest of cases, the kernel R12(z, z
′) takes the form

R12(z, z
′) =

C12

z − z′
ϕ(z′)−1, (3.1c)

and is therefore skew-symmetric if and only if ϕ is constant.

The simplest example of a model with such an R-matrix is the principal chiral

model [7]. Moreover, one can show from the results of [3] that the coset σ-model on

G×G/Gdiag and its one-parameter deformation also admit R-matrices of this form.1 The

twist function of the coset σ-model on G × G/Gdiag (which is, in the setting considered

here, the limit η = η̃ = 0 of the bi-Yang-Baxter σ-model) is

ϕcoset(z) =
16Kz

(1− z2)2
(3.2)

and the one of the Yang-Baxter deformation of this coset σ-model (which corresponds to

η = η̃) is

ϕYB(z) =
16Kz

(1− z2)2 + η2(1 + z2)2
. (3.3)

We will now show that the bi-Yang-Baxter σ-model also admits an R-matrix of the

form (3.1c) and will give the associated twist function.

3.2 Expected form of the Poisson bracket

We are seeking to put the Poisson bracket of the Lax matrix (2.28) in the r/s-form (3.1),

with a twist function ϕ as in (3.1c). We will distinguish between two terms in this Poisson

bracket: the ultralocal one, proportional to δσσ′ , and the non-ultralocal one, proportional

to δ′σσ′ . Let us write these as

{
L1(z, σ),L2(z

′, σ′)
}
= PUL

12
(z, z′, σ)δσσ′ + PNUL

12
(z, z′, σ)δ′σσ′ .

According to (3.1b), the non-ultralocal term is directly proportional to the s-matrix.

For a system with a twist function entering as in (3.1c), this term is thus given by

PNUL
12

(z, z′, σ) = −
ϕ(z)−1 − ϕ(z′)−1

z − z′
C12. (3.4)

The ultralocal term is slightly more complicated. Considering the expressions (3.1c)

of R and (2.28) of L and using the invariance property of the split Casimir, namely that

for every x ∈ g we have [C12, x1 + x2] = 0, one can reduce the ultralocal term to the form

PUL
12

(z, z′, σ) =
∑

Q∈O

JQ(z, z
′)[C12, Q2(σ)], (3.5)

with the coefficients JQ given by

JQ(z, z
′) =

ϕ(z)−1AQ(z
′)− ϕ(z′)−1AQ(z)

z − z′
. (3.6)

1More precisely, [3] deals with a general coset σ-model F/G. In the case of the coset G × G/Gdiag, we

get a Lax matrix in the double algebra Dg = g ⊕ g. We recover an r/s-system with an R-matrix of the

form (3.1c) by taking the projector of this Lax matrix on the left part of Dg. This will be discussed in

more details in section 4 of the present article.
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3.3 Poisson bracket of the Lax matrix

We will now compute the Poisson bracket of the Lax matrix explicitly and compare the

result to the expected form discussed in the previous subsection. Using equation (2.28),

this bracket is simply

{
L1(z, σ),L2(z

′, σ′)
}
=

∑

Q,Q′∈O

AQ(z)AQ′(z′){Q1(σ), Q
′
2
(σ′)}.

The Poisson brackets between the different fields Q ∈ O = {j,X,RgX, j̃, X̃, R̃g̃X̃} can

be derived from the basic Poisson brackets (2.24). In particular, let us mention that we have

{
(RgX)1(σ), (RgX)2(σ

′)
}
=
[
C12, X2(σ)

]
δσσ′ .

This follows from the fact that Rg is solution of the mCYBE. Any two fields from different

copies of g Poisson commute.

