
On the Hardness of Almost–Sure Termination?

Benjamin Lucien Kaminski and Joost-Pieter Katoen

Software Modeling and Verification Group
RWTH Aachen University

{benjamin.kaminski,katoen}@cs.rwth-aachen.de

Abstract. This paper considers the computational hardness of comput-
ing expected outcomes and deciding (universal) (positive) almost–sure
termination of probabilistic programs. It is shown that computing lower
and upper bounds of expected outcomes is Σ0

1– and Σ0
2–complete, respec-

tively. Deciding (universal) almost–sure termination as well as deciding
whether the expected outcome of a program equals a given rational value
is shown to be Π0

2–complete. Finally, it is shown that deciding (universal)
positive almost–sure termination is Σ0

2–complete (Π0
3–complete).

Keywords: probabilistic programs · expected outcomes · almost–sure
termination · positive almost–sure termination · computational hardness

1 Introduction

Probabilistic programs [1] are imperative programs with the ability to toss a
(possibly) biased coin and proceed their execution depending on the outcome of
the coin toss. They are used in randomized algorithms, in security to describe
cryptographic constructions (such as randomized encryption) and security ex-
periments [2], and in machine learning to describe distribution functions that are
analyzed using Bayesian inference [3]. Probabilistic programs are typically just
a small number of lines, but hard to understand and analyze, let alone algorith-
mically. This paper considers the computational hardness of two main analysis
problems (and variations thereof) for probabilistic programs:

1. Computing expected outcomes: Is the expected outcome of a program vari-
able smaller than, equal to, or larger than a given rational number?

2. Deciding [universal] (positive) almost–sure termination: Does a program ter-
minate [on all inputs] with probability one (within an expected finite number
of computation steps)?

The first analysis problem is related to determining weakest pre–expectations
of probabilistic programs [4, 5]. Almost–sure termination is an active field of
research [6]. A lot of work has been done towards automated reasoning for
almost–sure termination. For instance, [7] gives an overview of some particu-
larly interesting examples of probabilistic logical programs and the according

? This research is funded by the Excellence Initiative of the German federal and state
governments and by the EU FP7 MEALS project.

2 Benjamin Lucien Kaminski, Joost-Pieter Katoen

intuition for proving almost–sure termination. Arons et al. [8] reduce almost–
sure termination to termination of non–deterministic programs by means of a
planner. This idea has been further exploited and refined into a pattern–based
approach with prototypical tool support [9].

Despite the existence of several (sometimes automated) approaches to tackle
almost–sure termination, most authors claim that it must intuitively be harder
than the termination problem for ordinary programs. To mention a few, Mor-
gan [10] remarks that while partial correctness for small–scale examples is not
harder to prove than for ordinary programs, the case for total correctness of a
probabilistic loop must be harder to analyze. Esparza et al. [9] claim that almost–
sure termination must be harder to decide than ordinary termination since for
the latter a topological argument suffices while for the former arithmetical rea-
soning is needed. The computational hardness of almost–sure termination has
however received scant attention. As a notable exception, [11] establishes that
deciding almost–sure termination of certain concurrent probabilistic programs
is in Π0

2 .
In this paper, we give precise classifications of the level of arithmetical reason-

ing that is needed to decide the aforementioned analysis problems by establishing
the following results: We first show that computing lower bounds on the expected
outcome of a program variable v after executing a probabilistic program P on
a given input η is Σ0

1–complete and therefore arbitrarily close approximations
from below are computable. Computing upper bounds, on the other hand, is
shown to be Σ0

2–complete, thus arbitrarily close approximations from above are
not computable in general. Deciding whether an expected outcome equals some
rational is shown to be Π0

2–complete.
For the second analysis problem—almost–sure termination—we obtain that

deciding almost–sure termination of probabilistic program P on a given input η
is Π0

2–complete. While for ordinary programs we have a complexity leap when
moving from the non–universal to the universal halting problem, we establish
that this is not the case for probabilistic programs: Deciding universal a.s ter-
mination turns out to be Π0

2–complete too. The case for positive almost–sure
termination is different however: While deciding (non–universal) positive almost–
sure termination is Σ0

2–complete, we show that universal positive almost–sure
termination is Π0

3–complete.

