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Abstract. In this note we consider problems related to parabolic partial differential
equations in geodesic metric measure spaces, that are equipped with a doubling measure and
a Poincaré inequality. We prove a location and scale invariant Harnack inequality for a mini-
mizer of a variational problem related to a doubly non-linear parabolic equation involving the
p-Laplacian. Moreover, we prove the sufficiency of the Grigor’yan–Saloff-Coste theorem for
general p > 1 in geodesic metric spaces. The approach used is strictly variational, and hence
we are able to carry out the argument in the metric setting.

1. Introduction. The purpose of this note is to study parabolic minimizers, which in
the Euclidean case are related to the doubly non-linear parabolic equation

(1.1)
∂(|u|p−2u)

∂t
−∇ · (|∇u|p−2∇u) = 0 ,

where 1 < p < ∞. When p = 2 we can recover the heat equation from (1.1). A func-
tion u : Ω × (0, T ) → R, where Ω ⊂ Rn is a non-empty open set, is called a parabolic
quasiminimizer related to the equation (1.1) if it satisfies

p

∫
supp(φ)

|u|p−2u
∂φ

∂t
dx dt +

∫
supp(φ)

|∇u|p dx dt

≤ K
∫

supp(φ)
|∇(u+ φ)|p dx dt

for some K ≥ 1 and every smooth compactly supported function φ in Ω × (0, T ). More
precisely, in the Euclidean setting every weak solution to (1.1) is a parabolic minimizer, i.e.,
a parabolic quasiminimizer with K = 1.

Elliptic quasiminimizers were introduced by Giaquinta and Giusti in [11, 12]. They en-
able the study of elliptic problems, such as the p-Laplace equation and p-harmonic functions,
in metric measure spaces under the doubling property and a Poincaré inequality. We refer, e.g.,
to [3], [5], [6], [19], [20], and the references in these papers. Following Giaquinta–Giusti,
Wieser [31] generalized the notion of quasiminimizers to the parabolic setting in Euclidean
spaces. Parabolic quasiminimizers have also been studied by Zhou [32, 33], Gianazza–
Vespri [10], Marchi [22], and Wang [30]. The literature for parabolic quasiminimizers is very
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small compared to the elliptic case. In recent papers [18], [24], parabolic quasiminimizers
related to the heat equation have been studied in general metric measure spaces. The varia-
tional approach taken in these papers opens up a possibility to develop a systematic theory for
parabolic problems in this generality.

Our main result is a scale and location invariant Harnack inequality, Theorem 6.6, in
geodesic metric measure spaces for a positive parabolic minimizer that is locally bounded
away from zero and locally bounded. We assume the measure to be doubling and to support
a (1, p)-Poincaré inequality. We take a purely variational approach and prove the Harnack
inequality without making any reference to the equation (1.1).

In Euclidean spaces, the Harnack inequality for a positive weak solution to the equa-
tion (1.1), that is bounded away from zero, was proved in [17]. Their proof is based on
Moser’s method and on an abstract lemma due to Bombieri and Giusti. The argument in [17]
relies on the equation and uses, for instance, the fact that if u is a weak supersolution to (1.1),
then u−1 is a weak subsolution of the same equation.

Our proof is based on the one in [17]. However, since we deal with parabolic minimizers
and upper gradients in the metric setting, changes in the argument are required. To give an
example, in the strictly variational setting it is not true that if u is a parabolic superminimizer,
then u−1 is a parabolic subminimizer. Instead we establish the required estimates separately
for both super- and subminimizers.

Grigor’yan [13] and Saloff-Coste [25] observed independently that the doubling property
and a Poincaré inequality for the measure are sufficient and necessary conditions for a scale
and location invariant parabolic Harnack inequality for solutions to the heat equation (p = 2)
on Riemannian manifolds. Later, Sturm [29] generalized this result to the setting of Dirichlet
spaces.

One motivation for the present note is to show the sufficiency for general 1 < p <∞ in
geodesic metric measure spaces without invoking Dirichlet spaces or the Cheeger derivative
structure for which we refer to [9]. We also refer to a recent paper [2] and to [1] on parabolic
Harnack inequalities on metric measure spaces with a local regular Dirichlet form. It would
be very interesting to know whether also the necessity holds in this general setting.

Very recently a similar question has been studied for degenerate parabolic quasilinear
partial differential equations in the subelliptic case by Caponga, Citti, and Rea [8]. Their
motivating example is a class of subelliptic operators associated to a family of Hörmander
vector fields and their Carnot–Carathéodory distance. The setup in the present paper cover
also Carnot groups and more general Carnot–Carathéodory spaces.

2. Prelimininaries. In this section we briefly recall the basic definitions and collect
some results we will need in the sequel. For a more detailed treatment we refer, for instance,
to a monograph by A. and J. Björn [4] and to Heinonen [14], and the references therein.

2.1. Metric measure spaces. Standing assumptions in this paper are as follows. By
the triplet (X, d,μ) we denote a complete geodesic metric space X, where d is the metric
and μ a Borel measure on X. The measure μ is supposed to be doubling, i.e., there exists a
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constant Cμ ≥ 1 such that

(2.1) 0 < μ(B(x, 2r)) ≤ Cμμ(B(x, r)) <∞
for every r > 0 and x ∈ X. Here B(x, r) := {y ∈ X ; d(y, x) < r}. We denote λB =
B(x, λr) for each λ > 0. We want to mention in passing that to require the measure of every
ball inX to be positive and finite is anything but restrictive; it does not rule out any interesting
measures. Equivalently, for any x ∈ X, we have

(2.2)
μ(B(x,R))

μ(B(x, r))
≤ C

(
R

r

)qμ

for all 0 < r ≤ R with qμ := log2 Cμ, where C > 0 is a constant which depends only
on Cμ. The choice qμ = log2 Cμ is not necessarily optimal; the exponent qμ serves as a
counterpart in metric measure space to the dimension of a Euclidean space. In addition to the
doubling property, we assume that X supports a weak (1, p)-Poincaré inequality (see below).
Moreover, the product measure in the space X × (0, T ), T > 0, is denoted by ν = μ ⊗ L1,
where L1 is the one dimensional Lebesgue measure.

It is worth noting that our abstract setting causes some, perhaps unexpected, difficulties.
For instance, in not too pathological metric spaces, it may happen that B(x1, r1) ⊂ B(x2, r2)

but B(x2, 2r2) ⊂ B(x1, 2r1).
We follow Heinonen and Koskela [15] in introducing upper gradients as follows. A Borel

function g : X→ [0,∞] is said to be an upper gradient for an extended real-valued function
u on X if for all paths γ : [0, lγ ] → X, we have

(2.3) |u(γ (0))− u(γ (lγ ))| ≤
∫
γ

g ds .