Non-ultralocal term. The non-ultralocal term is generated by the brackets of j and j̃

with the other fields. It reads

PNUL
12

(z, z′, σ, σ′) = −
(
Aj(z)AX(z′) +Aj(z

′)AX(z) +Aj̃(z)AX̃(z′) +Aj̃(z
′)AX̃(z)

)
C12

+
(
Aj(z)ARgX(z′)−Aj(z

′)ARgX(z)
)
Rg(σ)12

+
(
Aj̃(z)AR̃g̃X̃

(z′)−Aj̃(z
′)AR̃g̃X̃

(z)
)
R̃g̃(σ)12,

where we defined Rg(σ)12 = Rg(σ)1C12 and R̃g̃(σ)12 = R̃g̃(σ)1C12. One easily checks

from (A.1) that the coefficients of Rg(σ)12 and R̃g̃(σ)12 in this expression vanish. As ex-

pected in (3.4), we find a non-ultralocal term proportional to the split Casimir C12, namely

PNUL
12

(z, z′, σ, σ′) = −
(
Aj(z)AX(z′) +Aj(z

′)AX(z) +Aj̃(z)AX̃(z′) +Aj̃(z
′)AX̃(z)

)
C12.

(3.7)

Ultralocal term. We have in the ultralocal part three kinds of terms:

• Terms proportional to [C12, Q2(σ)] with Q ∈ O, as expected in (3.5).

• A term proportional to [Rg(σ)12, j2(σ)].

• A term proportional to [R̃g̃(σ)12, j̃2(σ)].

The coefficients of the last two terms are the same as the coefficients of Rg(σ)12 and R̃g̃(σ)12
in the non-ultralocal term. Thus, they also vanish. We are then left with an ultralocal term

of the form (3.5). The expressions for the coefficients JQ(z, z
′) are given in appendix A.

3.4 Twist function of the model

To prove that the system admits a twist function, it remains to compare (3.4) with (3.7)

and (3.6) with (A.2) and show that the different expressions match. We have shown that

this is the case if we choose the function f to be

f(z) = −
ζ2

16K
(1 + z2) +

1

8K

(
1−

(η2 − η̃2)2

16

)
−

ζ(η2 − η̃2)

64K

(
3z +

1

z

)
,

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
4

where ζ is defined by equation (2.17). The twist function is then

ϕbYB(z) =
1

ζ2
16Kz

z4 +
η2 − η̃2

ζ
z3 +

(
2 +

(η2 − η̃2)2 − 16

4ζ2

)
z2 +

η2 − η̃2

ζ
z + 1

. (3.8)

We will analyse the structure of this twist function in section 5.

4 Formulation in the double Lie algebra

Since we are considering a deformation of the coset σ-model on G × G/Gdiag, we would

expect the Lax matrix to be valued in the twisted loop algebra of the real doubleDg = g⊕g,

just as in the undeformed model [38]. However, the Lax matrix discussed so far only

takes values in the loop algebra of g. We shall show in this section how the Hamiltonian

integrability of the bi-Yang-Baxter σ-model can also be expressed using a formulation based

on the double Dg.

4.1 Lax pair in the double Lie algebra

We will use the formalism of the double Lie algebra Dg introduced in the subsection 2.3.

Let us consider the loop algebra associated with Dg, i.e. the space Dg((z)) = Dg ⊗ C((z))

of Laurent series in a complex parameter z valued in the complexification of Dg and

equipped with the natural Lie bracket. The exchange automorphism (2.30) on Dg induces

an automorphism δ̂ on Dg((z)) defined for all X ∈ Dg((z)) by

δ̂(X)(z) = δ
(
X(−z)

)
.

Denote by Dg((z))δ̂ the twisted loop algebra, i.e. the subalgebra of Dg((z)) formed by the

fixed points of δ̂.

Recall that the Lax matrices of the coset σ-model (corresponding here to η = η̃ = 0)

and of its one-parameter deformation (corresponding here to η = η̃) belong to the twisted

algebra Dg((z))δ̂. It is natural to expect such a Lax matrix to exist also for the bi-Yang-

Baxter σ-model. The corresponding Lax pair can be constructed from the Lax pair L±(z)

valued in the loop algebra g((z)) of a single copy of g in equation (2.18). Indeed, defining

L±(z) =
(
L±(z),L±(−z)

)
∈ Dg((z)),

we have automatically L±(z) ∈ Dg((z))δ̂ and the Lax equation

∂+L−(z)− ∂−L−(z)− [L+(z), L−(z)] = 0

follows immediately from the one for L±(z) in (2.9). The associated Hamiltonian Lax

matrix is

L(z) =
(
L(z),L(−z)

)
(4.1)

where L(z) is given by (2.28).