2 Preliminaries

As indicated, our hardness results will be stated in terms of levels in the arith-
metical hierarchy—a concept we briefly recall:

Definition 1 (Arithmetical Hierarchy [12, 13]). For every n ∈ IN, the
class Σ0

n is defined as Σ0
n =

{
A
∣∣ A =

{
x
∣∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (x, y1, y2,

y3, . . . , yn) ∈ R
}
, R is a decidable relation

}
, the class Π0

n is defined as

Π0
n =

{
A
∣∣ A =

{
x
∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R

}
, R

is a decidable relation
}

and the class ∆0
n is defined as ∆0

n = Σ0
n ∩ Π0

n. Note

On the Hardness of Almost–Sure Termination 3

that we require that the values of the variables are drawn from a recursive do-
main. Multiple consecutive quantifiers of the same type can be contracted to one
quantifier of that type, so the number n really refers to the number of necessary
quantifier alternations rather than to the number of quantifiers used. A set A is
called arithmetical, iff A ∈ Γ 0

n , for Γ ∈ {Σ, Π, ∆} and n ∈ N. The arithmeti-
cal sets form a strict hierarchy, i.e. ∆0

n ⊂ Γ 0
n ⊂ ∆n+1 and Σ0

n 6= Π0
n holds for

Γ ∈ {Σ, Π} and n ≥ 1. Furthermore, note that Σ0
0 = Π0

0 = ∆0
0 = ∆0

1 is ex-
actly the class of the decidable sets and Σ0

1 is exactly the class of the recursively
enumerable sets.

Next, we recall the concept of many–one reducibility and completeness:

Definition 2 (Many–One Reducibility and Completeness [13–15]). Let
A, B be arithmetical sets and let X be some appropriate universe such that
A,B ⊆ X. A is called many–one–reducible to B, denoted A ≤m B, iff there
exists a computable function f : X → X, such that ∀x ∈ X :

(
x ∈ A ⇐⇒ f(x) ∈

B
)
. If f is a function such that f many–one reduces A to B, we denote this by

f : A ≤m B. Note that ≤m is transitive.
A is called Γ 0

n–complete, for Γ ∈ {Σ, Π, ∆}, iff both A ∈ Γ 0
n and A is

Γ 0
n–hard, meaning C ≤m A, for any set C ∈ Γ 0

n . Note that if A is Γ 0
n–complete

and A ≤m B, then B is necessarily Γ 0
n–hard. Furthermore, note that if A is Σ0

n–
complete, then A ∈ Σ0

n\Π0
n. Analogously if A is Π0

n–complete, then A ∈ Π0
n\Σ0

n.

3 Probabilistic Programs

In order to speak about probabilistic programs and the computations performed
by such programs, we briefly introduce the syntax and semantics we use:

Definition 3 (Syntax). Let Var be the set of program variables. The set Prog
of probabilistic programs adheres to the following grammar:

Prog −→ v := e | Prog; Prog | {Prog} [p] {Prog} | WHILE (b) {Prog} ,

where v ∈ Var, e is an arithmetical expression over Var, p ∈ [0, 1] ⊆ Q, and
b is a Boolean expression over arithmetic expressions over Var. We call the set
of programs that do not contain any probabilistic choices the set of ordinary
programs and denote this set by ordProg.

The presented syntax is the one of the fully probabilistic1 fragment of the prob-
abilistic guarded command language (pGCL) originally due to McIver and Mor-
gan [4]. We omitted skip–, abort–, and if–statements, as those are syntactic
sugar. While assignment, concatenation, and the while–loop are standard pro-
gramming constructs, {P1} [p] {P2} denotes a probabilistic choice between pro-
grams P1 (with probability p) and P2 (with probability 1 − p). An operational
semantics for pGCL programs is given below:

1 Fully probabilistic programs may contain probabilistic but no non–deterministic
choices.

4 Benjamin Lucien Kaminski, Joost-Pieter Katoen

Definition 4 (Semantics). Let the set of variable valuations be denoted by V =
{η | η : Var→ Q+}, let the set of program states be denoted by S =

(
Prog∪{↓}

)
×

V×I×{L, R}∗, for I = [0, 1]∩Q+, let JeKη be the evaluation of the arithmetical
expression e in the variable valuation η, and analogously let JbKη be the evaluation
of the Boolean expression b. Then the semantics of probabilistic programs
is given by the smallest relation ` ⊆ S×S which satisfies the following inference
rules:

(assign)
〈v := e, η, a, θ〉 ` 〈↓, η[v 7→ max{JeKη, 0}], a, θ〉

(concat1)
〈P1, η, a, θ〉 ` 〈P ′1, η′, a′, θ′〉

〈P1; P2, η, a, θ〉 ` 〈P ′1; P2, η′, a′, θ′〉

(concat2)
〈↓; P2, η, a, θ〉 ` 〈P2, η, a, θ〉

(prob1)
〈{P1} [p] {P2}, η, a, θ〉 ` 〈P1, η, a · p, θ · L〉

(prob2)
〈{P1} [p] {P2}, η, a, θ〉 ` 〈P2, η, a · (1− p), θ ·R〉

(while1)
JbKη = True

〈WHILE (b) {P}, η, a, θ〉 ` 〈P; WHILE (b) {P}, η, a, θ〉

(while2)
JbKη = False

〈WHILE (b) {P}, η, a, θ〉 ` 〈↓, η, a, θ〉

We use σ `k τ in the usual sense.