If (2.3) holds for p-almost every path in the sense of Definition 2.1 in Shanmugalingam
[27], we say that g is a p-weak upper gradient of u. From the definition, it follows immedi-
ately that if g is a p-weak upper gradient for u, then g is a p-weak upper gradient also for
u− k, and |k|g for ku, for any k ∈ R.

The p-weak upper gradients were introduced in Koskela–MacManus [21]. They also
showed that if g ∈ Lp(X) is a p-weak upper gradient of u, then one can find a sequence
{gj }∞j=1 of upper gradients of u such that gj → g in Lp(X). If u has an upper gradient in
Lp(X), then it has a minimalp-weak upper gradient gu ∈ Lp(X) in the sense that for everyp-
weak upper gradient g ∈ Lp(X) of u, gu ≤ g a.e. (see Shanmugalingam [28, Corollary 3.7]).

Let Ω be an open subset of X and 1 ≤ p < ∞. Following Shanmugalingam [27] (see
also [4, Corollary 2.9]), we define for u ∈ Lp(Ω),

‖u‖p
N1,p (Ω)

= ‖u‖pLp(Ω) + ‖gu‖pLp(Ω) .
The Newtonian space N1,p(Ω) (⊂ Lp(Ω)) is the quotient space

N1,p(Ω) = {
u ∈ Lp(Ω) ; ‖u‖N1,p (Ω) <∞

}
/ ∼ ,

where u ∼ v if and only if ‖u − v‖N1,p (Ω) = 0. The space N1,p(Ω) is a Banach space
and a lattice (see Shanmugalingam [27]). If u, v ∈ N1,p(Ω) and u = v μ-a.e., then u ∼ v.
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However, if u ∈ N1,p(Ω), then u ∼ v if and only if u = v outside a set of zero Sobolev
p-capacity [27].

A function u belongs to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(V ) for all

bounded open sets V with V ⊂ Ω , the latter space being defined by considering V as a
metric space with the metric d and the measure μ restricted to it.

Newtonian spaces share many properties of the classical Sobolev spaces. For example,
if u, v ∈ N1,p

loc (Ω), then gu = gv a.e. in {x ∈ Ω ; u(x) = v(x)}, in particular gmin{u,c} =
guχ{u �=c} for c ∈ R.

REMARK 2.4. Note that as a consequence of the definition, the functions in N1,p(Ω)

are absolutely continuous on p-almost every path. This means that u ◦ γ is absolutely con-
tinuous on [0, length(γ )] for p-almost every rectifiable arc-length parametrized path γ in Ω .
This in turn implies that for each of these paths we have |(u ◦ γ )′(s)| ≤ g(γ (s)) for almost
every s ∈ [0, length(γ )]. We refer to [4, Theorem 1.56 and Lemma 2.14].

We shall also need a Newtonian space with zero boundary values. For a measurable set
E ⊂ X, let

N
1,p
0 (E) = {f |E ; f ∈ N1,p(X) and f = 0 on X \ E} .

This space equipped with the norm inherited from N1,p(X) is a Banach space.
We say thatX supports a weak (1, p)-Poincaré inequality if there exist constantsCp > 0

and Λ ≥ 1 such that for all balls B(x0, r) ⊂ X, all integrable functions u on X and all upper
gradients g of u,

(2.5)
∫
B(x0,r)

|u− uB | dμ ≤ Cpr
(∫

B(x0,Λr)

gp dμ
)1/p

,

where

uB :=
∫
B(x0,r)

u dμ := 1

μ(B(x0, r))

∫
B(x0,r)

u dμ .

If the metric measure space X has not “enough” rectifiable paths, it may happen that the con-
tinuous embedding N1,p → Lp, given by the identity map, is onto. If X has no nonconstant
rectifiable paths, then gu ≡ 0 is the minimal p-weak upper gradient of every function, and
N1,p(X) = Lp(X) isometrically. The fact that the Newtonian space is not simply Lp(X) is
implied, for instance, by assuming that X supports a weak (1, p)-Poincaré inequality.

2.2. Parabolic setting. Our set-up is the following. Let Ω ⊂ X be an open set,
and 0 < T < ∞. We write ΩT := Ω(0,T ) := Ω × (0, T ) for a space-time cylinder, and
z = (x, t) is a point inΩT . We denote by Lp(0, T ;N1,p(Ω)) the parabolic space of functions
u : ΩT → R such that, for a.e. t ∈ (0, T ), x �→ u(x, t) belongs to N1,p(Ω) and∫ T

0
‖u‖p

N1,p (Ω)
dt <∞ ,

and similarly for Lploc(0, T ;N1,p
loc (Ω)). Here we have defined

gu(x, t) := gu(·,t )(x)
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at ν-almost every (x, t) ∈ Ω × (0, T ).
The following calculus rules will be used throughout the text. Assume u, v ∈ Lploc(0, T ;

N
1,p
loc (Ω)). Then for almost every t and μ-almost every x

gu+v ≤ gu + gv ,

guv ≤ |u|gv + |v|gu .
In particular, if c is a constant, then gcu = |c|gu. For the proof at each time level, see [4]. This
proof guarantees that gu+v and guv are defined at almost every t and μ-almost every x. The
definition of the parabolic minimal p-weak upper gradient then implies the result. Note that
the above does not claim that uv is in the parabolic Newtonian space, even if u and v are.

In the Euclidean case it can be shown that stating that a function u : Ω × (0, T )→ R,
u ∈ L2

loc(0, T ;W 1,2
loc (Ω)) is a weak solution to the doubly nonlinear parabolic equation (1.1),

is equivalent to stating that u is fulfills the variational problem

p

∫
supp(φ)

|u|p−2u
∂φ

∂t
dx dt +

∫
supp(φ)

|∇u|p dx dt

≤
∫

supp(φ)
|∇u+∇φ|p dx dt

for every φ ∈ C∞0 (Ω× (0, T )). Since partial derivatives cannot be defined in a general metric
space, there is little sense in trying to define the weak formulation of the equation (1.1) in
the metric setting. The variational approach on the other hand only considers integrals with
absolute values of partial derivatives and an inequality – as opposed to demanding a strict
equation with gradients. This opens up the possibility to extend the definition of a parabolic
minimizer related to the doubly nonlinear equation to metric measure spaces in the following
way:

DEFINITION 2.6. We say that a function u ∈ Lploc(0, T ;N1,p
loc (Ω)) is a parabolic min-

imizer if the inequality

(2.7) p

∫
supp(φ)

|u|p−2u
∂φ

∂t
dν +

∫
supp(φ)

gpu dν ≤
∫

supp(φ)
gpu+φ dν

holds for all φ ∈ Lip0(ΩT ) = {f ∈ Lip(ΩT ); supp(f ) ⊂ ΩT }. If (2.7) holds for all nonneg-

ative φ ∈ Lip0(ΩT ) a function u ∈ Lploc(0, T ;N1,p
loc (Ω)) is a parabolic superminimizer; and

a parabolic subminimizer if (2.7) holds for all nonpositive φ ∈ Lip0(ΩT ).