In the remainder of this section we will study the Hamiltonian properties of this Lax

matrix, showing that its Poisson bracket is also of the r/s-form.
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4.2 Poisson bracket of the Lax matrix with itself

The Lax matrices of the coset σ-model on G×G/Gdiag and of its one-parameter deformation

have a Poisson bracket of the r/s-form in the double algebra Dg. We will show that this

is also the case for the bi-Yang-Baxter σ-model. As it turns out, however, the R-matrix of

the latter (which is a rational function of two spectral parameters z and z′ valued in the

complexification of Dg⊗Dg) takes on a slightly non-standard form depending on both the

twist function ϕbYB(z) and on its mirror image ϕbYB(−z). We will discuss the algebraic

origin of this structure coming from the twisted loop algebra Dg((z))δ̂ by generalising the

construction of [8].

4.2.1 R-matrix and inner product

We begin by recalling the construction of [8] adapted to the present setting. The twisted

loop algebra Dg((z)) admits a natural decomposition

Dg((z))δ̂ = Dg[[z]]δ̂ ⊕
(
z−1Dg[z−1]

)δ̂
(4.2)

into subalgebras of positive and strictly negative powers of the loop parameter z, respec-

tively. Let π+ and π− denote the projection operators relative to this decomposition. The

operator

RD = π+ − π− (4.3)

defines a solution of the mCYBE on Dg((z))δ̂.

Suppose now that we are given an invariant inner product 〈·, ·〉 on the twisted loop

algebra Dg((z))δ̂. We define the kernel RD
12
(z, z′) of the operator RD in (4.3), with respect

to 〈·, ·〉, as the rational function RD
12
(z, z′) of two complex variables and valued in the

complexification of Dg⊗Dg, such that for all M ∈ Dg((z))δ̂ we have

〈RD
12
(z, z′),M2(z

′)〉2 = (RDM)(z). (4.4)

This matrix is then a solution of the classical Yang-Baxter equation2

[
RD

12
(z1, z2),R

D
13
(z1, z3)

]
+
[
RD

12
(z1, z2),R

D
23
(z2, z3)

]
+
[
RD

32
(z3, z2),R

D
13
(z1, z3)

]
= 0.

(4.5)

The standard inner product on Dg((z)) is defined for all M,N ∈ Dg((z)) by

〈M,N〉 = resz=0 κ
D
(
M(z), N(z)

)
dz, (4.6)

where κD is the Killing form on the double Dg. Given any function ϕ(z), one can also

define a more general invariant inner product on Dg((z)) as a “twist” of the standard one

by ϕ, namely

〈M,N〉ϕ = resz=0 κ
D
(
M(z), N(z)

)
ϕ(z)dz, (4.7)

for any M,N ∈ Dg((z)). It is easy to check that this inner product is invariant under δ̂,

i.e. 〈δ̂M, δ̂N〉ϕ = 〈M,N〉ϕ, and thus induces an inner product on the twisted loop algebra

2More precisely, it is a solution of the classical Yang-Baxter equation if we ignore contact terms by

treating RD
12(z, z

′) as a rational function. See, for instance, [8] for more details.
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Dg((z))δ̂, if and only if ϕ is an odd function. The kernel of the operator RD defined in

equation (4.3), with respect to this inner-product, is

RD
12
(z, z′) = 2

z′C
(00)
12

+ zC
(11)
12

z′2 − z2
ϕ(z′)−1, (4.8)

with the graded components of the split Casimir

C
(00)
12

=
1

2
κab
(
(Ta, 0) + (0, Ta)

)
⊗
(
(Tb, 0) + (0, Tb)

)
, (4.9a)

C
(11)
12

=
1

2
κab
(
(Ta, 0)− (0, Ta)

)
⊗
(
(Tb, 0)− (0, Tb)

)
. (4.9b)

Expression (4.8) is the R-matrix entering the r/s-form of the Poisson bracket of Lax

matrices for the coset σ-model on G × G/Gdiag as well as its one-parameter deformation,

with the twist function ϕ given respectively by (3.2) and (3.3).