The semantics is mostly straightforward except for two features: in addition to
the program that is to be executed next and the current variable valuation, each
state also stores a sequence θ that encodes which probabilistic choices were made
in the past (Left or Right) as well as the probability a that those choices were
made. The graph that is spanned by the `–relation can be seen as an unfolding
of the Markov decision process semantics for pGCL provided by Gretz et al. [5]
when restricting oneself to fully probabilistic programs.

4 Expected Outcomes and Termination Probabilities

In this section we formally define the notion of an expected outcome as well the
notion of (universal) (positive) almost–sure termination. We start by investigat-
ing how state successors can be computed.

It is a well–known result due to Kleene that for any ordinary program P and
a state σ the k-th successor of σ with respect to ` is unique and computable. If,
however, P is a probabilistic program containing probabilistic choices, the k-th
successor of a state need not be unique, because at various points of the execution

On the Hardness of Almost–Sure Termination 5

the program must choose a left or a right branch with some probability. However,
if we resolve those choices by providing a sequence of symbols w over the alphabet
{L, R} that encodes for all probabilistic choices which occur whether the Left
or the Right branch shall be chosen at a branching point, we can construct a
computable function that computes a unique k-th successor. Notice that for this
purpose a sequence of finite length is sufficient. We obtain the following:

Proposition 1 (The State Successor Function). Let S⊥ = S ∪ {⊥}. There
exists a total computable function T: IN×S×{L, R}∗ → S⊥, such that for k ≥ 1

T0(σ, w) =

{
σ, if w = ε,

⊥, otherwise,

Tk(σ, w) =

Tk−1(τ, w′), if σ = 〈P, η, a, θ

〉
` 〈P ′, η′, a′, θ · b

〉
= τ,

with w = b · w′ and b ∈ {L, R, ε},
⊥ otherwise.

So Tk(σ, w) returns a successor state τ , if σ `k τ , whereupon exactly |w| infer-
ences must use the (prob1)– or the (prob2)–rule and those probabilistic choices
are resolved according to w. Otherwise Tk(σ, w) returns ⊥. Note in particular
that for both the inference of a terminal state 〈↓, η, a, θ〉 within less than k steps
as well as the inference of a terminal state through less or more than |w| prob-
abilistic choices, the calculation of Tk(σ, w) will result in ⊥. In addition to T,
we will need two more computable operations for expressing expected outcomes,
termination probabilities, and expected runtimes:

Proposition 2. There exist two total computable functions α : S⊥ → Q+ and
℘ : S⊥ × Var→ Q+, such that

α(σ) =

{
a, if σ = 〈↓, , a, 〉
0, otherwise,

℘(σ, v) =

{
η(v) · a, if σ = 〈↓, η, a, 〉
0, otherwise,

where represents an arbitrary value.

The function α takes a state σ and returns the probability of reaching σ. The
function ℘ takes a state σ and a variable v and returns the probability of reaching
σ multiplied with the value of v in the state σ. Both functions do that only if
the provided state σ is a terminal state. Otherwise they return 0. Based on the
above notions, we now definie expected outcomes, termination probabilities and
expected times until termination:

Definition 5 (Expected Outcome, Termination Probability, and Ex-
pected Time until Termination). Let P ∈ Prog, η ∈ V, v ∈ Var, σP,η =

〈P, η, 1, ε〉, and for a finite alphabet A let A≤k =
⋃k
i=0A

i. Then

1. the expected outcome of v after executing P on η, denoted EP,η(v), is

EP,η(v) =

∞∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
,

6 Benjamin Lucien Kaminski, Joost-Pieter Katoen

2. the probability that P terminates on η, denoted PrP,η(↓), is

PrP,η(↓) =

∞∑
k=0

∑
w∈{L,R}≤k

α
(
Tk(σP,η, w)

)
,

3. the expected time until termination of P on η, denoted EP,η(↓), is

EP,η(↓) =

∞∑
k=0

1−
∑

w∈{L,R}≤k

α
(
Tk(σP,η, w)

) .

The expected outcome EP,η(v) as defined here coincides with the weakest pre–
expectation wp.P.v (η) à la McIver and Morgan [4] for fully probabilistic pro-
grams. In the above definition for EP,η(v), we sum over all possible numbers of
inference steps k and sum over all possible sequences from length 0 up to length
k for resolving all probabilistic choices. Using ℘ we filter out the terminal states
σ and sum up the values of ℘(σ, v).

For the termination probability PrP (↓), we basically do the same but we
merely sum up the probabilities of reaching final states by using α instead of ℘.