Observe that here parabolic minimizers are scale invariant but not translation invariant.
Let 0 < α ≤ 1, let parameters r and T be positive, and t0 ∈ R. A space-time cylinder in

X × R is denoted by

Qαr(x, t) = B(x, αr)× (t − T (αr)p, t + T (αr)p) .
It will also be of use to define positive and negative space-time cylinders as
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αQ+(x, t) = B(x, αr)×
(
t + T

(
1− α

2

)p
rp, t + T

(
1+ α

2

)p
rp

)
,

αQ−(x, t) = B(x, αr)×
(
t − T

(
1+ α

2

)p
rp, t − T

(
1− α

2

)p
rp

)
.

Using these, we write

Qαr = Qαr(x0, t0), αQ+ = αQ+(x0, t0), αQ− = αQ−(x0, t0) .

Above r is chosen according to (x0, t0) and T in such a way that Qr ⊂ ΩT . Our goal in
this note is to prove the following Harnack inequality using Moser’s argument and energy
methods:

Suppose 1 < p < ∞ and assume that the measure μ in a geodesic metric space X
is doubling with doubling constant Cμ, and supports a weak (1, p)-Poincaré inequality with
constants Cp and Λ. Then a parabolic Harnack inequality is valid as follows. Let u > 0 be a
parabolic minimizer in Qr ⊂ ΩT , locally bounded and locally bounded away from zero. Let
0 < δ < 1. We have

(2.8) ess sup
δQ−

u ≤ C ess inf
δQ+

u ,

where C = C(Cμ,Cp,Λ, δ, p, T ).
Note that the constant in the Harnack estimate does not depend on r and so is scale

invariant, as long as r is such that Qr ⊂ ΩT . The parameter T controls only the relative
proportions of the spatial and time faces ofQr .

2.3. Sobolev-Poincaré inequalities. We shall need the Sobolev inequality for func-
tions with zero boundary values; if f ∈ N1,p

0 (B(x0, R)), then there exists a constant C > 0
only depending on p,Cμ, and the constants Cp and Λ in the Poincaré inequality, such that

(2.9)

(∫
B(x0,R)

|f |κ dμ
)1/κ

≤ CR
(∫

B(x0,R)

gpf dμ
)1/p

,

where

κ =
{
pqμ/(qμ − p), if 1 < p < qμ ,

∞, if p ≥ qμ .
For this result we refer to [20]. The following weighted version of the Poincaré inequality
will also be needed.

LEMMA 2.10. Let f ∈ N1,p(B(x0, R)), and

φ(x) =
(

1− d(x, x0)

R

)θ
+
,

where θ > 0. Then there exists a positive constant C = C(Cμ,Cp, p, θ) such that

(2.11)
∫
B(x0,r)

|f − fφ |pφ dμ ≤ Crp
∫
B(x0,r)

gpf φ dμ
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for all 0 < r < R, where

fφ =
∫
B(x0,r)

f φ dμ∫
B(x0,r)

φ dμ
.

SKETCH OF PROOF. The main idea in the proof, for which we refer to Saloff-Coste [26,
Theorem 5.3.4], is to connect two points in the ballB(x0, r)with a certain finite chain of balls.
For this chain we need to assume that our space X is geodesic. �

REMARK 2.12. Lemma 2.10 will be used later in the proof of Lemma 5.2. We stress,
however, that apart from Lemma 2.10, all other estimates prior to Lemma 5.2 are valid without
X being geodesic.

2.4. Bombieri’s and Giusti’s abstract lemma. A delicate step in the proof based on
Moser’s work is to use a parabolic version of the John–Nirenberg inequality, i.e., exponential
integrability of BMO functions. To avoid the use of the parabolic BMO class, the parabolic
John–Nirenberg theorem is replaced with an abstract lemma due to Bombieri and Giusti [7].
Consult [26] or [17] for the proof.

LEMMA 2.13. Let ν be a Borel measure and consider a collection of bounded mea-
surable sets Uα , 0 < α ≤ 1, with Uα′ ⊂ Uα if α′ ≤ α.

Fix 0 < δ < 1, let θ, γ , and A be positive constants, and 0 < q ≤ ∞. Moreover, if
q <∞, we assume that

ν(U1) ≤ Aν(Uδ)
holds. Let f be a positive measurable function onU1 such that for every 0 < s ≤ min(1, q/2)
we have (∫

Uα′
f q dν

)1/q

≤
(

A

(α − α′)θ
∫
Uα

f s dν

)1/s

for every α, α′ such that 0 < δ ≤ α′ < α ≤ 1. Assume further that f satisfies

ν ({x ∈ U1; log f > λ}) ≤ Aν(Uδ)
λγ

for all λ > 0. Then (∫
Uδ

f q dν

)1/q

≤ C ,
where C = C(q, δ, θ, γ,A).

3. Reverse Hölder inequalities for parabolic superminimizers. In this section, we
prove an energy estimate for parabolic superminimizers. After this, using the energy estimate
we prove a reverse Hölder inequality for negative powers of parabolic superminimizers.

Establishing energy estimates for parabolic superminimizers is based on substituting a
suitably chosen test function into the inequality (2.7), and then performing partial integration
to extract the desired inequality from it. While doing this, we take the time derivative of
up−1, even though u is not assumed to have sufficient time regularity for this. Therefore, the
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reader should consider the time derivation of u as being formal. Justifications for the formal
treatment will be given in Remark 3.6.

LEMMA 3.1. Let u > 0 be a parabolic superminimizer, locally bounded away from
zero, and 0 < ε �= p − 1. Then

ess sup
0<t<T

∫
Ω

up−1−εφp dμ+
∫

supp(φ)
gpu u−1−εφp dν

≤ C1

∫
supp(φ)

up−1−εgpφ dν + C2

∫
supp(φ)

up−1−ε|(φp)t | dν

for every φ ∈ Lip0(ΩT ), 0 ≤ φ ≤ 1, where

C1 =
(
p

ε

)p (
1+ ε|p − 1− ε|

p(p − 1)

)
, C2 =

(
1+ p(p − 1)

ε|p − 1− ε|
)
.