4.2.2 Inner product for the bi-Yang-Baxter σ-model

Let us now generalise the ideas presented in the previous subsections, to have a formalism

that also describes the bi-Yang-Baxter σ-model. As we are considering the double Lie

algebra Dg, one can define an even more general inner product invariant under δ̂, by

separating explicitly the left and right part of Dg. That is, for any M = (m, m̃) and

N = (n, ñ) in Dg we define

〈M,N〉ϕ = resz=0 κ
(
m(z), n(z)

)
ϕ(z)dz − resz=0 κ

(
m̃(z), ñ(z)

)
ϕ(−z)dz, (4.10)

where κ is the Killing form on g. When ϕ is odd, we recover the twisted inner product (4.7).

This construction allows to consider twist functions of any parity.

The kernel of RD with respect to the inner product (4.10) is given by

RD
12
(z, z′) =

(
CLL
12

z′ − z
+

CRL
12

z + z′

)
ϕ(z′)−1 −

(
CRR
12

z′ − z
+

CLR
12

z + z′

)
ϕ(−z′)−1, (4.11)

where we defined the partial split Casimirs

CLL
12

= κab(Ta, 0)⊗ (Tb, 0), CRR
12

= κab(0, Ta)⊗ (0, Tb),

CLR
12

= κab(Ta, 0)⊗ (0, Tb), CRL
12

= κab(0, Ta)⊗ (Tb, 0).

The r/s form of the Poisson bracket of L(z) implies that the Lax matrix (4.1) in the double

Lie algebra also has a Poisson bracket of the r/s-form. Furthermore, it is associated with

the R-matrix (4.11) for the twist function ϕ given by (3.8). The projection of this Poisson

bracket onto the left part of the double Lie algebra gives back the Poisson bracket for L(z)

of the r/s-form discussed in section 3.
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1−1

z+

θ

z−

z̃−

z̃+

θ̃

Figure 1. Poles of the twist function ϕbYB given by (3.8).

5 Analysis of the twist function and symmetries

As we will see later, the poles of the twist function characterises the model [20]. In the case

of the bi-Yang-Baxter σ-model, the twist function (3.8) has four simple poles, disposed on

the unit circle of the complex plane (cf figure 1):

z± =
1− 1

4(η
2 − η̃2)± iη

ζ
= z∗∓ and z̃± = −

1 + 1
4(η

2 − η̃2)± iη̃

ζ
= z̃∗∓.

Let us recall that

ζ =

√(
1 +

1

4
(η + η̃)2

)(
1 +

1

4
(η − η̃)2

)
.

These poles can be re-expressed in a trigonometric form as z± = e±iθ and z̃± = −e±iθ̃,

with sin θ = η/ζ and sin θ̃ = η̃/ζ.

5.1 Lax matrix at the poles of the twist function

Evaluating the Lax matrix (2.28) at the poles of the twist function, one obtains:

J± ≡ ±
2iK

η
L(z±) = ±

2iK

η

(
−j +

η

4K
(Rg ∓ i)X

)
, (5.1a)

J̃± ≡ ±
2iK

η̃
L(z̃±) = ±

2iK

η̃

(
−j̃ +

η̃

4K
(R̃g̃ ∓ i)X

)
. (5.1b)

One can verify that J± and J̃± are Poisson commuting Kac-Moody currents valued in

gC and with imaginary central charges

{J±(σ)1,J±(σ
′)2} = −

[
C12,J±(σ)2

]
δσσ′ ±

2iK

η
C12δ

′
σσ′ ,

{J̃±(σ)1, J̃±(σ
′)2} = −[C12, J̃±(σ)2]δσσ′ ±

2iK

η̃
C12δ

′
σσ′ .

All the other Poisson brackets vanish. These brackets can also be seen more simply as a

direct consequence of the r/s-system (3.1). Indeed, the form (3.1c) of theR-matrix imposes
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that the values of the Lax matrix at each pole of the twist function define mutually Poisson

commuting Kac-Moody currents, as already shown in [20].