For the expected time until termination EP,η(↓), we go along the lines of [6]:
It is stated there that the expected time until termination of P on η can be
expressed as

∑∞
k=0 Pr(“P runs for more than k steps on η”) =

∑∞
k=0

(
1−Pr(“P

terminates within k steps on η”)
)
. We have expressed the latter in our set–up.

In order to investigate the complexity of calculating EP,η(v), we define three
sets: LEXP, which relates to the set of rational lower bounds of EP,η(v), REXP,
which relates to the set of rational upper bounds, and EXP which relates to the
value of EP,η(v) itself:

Definition 6 (LEXP, REXP, and EXP). The sets LEXP,REXP, EXP ⊂
Prog × V × Var × Q+ are defined as (P, η, v, q) ∈ LEXP iff q < EP,η(v),
(P, η, v, q) ∈ REXP iff q > EP,η(v), and (P, η, v, q) ∈ EXP iff q = EP,η(v).

Regarding the termination probability of a probabilistic program, the case of
almost–sure termination is of special interest: We say that a program P termi-
nates almost–surely on input η iff P terminates on η with probability 1. Further-
more, we say that P terminates positively almost–surely on η iff the expected
time until termination of P on η is finite. Lastly, we say that P terminates uni-
versally (positively) almost–surely, if it does so on all possible inputs η. The
problem of (universal) almost–sure termination can be seen as the probabilistic
counterpart to the (universal) halting problem for ordinary programs.

In the following, we formally define the according problem sets:

Definition 7 (Almost–Sure Termination Problem Sets). The sets AST ,
PAST , UAST , and PAST are defined as follows:

(P, η) ∈ AST ⇐⇒ PrP,η(↓) = 1 (P, η) ∈ PAST ⇐⇒ EP,η(↓) <∞
P ∈ UAST ⇐⇒ ∀η : (P, η) ∈ AST P ∈ UPAST ⇐⇒ ∀η : (P, η) ∈ PAST

Notice that both PAST ⊂ AST and UPAST ⊂ UAST hold.

On the Hardness of Almost–Sure Termination 7

5 The Hardness of Computing Expected Outcomes

In this section we investigate the computational hardness of deciding the sets
LEXP, REXP, and EXP. The first fact we establish is the Σ0

1–completeness of
LEXP. This result is established by reduction from the (non–universal) halting
problem for ordinary programs:

Theorem 1 (The Halting Problem [16]). The halting problem is a subset
H ⊂ ordProg × V, which is characterized as (P, η) ∈ H iff ∃k ∃η′ : Tk(σP,η,
ε) = 〈↓, η′, 1, ε〉. Let H denote the complement of the halting problem, i.e.
H = (ordProg × V) \ H. H is Σ0

1–complete and H is Π0
1–complete.

Theorem 2. LEXP is Σ0
1–complete.

Proof. For LEXP ∈ Σ0
1 consider the following:

(P, η, v, q) ∈ LEXP
⇐⇒ q < EP,η(v)

⇐⇒ q <

∞∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
⇐⇒ ∃ y : q <

y∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
=⇒ LEXP ∈ Σ0

1

Figure 1 (left) gives an intuition on this formula.
It remains to show that LEXP is Σ0

1–hard: We do this by proving H ≤m

LEXP. Consider the following function f : H ≤m LEXP: f takes an ordinary
program Q ∈ ordProg and a variable valuation η as its input and computes
(P, η, v, 1/2), where P is the probabilistic program v := 0;{v := 1}[1/2]{TQ;v :=
1} and TQ is an ordinary program that simulates Q on η.

Correctness of the reduction: There are two cases: (1) Q terminates on input
η. Then the expected outcome of variable v after executing the program P on
input η is 1, because in both branches, the variable will be set to 1. As 1/2 < 1,
we have that (P, η, v, 1/2) ∈ LEXP.

(2) Q does not terminate on input η. Then the expected outcome of variable
v after executing the program P on input η is 1/2, because only in the left branch
(which has probability 1/2), the variable will be set to 1. In the right branch, the
program does not terminate and therefore the outcome of this branch is 0. As
1/2 6< 1/2, we have that (P, η, v, 1/2) 6∈ LEXP. ut

Theorem 2 implies that LEXP is recursively enumerable. This means that all
lower bounds for expected outcomes can be effectively enumerated by some algo-
rithm. Now, if upper bounds were recursively enumerable as well, then expected
outcomes would be computable reals. However, the contrary will be shown by
establishing that REXP is Σ0

2–complete, thus REXP 6∈ Σ0
1 and hence REXP

8 Benjamin Lucien Kaminski, Joost-Pieter Katoen

is not recursively enumerable. Σ0
2–hardness will be established by a reduction

from the complement of the universal halting problem for ordinary programs:

Theorem 3 (The Universal Halting Problem [16]). The universal halt-
ing problem is a subset UH ⊂ ordProg, which is characterized as P ∈ UH
iff ∀ η : (P, η) ∈ H. Let UH denote the complement of UH, i.e., UH =
ordProg \ UH. UH is Π0

2–complete and UH is Σ0
2–complete.