PROOF. Assume ε > 0, ε �= p − 1. Let φ be a function 0 ≤ φ ≤ 1, φ ∈ Lip0(ΩT ).
Since φ has compact support, we can choose 0 < t1 < t2 < T such that φ(x, t) = 0 μ-
almost everywhere when t �∈ (t1, t2). Since by assumption u is locally bounded away from
zero, we may assume a positive constant α > 0 such that after denoting v = αu we have
1 − εφpv−ε−1 > 0 ν-almost everywhere in the support of φ. It then follows that ν-almost
everywhere in the support of φ, we have

gv+φpv−ε ≤ (1− εφpv−ε−1)gv + pv−εφp−1gφ .(3.2)

That (3.2) does indeed hold can be seen in the following way: Let t be such that v(·, t) ∈
N1,p(Ω). Consider any arc-length parametrization γ of a rectifiable path on which v(·, t) is
absolutely continuous. Since φ(·, t) is Lipschitz-continuous, it is absolutely continuous on γ .
Define h : [0, length(γ )] → [0,∞) by

h(s) = v(γ (s), t) + φ(γ (s), t)pv(γ (s), t)−ε .
Then h is absolutely continuous, and so we have

h′(s) = (1− εφ(γ (s), t)pv(γ (s), t)−ε−1)
∂v(γ (s), t)

∂s

+ pφ(γ (s), t)p−1v(γ (s), t)−ε ∂φ(γ (s), t)
∂s

for almost every s ∈ [0, length(γ )] with respect to the Lebesgue measure. We know that∣∣∣∣∂v(γ (s), t)∂s

∣∣∣∣ ≤ gv(γ (s), t) ,
∣∣∣∣∂φ(γ (s), t)∂s

∣∣∣∣ ≤ gφ(γ (s), t)

for almost every s ∈ [0, length(γ )]. Hence∣∣∣∣∂(v + φ
pv−ε)(γ (s), t)
∂s

∣∣∣∣ = |h′(s)|
≤ (1− εφ(γ (s), t)pv(γ (s), t)−ε−1)gv(γ (s), t)

+ pφ(γ (s), t)p−1v(γ (s), t)−εgφ(γ (s), t)
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for almost every s ∈ [0, length(γ )]. The fact that this holds for p-almost every rectifiable path
γ now implies (3.2). Using the convexity of the mapping t �→ tp we have

gp
v+φpv−ε ≤

(
(1− εφpv−ε−1)gv + εφpv−ε−1pv

εφ
gφ

)p

≤ (1− εφpv−ε−1)gpv + ppε1−pvp−ε−1gpφ .
(3.3)

Assume 0 < τ1 < τ2 < T . For a small enough h > 0, denote

χh[τ1,τ2](t) =

⎧⎪⎪⎨
⎪⎪⎩

(t − τ1)/h , τ1 < t < τ1 + h ,
1 , τ1 + h ≤ t ≤ τ2 − h ,
(τ2 − t)/h , τ2 − h < t < τ2 ,

0 , otherwise .

Integrating by parts, we find∫ τ2

τ1

∫
Ω

vp−1(φpv−εχh[τ1,τ2])t dμ dt =
(p − 1)

p − 1− ε
·
(∫ τ2

τ1

∫
Ω

vp−1−εφp(χh[τ1,τ2])t dμ dt +
∫ τ2

τ1

∫
Ω

vp−1−ε(φp)tχh[τ1,τ2] dμ dt
)
.

After taking the limit h → 0 in the expression above, and using Lebesgue’s differentiation
theorem, we have

lim
h→0

∫ τ2

τ1

∫
Ω

vp−1(φpv−εχh[τ1,τ2])t dμ dt =
(p − 1)

p − 1− ε
·
(
−

[∫
Ω×{t}

vp−1−εφp dμ
]τ2

t=τ1

+
∫ τ2

τ1

∫
Ω

vp−1−ε(φp)t dμ dt
)
.

As u is a positive parabolic superminimizer related to the doubly nonlinear equation, also v is
a parabolic superminimizer. Moreover, by Remark 3.6 below, φpv−εχh[τ1,τ2] is a nonnegative
admissible test function. Hence by the definition of a parabolic superminimizer and (3.3) we
have

p(p − 1)

p − 1− ε
(
−

[∫
Ω×{t}

vp−1−εφp dμ
]τ2

t=τ1

+
∫ τ2

τ1

∫
Ω

vp−1−ε(φp)t dμ dt
)

≤ lim
h→0

(
−

∫
supp(φpχh[τ1,τ2 ])

gpv dν +
∫

supp(φpχh[τ1,τ2 ])
gp
v+φpv−εχh[τ1,τ2]

dν

)

≤ −ε
∫

supp(φpχ[τ1,τ2])
φpv−ε−1gpv dν + ppε1−p

∫
supp(φpχ[τ1,τ2])

vp−1−εgpφ dν .

On one hand, setting τ1 = t1, and τ2 = t2, we obtain∫ t2

t1

∫
Ω

φpv−ε−1gpv dμ dt ≤
p(p − 1)

ε|p − 1− ε|
∫ t2

t1

∫
Ω

vp−1−ε|(φp)t | dμ dt

+
(p
ε

)p ∫ t2

t1

∫
Ω

vp−1−εgpφ dμ dt .
(3.4)
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On the other hand, if ε < p − 1, set τ1 = t and τ2 = t2. If ε > p − 1, set τ1 = t1 and τ2 = t .
We obtain

p(p − 1)

ε|p − 1− ε|
∫
Ω

vp−1−ε(x, t)φp(x, t) dμ

≤ p(p − 1)

ε|p − 1− ε|
∫ t2

t1

∫
Ω

vp−1−ε|(φp)t | dμ dt

+
(p
ε

)p ∫ t2

t1

∫
Ω

vp−1−εgpφ dμ dt .

(3.5)

This holds for almost every t ∈ (t1, t2). Dividing (3.5) by p(p− 1)/ε|p− 1− ε|, and adding
the resulting expression to (3.4) yields the desired estimate for v, since the constants in the
inequality do not depend on t ∈ (t1, t2) and φ, gφ vanish outside the support of φ. The proof
is completed by dividing the resulting expression sidewise with the constant αp−1−ε . �

REMARK 3.6. We now give justifications for the formal treatment above. By a change
of variable, it is straightforward to see that for a nonnegative parabolic super- or subminimizer
v and for an admissible test function ψ , for any small enough s, we have

p

∫
supp(ψ)

vp−1(x, t − s)ψt dν +
∫

supp(ψ)
gpv(x,t−s) dν

≤
∫

supp(ψ)
gpv(x,t−s)+ψ(x,t) dν .