Denote the gauge transformation of the Lax matrix by a G-valued field h as

Lh(z) = hL(z)h−1 − h∂σh
−1.

One can eliminate the currents j and j̃ in (5.1) by performing a gauge transformation by

the fields g and g̃, respectively,

Lg(z±) =
η

4K
(R∓ i)(gXg−1), (5.2a)

Lg̃(z̃±) =
η̃

4K
(R̃∓ i)(g̃X̃g̃−1). (5.2b)

5.2 Lift to the cotangent bundle T ∗L(G × G)

According to (5.2), Lg(z±) belongs to the subalgebra g∓ = (R ∓ i)g of gC. Denote by G∓

the corresponding subgroup of GC. Let Ψg
±(σ) be a solution belonging to G∓ of

∂σΨ
g
±(σ)Ψ

g
±(σ)

−1 = Lg(σ, z±).

Then Ψ±(σ) = g(σ)−1Ψg
±(σ) is a solution of

∂σΨ±(σ)Ψ±(σ)
−1 = L(σ, z±).

We recover the result that g(σ)−1 corresponds to the first factor in the Iwasawa decom-

position GC = GG∓ of the extended solution Ψ±(σ) [2, 3, 20]. The same analysis can be

carried out for z̃± and g̃.

Suppose we had started the construction of the 2-parameter deformation as in [3, 9, 20].

This means that we would have a twist function and an abstract Lax matrix, without having

the expression of this matrix in terms of canonical fields. The analysis above proves that

one could have derived the canonical fields g, g̃, X and X̃ from the values of the Lax

matrix at the poles of the twist function. We shall address the problem of constructing the

corresponding Hamiltonian defining the dynamics on phase space later, in subsection 5.4.

5.3 q-deformed symmetry algebra

We shall now discuss the symmetries of the bi-Yang-Baxter σ-model. For this we consider

the case where the fields are defined on the real line i.e. σ ∈ R. Let us consider the

monodromy matrices of the Lax matrix and its gauge transformation, at the poles z± of

the twist function

T± = P←−exp

(∫ +∞

−∞

dσL(z±, σ)

)
, T g

± = P←−exp

(∫ +∞

−∞

dσLg(z±, σ)

)
,

and define similarly T̃± and T̃ g̃
±, at the poles z̃±. As usual, the zero curvature equation (2.9)

for the Lax pair implies the conservation of T± and T̃±. Moreover, we have

T± = g(+∞)−1T g
±g(−∞) and T̃± = g̃(+∞)−1T̃ g̃

±g̃(−∞). (5.3)
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Thus, if we suppose that the boundary conditions g(±∞) and g̃(±∞) are independent of

τ , then T g
± and T̃ g̃

± are also conserved charges.

These charges are constructed as the path-ordered exponential of the currents Lg(z±)

and Lg̃(z̃±), given by (5.2). This particular structure of the currents and the Poisson

brackets (2.24) enable one to show [3] that the corresponding algebra of conserved charges

forms the classical analogue of a quantum group. More precisely, applying the results

of [3], one can extract from T g
± and T̃ g̃

± a set of non-local charges which generate the

Poisson algebra UP
q (g)× UP

q̃ (g), analogue of a quantum group and where

q = exp
(
−

η

4K

)
and q̃ = exp

(
−

η̃

4K

)
.

One recovers the values already indicated in [33] and that in the one-paraneter deformation

limit η = η̃ [3].

5.4 Reconstruction of the Hamiltonian

We will now show how to recover the Hamiltonian of the model from the Lax matrix and

the twist function. Following [20], which treats the case of the one-parameter deformation

η = η̃, we introduce the following Hamiltonian density3

Hϕ(σ) =
1

2
(Resz=0−Resz=∞)κ (L(z, σ),L(z, σ))ϕ(z)dz.

One can show that this Hamiltonian density can be expressed in terms of the naive Hamil-

tonian density (2.25) and the constraint X + X̃ as

Hϕ = H0 + κ
(
Λϕ, X + X̃

)
,

where Λϕ is a g-valued field, depending linearly on the fields j, j̃, X, X̃, RgX and R̃g̃X̃.