Theorem 4. REXP is Σ0
2–complete.

Proof. For REXP ∈ Σ0
2 consider the following:

(P, η, v, q) ∈ REXP
⇐⇒ q > EP,η(v)

⇐⇒ q >

∞∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
⇐⇒ ∃ δ ∀ y : q − δ >

y∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
=⇒ REXP ∈ Σ0

2

Figure 1 (right) gives an intuition on this formula.
It remains to show that REXP is Σ0

2–hard: We do this by proving UH ≤m

REXP. Consider the following function f : UH ≤m REXP: f takes an ordinary
program Q ∈ ordProg as its input and computes the triple (P, η, v, 1), where
η is an arbitrary but fixed input, and P ∈ Prog is the following probabilistic
program:

i := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){ i := i + 1; {c := 0} [0.5] {c := 1} };

k := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){ k := k + 1; {c := 0} [0.5] {c := 1} };

v := 0; TQ

TQ is a program that computes α
(
Tk
(〈
Q, gQ(i), 1, ε

〉
, ε
))
· 2k+1 and stores the

result in the variable v, and gQ : IN→ V is some computable bijection, such that
∀z ∈ Var :

(
gQ(i)

)
(z) 6= 0 implies that z occurs in Q.

Correctness of the reduction: α
(
Tk
(〈
Q, gQ(i), 1, ε

〉
, ε
))
· 2k+1 returns 2k+1

if and only if Q halts on input gQ(i) after exactly k steps (otherwise it returns
0). The two while–loops generate independent geometric distributions with pa-
rameter 1/2 on i and k, respectively, so the probability of generating exactly the
numbers i and k is 1/2k+1 · 1/2k+1 = 1/2i+k+2. The expected outcome of v after
executing the program P on any input η is hence

∞∑
i=0

∞∑
k=0

1

2i+k+2
· α
(

Tk

(〈
Q, gQ(i), 1, ε

〉
, ε
))
· 2k+1 .

On the Hardness of Almost–Sure Termination 9

q

∃y −→

EP,η(v)

(P, η, v, q) ∈ LEXP

q

←− ∀ y −→

∃ δ
EP,η(v)

(P, η, v, q) ∈ REXP

Fig. 1. Schematic depiction of the formulae defining LEXP and REXP, respectively.
In each diagram, the solid line represents the monotonically increasing graph of∑y
k=0

∑
w∈{L,R}≤k ℘

(
Tk(σP,η, w), v

)
plotted over increasing y.

Since for each input, the number of steps until termination of Q is either unique
or does not exist, the formula for the expected outcome reduces to

∑∞
i=0

1
2i+1 = 1

if and only if Q halts on every input after some finite number of steps. Thus if
there exists an input on which Q does not eventually halt, then (P, η, v, 1) ∈
REXP as then the expected value is strictly less than one. If, on the other hand,
Q does halt on every input, then the expected outcome is exactly one and hence
(P, η, v, 1) 6∈ REXP. ut

Finally, we establish the following result regarding exact expected outcomes:

Theorem 5. EXP is Π0
2–complete.

Proof. For EXP ∈ Π0
2 consider the following: By Theorem 4, there exists a decid-

able relation R, such that (P, η, v, x) ∈ REXP iff ∃r1∀r2 : (r1, r2, P, η, v, x) ∈
R. Furthermore from Theorem 2 it follows that there exists a decidable relation
L, such that (P, η, v, x) ∈ LEXP iff ∃` : (`, P, η, v, x) ∈ L. Let ¬R and ¬L be
the (decidable) negations of R and L, respectively, then:

(P, η, v, q) ∈ EXP
⇐⇒ q = EP,η(v)

⇐⇒ q ≤ EP,η(v) ∧ q ≥ EP,η(v)

⇐⇒ ¬
(
q > EP,η(v)

)
∧ ¬

(
q < EP,η(v)

)
⇐⇒ ¬

(
∃r1 ∀r2 : (r1, r2, P, η, v, q) ∈ R

)
∧ ¬

(
∃` : (`, P, η, v, q) ∈ L

)
⇐⇒

(
∀r1 ∃r2 : (r1, r2, P, η, v, q) ∈ ¬R

)
∧
(
∀` : (`, P, η, v, q) ∈ ¬L

)
⇐⇒ ∀r1 ∀` ∃r2 : (r1, r2, P, η, v, q) ∈ ¬R ∧ (`, P, η, v, q) ∈ ¬L
=⇒ EXP ∈ Π0

2

It remains to show that EXP is Π0
2–hard. We do this by proving UH ≤m EXP.