We multiply this inequality sidewise with a standard mollifier with respect to the time variable
s, and then integrate both sides with respect to s. After using Fubini’s theorem on the left side,
this yields

p

∫
supp(ψ)

(vp−1)σψt dν +
(∫

supp(ψ)
gpv dν

)
σ

≤
(∫

supp(ψ)
gpv(x,t−s)+ψ(x,t) dν

)
σ

.

(3.7)

Here we have used the notation

(vp−1)σ (x, t) =
∫

R

θσ (s)v
p−1(x, t − s) ds ,

where θ is the standard mollifier and σ > 0 is assumed to be small enough so that everything
stays in the time cylinder. To be precise, in the proof of Lemma 3.1 we then choose the test
function

ψ = φp((vp−1)σ )
−ε/(p−1)χh[τ1,τ2](3.8)

with φ ∈ Lip0(Ω(t1,t2)). The test function ψ now has compact support and belongs to the
space Lp(0, T ;N1,p(Ω)). By Lemma 2.7 in [23], easily adaptable for minimizers related to
the doubly nonlinear equation, ψ can be plugged into the inequality (3.7). Similarly to the
formal proof above, partial integration is then performed to write the expression in a form
where (vp−1)σ is not differentiated with respect to time. Once this is done we can take the



HARNACK INEQUALITY FOR PARABOLIC MINIMIZERS 579

limits σ → 0 and h → 0, which leads us back to the inequality above (3.4). For details on
justifying the convergence of the upper gradient terms in (3.7) as σ → 0, we refer the reader
to [24].

We prove next a reverse Hölder type inequality for negative powers of parabolic super-
minimizers. The first step of the proof consists of combining Sobolev’s inequality with the
energy esimate of Lemma 3.1. Then, because the energy estimate is homogeneous in powers,
the obtained inequalities can be combined as in Moser’s iteration to complete the proof.

LEMMA 3.9. Let u > 0 be a parabolic superminimizer in Qr ⊂ ΩT , locally bounded
away from zero and let 0 < δ < 1. Then there exist constants C = C(Cμ,Cp,Λ,p, δ, T )

and θ = θ(Cμ, p) such that

ess inf
Qα′r

u ≥
(

C

(α − α′)θ
)−1/q(∫

Qαr

u−q dν
)−1/q

for every 0 < δ ≤ α′ < α ≤ 1 and for all 0 < q ≤ p.

PROOF. Let us fix α′, α such that 0 < δ ≤ α′ < α ≤ 1, and divide the interval (α′, α)
as follows: α0 = α, α∞ = α′, and

αj = α − (α − α′)(1− γ−j ) ,
where γ = 2− p/κ = 1+ (κ − p)/κ > 1. We set

Qj = Qαj r = Bj × Tj = B(x0, αj r)× (t0 − T (αj r)p, t0 + T (αj r)p) ,
and choose the sequence of test-functions {φj }∞j=0 so that supp(φj ) ⊂ Qj , 0 ≤ φj ≤ 1 on
Qj , and φj = 1 in Qj+1. Moreover, let each φj be such that

gφj ≤
4γ j

(α − α′)r and |(φj )t | ≤ 1

T

(
4γ j

(α − α′)r
)p
.

Assume ε > 0, ε �= p − 1. We have

gp
u(p−1−ε)/pφj

≤ 2p−1up−1−εgpφj + 2p−1
( |p − 1− ε|

p

)p
u−ε−1gpu φ

p
j .

Using Hölder’s inequality brings us to the estimate∫
Tj+1

∫
Bj+1

u(p−1−ε)γ dμdt

≤
∫
Tj+1

(∫
Bj+1

u(p−1−ε)φpj dμ
)(κ−p)/κ(∫

Bj+1

(u(p−1−ε)/pφj )κ dμ
)p/κ

dt

≤ |Tj |μ(Bj )
|Tj+1|μ(Bj+1)

(
ess sup
Tj

∫
Bj

u(p−1−ε)φpj dμ
)(κ−p)/κ

·
∫
Tj

(∫
Bj

(u(p−1−ε)/pφj )κ dμ
)p/κ

dt .



580 N. MAROLA AND M. MASSON

Observe that |Tj | = 2T (αj r)p and αj+1 ≥ min{δ, (1 + γ )−1}αj . Thus the multiplicative
constant on the right-hand side is bounded by a constant independent of j, r, T , α′, and α. We
estimate the last term in the preceding inequality by Sobolev’s inequality (see (2.9)). We find

(∫
Bj

(u(p−1−ε)/pφj )κ dμ
)p/κ

≤ Crp
∫
Bj

gp
u(p−1−ε)/pφj

dμ

≤ Crp
∫
Bj

(
up−1−εgpφj +

( |p − 1− ε|
p

)p
u−ε−1gpu φ

p
j

)
dμ ,

where C = C(Cμ,Cp,Λ,p). Since ε > 0, ε �= p − 1, we may use Lemma 3.1 to obtain

∫
Tj+1

∫
Bj+1

u(p−1−ε)γ dμ dt ≤ C
(

ess sup
Tj

∫
Bj

up−1−εφpj dμ
)(κ−p)/κ

· C
T δp

∫
Tj

∫
Bj

(
up−1−εgpφj +

( |p − 1− ε|
p

)p
u−ε−1gpu φ

p
j

)
dμ dt

≤ C
(∫

Tj

∫
Bj

up−1−ε(C1g
p
φj
+ C2|(φpj )t |

)
dμ dt

)(κ−p)/κ

· C
T δp

∫
Tj

∫
Bj

(
up−1−εgpφj + |p − 1− ε|pup−1−ε(C1g

p
φj
+ C2|(φpj )t |)

)
dμ dt

≤ C(1 + |p − 1− ε|p)
(

γ jp

(α − α′)p
∫
Tj

∫
Bj

up−1−ε dμ dt
)γ
,

where C = C(ε,Cμ,Cp,Λ,p, δ, T ) is uniformly bounded for every ε, except in the neigh-
borhood of ε = 0. For each j = 0, 1, . . . ,we can now use the above estimate with εj ≥ 2p−1
chosen in such a way that p − 1− εj = −pγ j , to write

(∫
Qj+1

u−pγ j+1
dν

)−1/pγ j+1

≥ (C2ppγ pj )−1/pγ j+1
(

γ jp

(α − α′)p
)−1/pγ j(∫

Qj

u−pγ j dν
)−1/pγ j

,

(3.10)

where C = C(Cμ,Cp,Λ,p, δ, T ). By iterating this, since γ > 1, we find that

ess inf
Q∞

u ≥ (Cp)
∑∞
j=1 −1/γ j

γ
∑∞
j=0 −(1+γ )j/γ j

(
1

(α − α′)
)∑∞

j=0 −1/γ j (∫
Q0

u−p dν
)−1/p

=
(

C

(α − α′)
)−γ /(γ−1)(∫

Q0

u−p dν
)−1/p

,

where the constant C = C(Cμ,Cp,Λ,p, δ, T ) is positive and finite. The proof is now com-
pleted for any 0 < q ≤ p by using a result from real analysis (see [16, Theorem 3.38]).