This Hamiltonian is indeed of the form (2.26), with a fixed Lagrange multiplier Λϕ. Thus,

it gives back the correct dynamics for all the fields.

6 Gauge fixing and Lax matrix

To analyse what happens when the bi-Yang-Baxter σ-model is formulated as in [2], one

needs to gauge fix the Gdiag gauge invariance. We do this by taking g̃ = Id. As already

discussed in section 2, this gauge may be reached by the field-dependent gauge transfor-

mation (2.3) with h = g̃. As we shall see, this induces a gauge transformation on the Lax

matrix. Let us first recall a general result [39] about the change in the Poisson bracket of

the Lax matrix under a gauge transformation.

3In [20], the expression (3.23) for Hϕ contains a factor 1
4
. Yet this expression is for the Lax matrix in

the double Lie algebra. Here, for the Lax matrix in a simple copy of g, it translates to a factor 1

2
.
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A general result. Consider a Lax matrix taking values in gC and whose Poisson bracket

takes the r/s form (3.1b). Let us apply a gauge transformation

L → Lh = hLh−1 − h∂σh
−1

by some G-valued field h constructed from the phase space fields. We suppose that the

Poisson brackets of h with itself and with the Lax matrix take the form

{h1(σ), h2(σ
′)} = 0, {L1(z, σ), h2(σ

′)}h2(σ
′)−1 = ω12(z, σ)δσσ′ ,

for some gC⊗gC-valued (potentially field dependent) tensor ω12(z, σ). A direct computation

shows that the Poisson bracket of the gauge transformed Lax matrix Lh(z) with itself is

also of the r/s-form. More precisely, one has

{Lh
1
(z, σ),Lh

2
(z′, σ′)} = [Rh

12
(z, z′, σ),Lh

1
(z, σ)]δσσ′ − [Rh

21
(z′, z, σ),Lh

2
(z′, σ)]δσσ′ (6.1a)

+
(
Rh

12
(z, z′, σ) +Rh

21
(z′, z, σ)

)
δ′σσ′ , (6.1b)

where the R-matrix Rh is given by:

Rh
12
(z, z′, σ) = h1(σ)h2(σ)R12(z, z

′)h1(σ)
−1h2(σ)

−1 − h2(σ)ω21(z
′, σ)h2(σ)

−1. (6.1c)

This R-matrix may be dynamical i.e. field dependent.

Gauge fixing as a suitable gauge transformation. Consider now the following gauge

transformation of the Lax matrix (2.28) of the bi-Yang-Baxter σ-model,

Lg̃(z) = g̃L(z)g̃−1 − g̃∂σg̃
−1.

Define then the gauge-invariant fields

g′ = gg̃−1, j′ = g′−1∂σg
′ = g̃(j − j̃)g̃−1, X ′ = g̃Xg̃−1, X̃ ′ = g̃X̃g̃−1.

Using the relation Aj̃(z) = −Aj(z)− 1, one finds

Lg̃(z) = Aj(z)j
′ +AX(z)X ′ +ARgX(z)Rg′X

′ +AX̃(z)X̃ ′ +AR̃g̃X̃
(z)R̃X̃ ′,

with the AQ listed in appendix A. The Poisson brackets of g′ and X ′ are the same as those

of g and X, but the gauge transformed constraint X ′ + X̃ ′ Poisson commute with g′ and

X ′. We may therefore impose the constraint X ′+X̃ ′ = 0 strongly in the Lax matrix, which

becomes

Lg̃(z) = Aj(z)j
′ +
(
AX(z)−AX̃(z)

)
X ′ +ARgX(z)Rg′X

′ −AR̃g̃X̃
(z)R̃X ′.

The key property is that performing such a gauge transformation is equivalent to fixing the

gauge by taking g̃ = Id and replacing the canonical bracket by the Dirac bracket. Indeed,

the Dirac bracket of g and X is the same as the canonical one, but the constraint X + X̃

has vanishing Dirac bracket with g and X, and may thus be set strongly to zero. The

gauge fixed Lax matrix is just Lg̃.
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Consequence. Viewing the gauge fixed Lax matrix as a suitable gauge transformation of

the original Lax matrix allows us to use the result (6.1). It leads to an easy determination

of its Poisson bracket. Applying (6.1) to the case at hand where h = g̃, we find that

ω12(z, σ) = g̃2(σ)
(
AX̃(z)C12 +AR̃g̃X̃

(z)R̃g̃(σ)12
)
g̃2(σ)

−1.