Consider again the reduction function f from the proof of Theorem 4: Given an
ordinary program Q, f computes the triple (P, η, v, 1), where P is a probabilistic
program which has an expected outcome of one for the variable v if and only if Q
terminates on all inputs, which is nothing else than Q ∈ UH. Thus f : UH ≤m

EXP. ut

10 Benjamin Lucien Kaminski, Joost-Pieter Katoen

6 The Hardness of Deciding Probabilistic Termination

This section presents the main contributions of this paper: Hardness results on
several variations of almost–sure termination problems. We first establish that
deciding almost–sure termination of a program on a given input is Π0

2–complete:

Theorem 6. AST is Π0
2–complete.

Proof. For AST ∈ Π0
2 we show AST ≤m EXP. For that, consider the following

function f : AST ≤m EXP which takes a probabilistic program Q and an input
η as its input and computes the tuple (P, η, v, 1), where v ∈ Var does not occur
in Q and P is the probabilistic program v := 0;Q; v := 1

Correctness of the reduction: On executing P , the variable v is set to one
only in those runs in which the program Q terminates on η. So the expected
value of v converges to one, if and only if the probability of Q terminating
converges to one. So if (Q, η) ∈ AST , then and only then (P, η, v, 1) ∈ EXP.
Thus f : AST ≤m EXP . By Theorem 5, EXP is Π0

2–complete, so it follows
directly that AST ∈ Π0

2 .
It remains to show that AST is Π0

2–hard. For that we many–one reduce the
Π0

2–complete universal halting problem to AST using the following function
f ′ : UH ≤m AST : f ′ takes an ordinary program Q as its input and computes
the pair (P ′, η), where η is some arbitrary but fixed input and P ′ is the following
probabilistic program:

i := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){ i := i + 1; {c := 0} [0.5] {c := 1} };
SQ

where SQ is an ordinary program that on any input η simulates the program
Q on input gQ(i), and gQ : IN → V is some computable bijection, such that
∀v ∈ Var :

(
gQ(i)

)
(v) 6= 0 implies that v occurs in Q.

Correctness of the reduction: The while–loop in P ′ establishes a geometric
distribution with parameter 1/2 on i and hence a geometric distribution on all
possible inputs for Q. After the while–loop, the program Q is simulated on the
input generated probabilistically in the while–loop. Obviously then the entire
program P ′ terminates with probability one on any arbitrary input η, i.e. termi-
nates almost–surely on η, if and only if the simulation of Q terminates on every
input. Thus Q ∈ UH if and only if (P ′, η) ∈ AST . ut

While for ordinary programs there is a complexity leap when moving from the
halting problem for some given input to the universal halting problem, we estab-
lish that there is no such leap in the probabilistic setting, i.e. UAST is as hard
as AST :

Theorem 7. UAST is Π0
2–complete.

Proof. For showing UAST ∈ Π0
2 , consider that by Theorem 6 there must exist

a decidable relation R such that (P, η) ∈ AST iff ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R.

On the Hardness of Almost–Sure Termination 11

By that we have that P ∈ UAST iff ∀ η ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R, which is
a Π0

2–formula. It remains to show that UAST is Π0
2–hard. This can be done

by proving AST ≤m UAST as follows: On input (Q, η) the reduction function
f : AST ≤m UAST computes a probabilistic program P that first initializes all
variables according to η and then executes Q. ut

We now investigate the computational hardness of deciding positive almost–sure
termination: It turns out that deciding PAST is—although still undecidable—
computationally more benign than deciding AST , namely it is Σ0

2–complete.
Thus PAST becomes semi–decidable when given access to an H–oracle whereas
AST does not. We establish Σ0

2–hardness by a reduction from UH. This result is
particularly counterintuitive as it means that for each ordininary program that
does not halt on all inputs, we can compute a probabilistic program that does
halt within an expected finite number of steps.

Theorem 8. PAST is Σ0
2–complete.