�
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We also prove a reverse Hölder inequality for positive powers of parabolic supermini-
mizers.

LEMMA 3.11. Let u > 0 be a parabolic superminimizer in Qr ⊂ ΩT which is lo-
cally bounded away from zero, and 0 < δ < 1. Then there exist constants 0 < C =
C(Cμ,Cp,Λ,p, q, δ, T ) and θ = θ(Cμ, p) such that

(∫
Qα′r

uq dν

)1/q

≤
(

C

(α − α′)θ
)1/s(∫

Qαr

us dν

)1/s

for all 0 < δ ≤ α′ < α ≤ 1 and for all 0 < s < q < (p − 1)(2− p/κ) and κ is as in (2.3).

PROOF. Assume 0 < s < q < (p−1)(2−p/κ), where κ is as in the Sobolev–Poincaré
inequality. Then there exists a k such that sγ k−1 ≤ q ≤ sγ k . Let ρ0 be such that 0 < ρ0 ≤ s
and q = γ kρ0. Now for each j = 0, . . . , k − 1, there exists a 0 < εj < p − 1 such that
p − 1− εj = ρ0γ

j . By the first part of the proof of the previous lemma, we have(∫
Qj+1

uρ0γ
j+1
dν

)1/ρ0γ
j+1

≤ (C2ppγ pj )1/ρ0γ
j+1

(
γ pj

(α − α′)p
)1/ρ0γ

j(∫
Qj

uρ0γ
j

dν

)1/ρ0γ
j

,

where C = C(Cμ,Cp,Λ,p, q, δ, T ). Iterating this estimate for j = 0, . . . , k − 1 yields
(∫

Qα′Q
uq dν

)1/q

≤
(

C

(α − α′)γ ∗
)1/ρ0(∫

αQ

uρ0 dν

)1/ρ0

,(3.12)

where C = C(Cμ,Cp,Λ,p, q, δ, T ) blows up as q tends to (p − 1)(2− p/κ) and

γ ∗ = pγ

γ − 1
(1− γ−k) ≤ pγ

γ − 1
.

Using Hölder’s inequality on the right-hand side of (3.12), setting θ = pγ/(γ − 1) and using
the fact that s/γ ≤ ρ0 ≤ s completes the proof. �

4. Reverse Hölder inequalities for parabolic subminimizers. In this section we
prove estimates analogous to those in Section 3, but this time for parabolic subminimizers.
This is done essentially identically to what was done for superminimizers, but with a slight
change in the test function we use. Then we utilize the obtained energy estimate to prove a
reverse Hölder inequality for positive powers of parabolic subminimizers.

LEMMA 4.1. Let u > 0 be a locally bounded parabolic subminimizer and let ε ≥ 1.
Then

ess sup
0<t<T

∫
Ω

up−1+εφp dμ+
∫

supp(φ)
uε−1guφp dν

≤ C1

∫
supp(φ)

up−1+εgpφ dν + C2

∫
supp(φ)

up−1+ε|(φp)t | dν
for every φ ∈ Lip0(ΩT ), 0 ≤ φ ≤ 1, where



582 N. MAROLA AND M. MASSON

C1 =
(
p

ε

)p(
1+ ε|p − 1+ ε|

p(p − 1)

)
, C2 =

(
1+ p(p − 1)

ε|p − 1+ ε|
)
.

PROOF. Let 0 ≤ φ ≤ 1, φ ∈ Lip0(ΩT ), for some 0 < t1 < t2 < T . Let ε > 0. Since
by assumption u is locally bounded, we can take a constant α > 0 such that after denoting
v = αu, we have 1 − εφpvε−1 > 0 almost everywhere in the support of φ. Since u is a
subminimizer, also v is a subminimizer and we can plug −φ(x, t)pv(x, t)εχh[τ1,τ2] as a test
function into the inequality (2.7). The rest of the proof is now completely analogous to the
proof of Lemma 3.1. �

We prove a reverse Hölder type inequality for positive powers of parabolic subminimiz-
ers. Again, the proof consists of combining the energy estimate of Lemma 4.1 with Moser’s
iteration to obtain the inequality.

LEMMA 4.2. Let u > 0 be a parabolic subminimizer in Qr ⊂ ΩT which is locally
bounded and let 0 < δ < 1. Then there exist constants C = C(Cμ,Cp,Λ,p, δ, T ) and
θ = θ(Cμ, p) such that the inequality

ess sup
Qα′r

u ≤
(

C

(α − α′)θ
)1/q(∫

Qαr

uq dν

)1/q

holds for every 0 < δ ≤ α′ < α ≤ 1 and for all 0 < q ≤ p.

PROOF. The steps of the proof are analogous to the proof of Lemma 3.9. The difference
is that here we use Lemma 4.1 and the observation that for each γ j , j = 0, 1, . . . , there exists
a εj ≥ 1 such that p − 1+ εj = pγ j . �

5. Measure estimates for parabolic superminimizers. The following logarithmic
energy estimate will also be important to our argument. Regarding the time derivation of
up−1, the proof presented below is again formal. Justifications for this can be given as in
Remark 3.6; we use the test function as in (3.8), but with ε = p − 1.

LEMMA 5.1. Let u > 0 be a parabolic superminimizer, locally bounded away from
zero. Then the inequality∫ τ2

τ1

∫
Ω

gploguφ
p dμdt − p

[∫
Ω×{t}

loguφp dμ

]τ2

t=τ1

≤ pp

(p − 1)p

∫ τ2

τ1

∫
Ω

gpφ dμdt + p
∫ τ2

τ1

∫
Ω

| logu||(φp)t | dμdt

holds for every φ ∈ Lip0(ΩT ), such that 0 ≤ φ ≤ 1 and almost every 0 < τ1 < τ2 < T .

PROOF. Let φ ∈ Lip0(ΩT ) be such that 0 ≤ φ ≤ 1. As in the preceding lemma,
since both the definition of a parabolic superminimizer and the final weak Harnack inequality
are scalable properties, we may assume that u has been scaled in such a way that 1 − (p −
1)φpu−p > 0 almost everywhere in the support of φ, and by using the convexity of the
mapping t �→ tp , we find
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gp
u+φpu1−p ≤

(
(1− (p − 1)φpu−p)gu + pφp(p − 1)u−p

u

φ(p − 1)
gφ

)p

≤ (1− (p − 1)φpu−p)gpu + pp(p − 1)1−pgpφ .