As a consequence, the new R-matrix is still non-dynamical and reads

Rg̃
12
(z, z′) =

C12

z − z′
ϕbYB(z

′)−1 −AX̃(z′)C12 +AR̃g̃X̃
(z′)R̃12.

The new R-matrix is not determined solely by the twist function and depends on the

matrix R̃ appearing in the Lagrangian.

7 Conclusion

Let us end with a few comments on possible generalisations of this work.

It was shown in [17] that it is possible to apply a λ-deformation4 to the Yang-Baxter σ-

model. Just as the λ-deformation itself is known to coincide with the σ-model obtained by

combining the effects of a Poisson-Lie T -duality and an analytic continuation on the Yang-

Baxter σ-model [20, 40, 41], the λ-deformation of the Yang-Baxter σ-model itself should

also be related in a similar fashion to the bi-Yang-Baxter σ-model. This relation has been

shown for a specific example in [17]. It would be interesting to prove this in general.

We defined in [42] a two-parameter family of integrable deformations of the principal

chiral model on an arbitrary compact Lie group, of a different nature to the bi-Yang-Baxter

σ-model discussed here. The two limits of the model defined in [42], where one of the two

parameters is taken to zero, correspond to the Yang-Baxter σ-model and the principal

chiral model with a Wess-Zumino term. As already mentioned in [33], one expects to be

able to combine this type of deformation with a bi-Yang-Baxter type deformation to obtain

a three-parameter deformation of the principal chiral model on an arbitrary Lie group. In

fact, a four-parameter deformation of the SU(2) principal chiral model has already been

constructed in [43]. Yet from the point of view of the twist function we only expect to be

able to construct a three-parameter deformation in the case of an arbitrary Lie group G.

However, recall that it has also been suggested in [44] that the fourth parameter of the

deformation in [43] is related to a TsT-transformation, and therefore shall correspond to a

deformation where the twist function is not modified [20, 23, 25, 30].
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A Coefficients AQ and JQ

The coefficients AQ(z) in the Lax matrix (2.28) read

Aj(z) = −
1

2

(
1 +

η2 − η̃2

4
+

ζ

2

(
z +

1

z

))
(A.1a)

AX(z) = −
ζ

16K

(
z −

1

z

)
+ f(z) (A.1b)

ARgX(z) =
η

8K

(
1 +

η2 − η̃2

4
+

ζ

2

(
z +

1

z

))
(A.1c)

Aj̃(z) = −
1

2

(
1 +

η̃2 − η2

4
−

ζ

2

(
z +

1

z

))
(A.1d)

AX̃(z) =
ζ

16K

(
z −

1

z

)
+ f(z) (A.1e)

AR̃g̃X̃
(z) =

η̃

8K

(
1 +

η̃2 − η2

4
−

ζ

2

(
z +

1

z

))
(A.1f)

The coefficients JQ(z, z
′) in the ultralocal term (3.5) are given by

Jj(z, z
′) = −Aj(z)AX(z′)−Aj(z

′)AX(z) (A.2a)

JX(z, z′) = −AX(z)AX(z′) +ARgX(z)ARgX(z′) (A.2b)

JRgX(z, z′) = −AX(z)ARgX(z′)−AX(z′)ARgX(z) (A.2c)

Jj̃(z, z
′) = −Aj̃(z)AX̃(z′)−Aj̃(z

′)AX̃(z) (A.2d)

JX̃(z, z′) = −AX̃(z)AX̃(z′) +AR̃g̃X̃
(z)AR̃g̃X̃

(z′) (A.2e)

JR̃g̃X̃
(z, z′) = −AX̃(z)AR̃g̃X̃

(z′)−AX̃(z′)AR̃g̃X̃
(z) (A.2f)
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