Proof. For PAST ∈ Σ0
2 consider the following:

(P, η) ∈ PAST
⇐⇒ ∞ > EP,η(↓)
⇐⇒ ∃ c : c > EP,η(↓)

⇐⇒ ∃ c : c >

∞∑
k=0

1−
∑

w∈{L,R}≤k

α
(
Tk(σP,η, w)

)
⇐⇒ ∃ c ∀ ` : c >

∑̀
k=0

1−
∑

w∈{L,R}≤k

α
(
Tk(σP,η, w)

)
=⇒ PAST ∈ Σ0

2

It remains to show that PAST is Σ0
2–hard. For that we use a reduction function

f : UH ≤m PAST with f(Q) = (P, η), where η is arbitrary but fixed and P is
the program

c := 1; i := 0; x := 0; term := 0; InitQ;

while (c 6= 0){
StepQ;

if (term = 1){
Cheer; i := i + 1; term := 0; InitQ

};
{c := 0} [0.5] {c := 1}; x := x + 1

} ,

where InitQ ∈ ordProg is a program that initializes a simulation of the program
Q on input gQ(i) (recall the bijection gQ : IN → V from Theorem 4), StepQ ∈
ordProg is a program that does one single (further) step of that simulation and

12 Benjamin Lucien Kaminski, Joost-Pieter Katoen

sets term to 1 if that step has led to termination of Q, and Cheer ∈ ordProg is a
program that executes 2x many effectless steps. In the following we refer to this
as “cheering”2.

Correctness of the reduction: Intuitively, the program P starts by simulating
Q on input gQ(0). During the simulation, it—figuratively speaking—gradually
looses interest in further simulating Q by tossing a coin after each simulation
step to decide whether to continue the simulation or not. If eventually P finds
that Q has halted on input gQ(0), it “cheers” for a number of steps exponential
in the number of coin tosses that were made so far, namely for 2x steps. P then
continues with the same procedure for the next input gQ(1), and so on.

The variable x keeps track of the number of loop iterations (starting from
0), which equals the number of coin tosses. The x–th loop iteration takes place
with probability 1/2x. One loop iteration consists of a constant number of steps
c1 in case Q did not halt on input gQ(i) in the current simulation step. Such an
iteration therefore contributes c1/2x to the expected runtime of the probabilistic
program P . In case Q did halt, a loop iteration takes a constant number of steps
c2 plus 2x additional “cheering” steps. Such an iteration therefore contributes
c2+2x/2x = c2/2x + 1 > 1 to the expected runtime. Overall, the expected runtime
of the program P roughly resembles a geometric series with exponentially de-
creasing summands. However, for each time the program Q halts on an input, a
summand of the form c2/2x + 1 appears in this series. There are now two cases:

(1) Q ∈ UH, so there exists some input η with minimal i such that gQ(i) = η
on which Q does not terminate. In that case, summands of the form c2/2x + 1
appear only i − 1 times in the series and therefore, the series converges—the
expected time until termination is finite, so (P, η) ∈ PAST .

(2) Q 6∈ UH, so Q terminates on every input. In that case, summands of
the form c2/2x + 1 appear infinitely often in the series and therefore, the series
diverges—the expected time until termination is infinite, so (P, η) 6∈ PAST . ut

The final problem we study is universal positive almost–sure termination. In
contrast to the non–positive version, we do have a complexity leap when moving
from non–universal to universal positive almost–sure termination. We will estab-
lish that UPAST is Π0

3–complete and thus even harder to decide than UAST .
For the reduction, we make use of the following Π0

3–complete problem:

Theorem 9 (The Cofiniteness Problem [16]). The cofiniteness problem
is a subset COF ⊂ ordProg, which is characterized as P ∈ COF iff

{
η
∣∣ (P, η) ∈

H
}

is cofinite. Let COF denote the complement of COF , i.e. COF = ordProg\
COF . COF is Σ0

3–complete and COF is Π0
3–complete.

Theorem 10. UPAST is Π0
3–complete.

Proof. By Theorem 8, there exists a decidable relation R, such that (P, η) ∈
PAST iff ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R. Therefore UPAST is definable by P ∈
UPAST iff ∀ η ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R which gives a Π0

3–formula.

2 The program P cheers as it was able to prove the termantion of Q on input gQ(i).

On the Hardness of Almost–Sure Termination 13

It remains to show that UPAST is Π0
3–hard. For that we many–one reduce

the Π0
3–complete complement of the cofiniteness problem to UPAST using the

following function f : COF ≤m UPAST : f takes an ordinary program Q as its
input and computes the following probabilistic program P :

c := 1; x := 0; term := 0; InitQ;

while (c 6= 0){
StepQ; if (term = 1){Cheer; i := i + 1; term := 0; InitQ}
x := x + 1; {c := 0} [0.5] {c := 1}

},

where InitQ is a program that initializes a simulation of the program Q on input
gQ(i) (recall the bijection gQ : IN → V from Theorem 4), StepQ is a program
that does one single (further) step of that simulation and sets term to 1 if that
step has led to termination of Q, and Cheer is a program that executes 2x many
effectless steps.

Correctness of the reduction: The only difference to the program from the
proof of Theorem 8 is that the variable i is not initialized with 0. Thus, on input
η the program P also simulates Q succesively on all inputs but starting from
input gQ

(
η(i)

)
instead of gQ(0).