Let χh[τ1,τ2] be defined as in Lemma 3.1. Integrating by parts, we obtain
∫ τ2

τ1

∫
Ω

up−1(φpu1−pχh[τ1,τ2])t dμ dt

= (p − 1)
∫ τ2

τ1

∫
Ω

[
(logu)φp(χh[τ1,τ2])t + (logu)(φp)tχ

h
[τ1,τ2]

]
dμ dt .

Taking the limit h→ 0, we obtain by Lebesgue’s theorem of differentiation

lim
h→0

∫ τ2

τ1

∫
Ω

up−1(φpu1−pχh[τ1,τ2])t dμ dt

= (p − 1)

(
−

[∫
Ω×{t}

(logu)φp dμ

]τ2

t=τ1

+
∫ τ2

τ1

∫
Ω

(logu)(φp)t dμ dt

)
.

As u is a parabolic superminimizer and φpu1−pχh[τ1,τ2] is a nonnegative admissible test-
function, we obtain

p(p − 1)

(
−

[∫
Ω×{t}

loguφp dμ

]τ2

t=τ1

+
∫ τ2

τ1

∫
Ω

(logu)(φp)t dμ dt

)

≤ lim
h←0

(
−

∫
supp(φpχh[τ1,τ2])

gpu dν +
∫

supp(φpχh[τ1,τ2])
gp
u+φpu1−pχh[τ1,τ2]

dν

)

≤ −(p − 1)
∫ τ2

τ1

∫
Ω

φpgplogu dμ dt + pp(p − 1)1−p
∫ τ2

τ1

∫
Ω

gpφ dμ dt .

Rearranging terms completes the proof. �

Next, using the logarithmic energy estimate, we establish monotonicity in time of the
weighted integral of logu. This in turn enables us to estimate the measure of the level sets of
logu around a time level t0.

LEMMA 5.2. Let u > 0 be a parabolic superminimizer in Qr ⊂ ΩT and assume u is
locally bounded away from zero. Let 0 < α < 1. Define

φ(x) =
(

1− 2
d(x, x0)

(1+ α)r
)
+
,

where 0 < α < 1 and (x, t) ∈ Qr . Let

β = 1

N

∫
B(x0,r)

logu(x, t0)φp(x) dμ ,

where

N =
∫
B(x0,r)

φp(x) dμ .
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Then there exist positive constants C = C(Cμ,Cp, p, α) and C′ = C′(Cμ, p, α) such that

ν
({(x, t) ∈ Qαr ; t ≤ t0, logu(x, t) > λ+ β + C′}) ≤ C ν(Qαr)

λp−1

and

ν
({(x, t) ∈ Qαr; t ≥ t0, logu(x, t) < −λ+ β − C′}) ≤ C ν(Qαr)

λp−1

for every λ > 0.

PROOF. From the definition of φ, it readily follows that 0 ≤ φ ≤ 1, gφ ≤ (αr)−1, and
for every t ∈ [t0 − T (αr)p, t0 + T (αr)p],(

1− α
2

)p
μ(B(x0, αr)) ≤ N ≤ μ(B(x0, r)) .(5.3)

We write

v(x, t) = logu(x, t)− β and V (t) = 1

N

∫
B(x0,r)

v(x, t)φp(x) dμ ,

and find that V (t0) = 0. Let 0 ≤ ξ(t) ≤ 1 be a smooth function such that supp(ξ) ⊂
(t0 − T rp, t0 + T rp), and ξ(t) = 1 for all t ∈ [t0 − T (αr)p, t0 + T (αr)p].

Write ψ(x, t) = φ(x)ξ(t). Since u is a positive superminimizer bounded away from
zero, we can use Lemma 5.1 with ψ as a test function. We obtain for t0 − T (αr)p < t1 <

t2 < t0 + T (αr)p , since on this interval ξ(t) = 1,∫ t2

t1

∫
B(x0,r)

gpv φ
p dμdt − p [NV (t)]t2t=t1 ≤

pp

(p − 1)p

∫ t2

t1

∫
B(x0,r)

gpφ dμdt

≤ Cpp

(p − 1)p
(t2 − t1)μ(B(x0, r))

(αr)p
,

where C = C(p). On the other hand, from the weighted Poincaré inequality (2.11), we have(
1− α

2

)p ∫ t2

t1

∫
B(x0,αr)

|v − V (t)|p dμdt

≤
∫ t2

t1

∫
B(x0,αr)

|v − V (t)|pφp dμdt ≤ Crp
∫ t2

t1

∫
B(x0,r)

gpv φ
p dμdt ,

where C = C(Cμ,Cp, p, α). By combining these we find

(1− α)p
CNrp

∫ t2

t1

∫
B(x0,αr)

|v − V (t)|p dμdt + V (t1)− V (t2)

≤ C(t2 − t1)μ(B(x0, r))

N(αr)p
≤

(
2

1− α
)p
C(t2 − t1)μ(B(x0, r))

μ(B(x0, αr))(αr)p

≤ C′ (t2 − t1)
(αr)p

,

where C′ = C′(Cμ,Cp, p, α). We denote

w(x, t) = v(x, t)+ C
′(t − t0)
(αr)p
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and

W(t) = V (t)+ C
′(t − t0)
(αr)p

,

and restate the preceding inequality as
(1− α)p
CNrp

∫ t2

t1

∫
B(x0,αr)

|w −W(t)|p dμdt +W(t1)−W(t2) ≤ 0 .

This implies that W(t1) ≤ W(t2) whenever t0 − T (αr)p ≤ t1 < t2 ≤ t0 + T (αr)p, i.e., the
functionW is increasing, thus differentiable for almost every t ∈ (t0−T (αr)p, t0+T (αr)p).
As a consequence, we obtain

(1− α)p
CNrp

∫
B(x0,αr)

|w −W(t)|p dμ−W ′(t) ≤ 0(5.4)

for almost every t0 − T (αr)p < t < t0 + T (αr)p. Let us denote

Eλ(t) = {x ∈ B(x0, αr) ; w(x, t) > λ} ,
E−λ = {(x, t) ∈ Qαr ; t < t0, w(x, t) > λ} .

For every t0 − T (αr)p < t < t0 and λ > 0, since W(t) ≤ W(t0) = 0, we have

(λ−W(t))pμ(E−λ (t)) ≤
∫
B(x0,αr)

|w −W(t)|p dμ .
Hence we have

(1− α)p
CNrp

μ(E−λ (t))−
W ′(t)

(λ−W(t))p ≤ 0

for almost every t0 − T (αr)p < t < t0. This yields, after integrating over the interval (t0 −
T (αr)p, t0),

ν(E−λ )
Nrp

≤ C

(1− α)p [(λ−W(t))
−(p−1)]t0t=t0−T (αr)p ≤

C

(1− α)pλp−1 ,

where C = C(Cμ,Cp, p, α). Together with (5.3), this implies

ν
({(x, t) ∈ Qαr ; t ≤ t0, logu(x, t) > λ+ β + C′}) ≤ C ν(Qαr)

λp−1
,

where C = C(Cμ,Cp, p, α). Denote then

E+λ (t) = {x ∈ B(x0, αr) ; w(x, t) < −λ} ,
E+λ = {(x, t) ∈ Qαr ; t > t0, w(x, t) < −λ} .

Similarly to the case of E−λ , using the monotonicity of W(t), we obtain

(λ+W(t))pμ(E+λ (t)) ≤
∫
B(x0,αr)

|w −W(t)|p dμ

for every t0 < t < t0 + T (αr)p. This together with (5.4) leads to

(1− α)pμ(E+λ (t))
CNrp

− W ′(t)
(λ+W(t))p ≤ 0
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for almost every t0 < t < t0 + T (αr)p. Integration over the interval (t0, t0 + T (αr)p) gives
now

ν(E+λ )
Nrp

≤ − C

(1− α)p [(λ+W(t))
−(p−1)]t0+T (αr)pt=t0 ≤ C

(1− α)pλp−1 ,

and thus after using (5.3) we may conclude

ν({(x, t) ∈ Qαr ; t ≥ t0, logu < −λ+ β − C′}) ≤ C ν(Qαr)
λp−1

.

Again C = C(Cμ,Cp, p, α). �

6. Harnack’s inequality for parabolic minimizers. Having established a logarith-
mic measure estimate for superminimizers around a time level t0, we have the prerequisites
to use Lemma 2.13. This way for parabolic superminimizers we can glue the reverse Hölder
inequality for negative powers together with the reverse Hölder inequality for positive pow-
ers. We obtain a weak form of the Harnack inequality for parabolic superminimizers locally
bounded away from zero. This result is in some sense finer than the final Harnack inequality
since we only assume the superminimizing property, and hence it is of interest in itself. Ob-
serve in the following how, from applying Lemma 2.13 separately on both sides of the time
level t0, a waiting time inevitably appears between the negative and positive time segments.

LEMMA 6.1. Let u > 0 be a parabolic superminimizer inQr ⊂ ΩT which is bounded
away from zero. Then (∫

δQ−
uq dν

)1/q

≤ C ess inf
δQ+

u ,

where 0 < δ < 1 and 0 < q < (p − 1)(2− p/κ). Here C = C(Cμ,Cp,Λ,p, q, δ, T ).
PROOF. Assume 0 < δ < 1. Let β and C′ be as in Lemma 5.2. By Lemma 3.9 there

exists a positive constant C = C(Cμ,Cp,Λ,p, δ, T ), such that for every 0 < s ≤ p and
0 < δ ≤ α′ < α < 1, we have

(
ess sup
α′Q+

u−1eβ−C ′
)−1

= ess inf
α′Q+

ue−β+C ′

≥ C
(

1

(α − α′)θ
∫
αQ+

(ue−β+C ′)−s dν
)−1/s

.

(6.2)

By Lemma 5.2 applied to {Q(3+δ)r/4 ; t ≥ t0}, we have

ν

(
{(x, t) ∈ 1+ δ

2
Q+ ; log(u−1eβ−C ′) > λ}

)

≤ ν({(x, t) ∈ Q(3+δ)r/4 ; t ≥ t0, log(u−1eβ−C ′) > λ})

≤ C ν(Q(3+δ)r/4)
λp−1

≤ C ν(δQ
+)

λp−1

(6.3)
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for every λ > 0. In the last step of the above inequality, we used the doubling property of μ,
and so C = C(Cμ,Cp, p, δ). From (6.2) and (6.3), we now see that the conditions of Lemma
2.13, with (1+ δ)/2Q+ in place of U1, are met. Hence

ess sup
δQ+

u−1eβ−C ′ ≤ C ,(6.4)

where C = C(Cμ,Cp,Λ,p, δ, T ). From Lemma 3.11 we know there exists a positive con-
stant C = C(Cμ,Cp,Λ,p, q, δ, T ) for which

(∫
α′Q−

(ue−β−C ′)q dν
)1/q

≤
(

C

(α − α′)θ
)1/s (∫

αQ−
(ue−β−C ′)s dν

)1/s

for every 0 ≤ δ < α′ < α ≤ 1 and for all 0 < s < q < (p − 1)(2 − p/κ). Moreover for
δQ−, since u is a positive superminimizer bounded away from zero, we can use Lemma 5.2
to get

ν

({
(x, t) ∈ 1+ δ

2
Q− ; log(ue−β−C ′) > λ

})
≤ C ν(δQ

−)
λp−1 .

Therefore, by Lemma 2.13 we have

(6.5)

(∫
δQ−

(ue−β−C ′)q dν
)1/q

≤ C ,

where C = C(Cμ,Cp,Λ,p, q, δ, T ). Multiplying (6.5) with (6.4) gives the result(∫
δQ−

uq dμdt

)1/q

≤ C ess inf
δQ+

u

for every 0 < q < (p − 1)(2− p/κ), where C = C(Cμ,Cp,Λ,p, q, δ, T ). �

We end this paper by completing the proof of Harnack’s inequality for parabolic mini-
mizers. This is the first point at which we make use of the fact that a minimizer is both a sub-
and superminimizer.

THEOREM 6.6. Suppose 1 < p < ∞ and assume that the measure μ in a geodesic
metric spaceX is doubling with doubling constantCμ, and the space supports a weak (1, p)-
Poincaré inequality with constants Cp and Λ. Then a parabolic Harnack inequality is valid
as follows: Let u > 0 be a parabolic minimizer in Qr ⊂ ΩT which is locally bounded away
from zero, and locally bounded. Let 0 < δ < 1. Then

ess sup
δQ−

u ≤ C ess inf
δQ+

u ,

where 0 < C <∞ and C = C(Cμ,Cp,Λ,p, δ, T ).
PROOF. By assumption, u is both a parabolic sub- and superminimizer. Hence we may

combine Lemma 4.2 with Lemma 6.1 to obtain

ess sup
δQ−

u ≤
(

C

((1+ δ)/2− δ)θ
)1/(p−1)(∫

(1+δ)/2Q−
up−1 dν

)1/(p−1)
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≤ C ess inf
(1+δ)/2Q+

u ≤ C ess inf
δQ+

u ,

where θ = θ(Cμ, p) and so C = C(Cμ,Cp,Λ,p, δ, T ). �
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