The problem COF can alternatively be defined as Q ∈ COF iff
{
η | (Q, η) ∈

H} is infinite. There are now two cases:

(1) Q ∈ COF . Thus, there are infinitely many inputs on which Q does not
terminate. So no matter with which number η(i) ∈ N the variable i is initialized,
the variable i will eventually be incremented to some value j such that Q does
not terminate on gQ(j) and therefore, in the while–loop the if–branch with
the “cheering” steps will eventually not be executed anymore. Consequently,
the expected time until termination of P on any input η is finite and therefore
P ∈ UPAST .

(2) Q 6∈ COF . Then there are only finitely many inputs on which Q does
not terminate. Say j is minimal such that Q does not terminate on input gQ(j),
i.e. the program Q terminates on all other inputs gQ(i′) with j < i′. So when
running the program P on some input η with η(i) > j, in the while–loop the if–
branch with the “cheering” steps will be executed infinitely often. Consequently,
the expected time until termination of P on that input η is infinite and therefore
P 6∈ UPAST . ut

7 Conclusion

We have studied the computational complexity of solving a variety of natural
problems which appear in the analysis of probabilistic programs: Computing
lower bounds, upper bounds, and exact expected outcomes (LEXP, REXP, and
EXP), deciding non–universal and universal almost–sure termination (AST and
UAST), and deciding non–universal and universal positive almost–sure termina-
tion (PAST and UPAST). Our complexity results are summarized in Figure 2.

14 Benjamin Lucien Kaminski, Joost-Pieter Katoen

Σ0
1 Π0

1

∆0
1

Σ0
2 Π0

2

∆0
2

Σ0
3 Π0

3

∆0
3

...

H H

UH UH

COF COF

LEXP

semi–decidable

decidable

PAST
REXPwith access to

H–oracle:
semi–decidable

EXP

AST
not
semi–decidable;
even with
access to
H–oracle

not
semi–decidable;
even with
access to
UH–oracle

UAST

UPAST

Fig. 2. The complexity landscape of determining expected outcomes and deciding (uni-
versal) (positive) almost–sure termination.

All examined problems are complete for their respective level of the arithmetical
hierarchy.

Future work consists of identifying program subclasses for which some of the
studied problems become easier. One idea towards this would be to investigate
the use of quantifier–elimination methods such as e.g. Skolemization.

Acknowledgements The authors would like to thank Luis Maŕıa Ferrer Fioriti
(Saarland University) and Federico Olmedo (RWTH Aachen) for the fruitful
discussions on the topics of this paper.

References

1. Kozen, D.: Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3)
(1981) 328–350

2. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic Relational Rea-
soning for Differential Privacy. ACM Trans. Program. Lang. Syst. 35(3) (2013)
9

3. Borgström, J., Gordon, A., Greenberg, M., Margetson, J., van Gael, J.: Measure
Transformer Semantics for Bayesian Machine Learning. LMCS 9(3) (2013)

4. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer (2004)

5. Gretz, F., Katoen, J.P., McIver, A.: Operational versus Weakest Pre–Expectation
Semantics for the Probabilistic Guarded Command Language. Performance Eval-
uation 73 (2014) 110–132

On the Hardness of Almost–Sure Termination 15

6. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL 2015, ACM (2015) 489–501

7. Sneyers, J., de Schreye, D.: Probabilistic Termination of CHRiSM Programs. In:
LOPSTR. Volume 7225 of LNCS., Springer (2011) 221–236

8. Arons, T., Pnueli, A., Zuck, L.D.: Parameterized Verification by Probabilistic
Abstraction. In: FoSSaCS. Volume 2620 of LNCS., Springer (2003) 87–102

9. Esparza, J., Gaiser, A., Kiefer, S.: Proving Termination of Probabilistic Programs
Using Patterns. In: CAV. Volume 7358 of LNCS., Springer (2012) 123–138

10. Morgan, C.: Proof Rules for Probabilistic Loops. In: Proc. of the BCS-FACS 7th
Refinement Workshop, Workshops in Computing, Springer Verlag (1996) 7

11. Tiomkin, M.L.: Probabilistic Termination Versus Fair Termination. TCS 66(3)
(1989) 333–340

12. Kleene, S.C.: Recursive Predicates and Quantifiers. Trans. of the AMS 53(1)
(1943) 41 – 73

13. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier (1992)

14. Post, E.L.: Recursively Enumerable Sets of Positive Integers and their Decision
Problems. Bulletin of the AMS 50(5) (1944) 284–316

15. Davis, M.D.: Computability, Complexity, and Languages: Fundamentals of Theo-
retical Computer Science. Academic Press (1994)

16. Odifreddi, P.: Classical Recursion Theory, Volume II. Elsevier (1999)

