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Abstract. We investigate some properties of the Harris-G class of distribu-
tions (Sankhya B 73 (2011) 70–80). We demonstrate that the density function
of the Harris-G class can be expressed as a linear combination of density
functions of the exponentiated baseline distribution. We provide general for-
mulas for moments (raw, centered, incomplete and factorial), quantile func-
tion, generating functions and entropies. Two numerical examples are pre-
sented to demonstrate the potentiality of the models in this class. The first
one applies the Harris–Burr XII distribution to model bimodal data. The sec-
ond example uses the Harris-exponential distribution to model SAR image
data. The results of the fitted models look promising.

1 Introduction

In this paper, we present some results on the Harris extended class of distributions,
which we refer to as the Harris-G class. The distributions in this class are obtained
from a general construction method explained in Aly and Benkherouf (2011) and
the distribution proposed in Harris (1948).

Consider a sequence of i.i.d. random variables Z1, Z2, . . . with cumulative dis-
tribution function (c.d.f.) G(x), probability density function (p.d.f.) g(x) and haz-
ard rate function (h.r.f.) h(x). Let X = min{Z1,Z2, . . . ,ZN }, where N is a dis-
crete random variable with probability generating function (p.g.f.) ϕ(·, θ), θ > 0
and support in N. It is known that the survival function F̄ (x) of X is given by

F̄ (x) = ϕ
[
Ḡ(x), θ

]
, (1.1)

where Ḡ(x) = 1 − G(x). Equation (1.1) provides a strong physical motivation
for explaining the failure time of a system made of N serial subsystems, where
the subsystems are identical although the number N of subsystems is unknown.
Many properties of (1.1) were presented in Aly and Benkherouf (2011). Unless
otherwise stated, all of the results presented in the paper are new and original.
Their method introduces new parameters in an existing distribution and had al-
ready been used in other papers. For example, the case Ḡ(x) = exp(−λx), λ > 0
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and ϕ(s, θ) taken as the zero truncated Poisson distribution, namely ϕ(s, θ) =
exp[θ(s − 1)][1 − exp(−θ)]−1, leads to the exponential Poisson (EP) distribution
(Kuş, 2006). When Ḡ(x) = exp(−λx) and Ḡ(x) = exp[−(λx)α] and ϕ(s, θ) is the
generic power series distribution, we obtain the models developed by Chahkandi
and Ganjali (2009) and Morais and Barreto-Souza (2011), respectively. Other pro-
posals defined by this kind of mixture can be found in Barreto-Souza and Bakouch
(2013), Lu and Shi (2012), Ristić and Nadarajah (2012) and references therein.

One of the most popular versions of (1.1) was proposed in Marshall and Olkin
(1997) by replacing ϕ(·, θ) with the geometric p.g.f. ϕ(s, θ) = sθ(1 − θ̄ s)−1,
where θ̄ = 1 − θ . In the same paper, the method was applied to the exponential
and Weibull distributions, resulting in the Marshall–Olkin extended exponential
(MOEE) and Marshall–Olkin extended Weibull (MOEW) models, respectively.
Aly and Benkherouf (2011) generalized the Marshall–Olkin class considering the
p.g.f. of the Harris distribution (Harris, 1948) for obtaining new distributions. This
p.g.f. is given by

ϕ(s, k, θ) =
(

θsk

1 − θ̄ sk

)1/k

, k > 0. (1.2)

Aly and Benkherouf (2011) considered θ > 0 although Harris (1948) restricted θ

to the interval (0,1). This restriction comes from the fact that the Harris distri-
bution arises from a branching process for which each node may originate k new
nodes with probability proportional to − log(θ). Inserting (1.2) in (1.1) leads to

F̄ (x) =
[

θḠ(x)k

1 − θ̄ Ḡ(x)k

]1/k

. (1.3)

The p.d.f. corresponding to (1.3) is given by

f (x) = θ1/kg(x)

[1 − θ̄ Ḡ(x)k]1+1/k
. (1.4)

Equation (1.4) reduces to that one proposed by Marshall and Olkin when k = 1.
As explained below, equation (1.4) provides better fits than several of the known
lifetime distributions, which is a remarkable feature. Particularly, the Harris-
exponential distribution obtained by replacing G(x) by λ exp(−λx) seems to pro-
vide a simple alternative for SAR image modeling, as illustrated in Section 7. This
is very interesting, since most distributions used in the modeling of SAR images
are considerably complicated.

This rest of the paper is divided as follows. In Section 2, we demonstrate that
the Harris-G p.d.f. can be expressed as a linear combination of exponentiated-G
(“exp-G”) densities. This result allows us to obtain some structural properties of
the Harris-G class. In Section 3, we present the ordinary and incomplete moments
and the moment generating function (m.g.f.) for this class. The Shannon and Rényi
entropies are derived in Section 4. In Section 5, we present a double power series
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for the quantile function of the Harris-G class. Estimation by maximum likelihood
is briefly discussed in Section 6. Applications to two real datasets are explored
in Section 7. Finally, concluding remarks are addressed in the last section. In the
Appendix, we present the proofs of the theorems given in the text.

2 Useful expansions

We demonstrate that the Harris-G density function is a linear combination of exp-
G densities. Let gα(x) = αg(x)G(x)α−1 be the exp-G density function with power
parameter α > 0.

Theorem 1. For 0 < θ < 1, we can write f (x) in (1.4) as

f (x) =
∞∑
i=1

wigi(x),

where

wi = (−1)i+1
∞∑

j=i

(
j

i

)
1

j !
∂jϕ(t, s, θ)

∂tj

∣∣∣∣
t=0

.

The second way of writing f (x) as a linear combination of exp-G densities is
obtained after some algebra. In the following results, we will make extensive use
of the generalized binomial coefficient given by(

a

b

)
= �(a + 1)

�(b + 1)�(a − b + 1)
,

where Γ (a) = ∫ ∞
0 ta−1e−t dt is the gamma function.

Theorem 2. For θ ∈ (0,∞), we can write f (x) in (1.4) as

f (x) =
∞∑
i=0

wigi+1(x), (2.1)

where gi+1(x) = (i + 1)g(x)G(x)i , τ = θ−1, τ̄ = 1 − τ and

wi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)iθ1/k

i + 1

[ ∞∑
j=0

θ̄ j

(
j + k−1

j

)(
kj

i

)]
, if 0 < θ < 1,

(−1)iτ

i + 1

{ ∞∑
j=0

j∑
l=0

(−1)l τ̄ j

(
j + k−1

j

)(
j

l

)(
lk

i

)}
, if θ > 1.

Henceforth, we use wi for the coefficients in Theorem 2. Writing the p.d.f. of
the Harris-G distribution as a linear combination of exp-G densities allows us to
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obtain several structural properties for the Harris-G class, since we can use the
results on exponentiated distributions.

For 0 < θ < 1, we can choose between Theorems 1 and 2. The lack of closed-
form expression for the derivatives of the Harris p.g.f. suggests that the Theo-
rem 2 may be a better choice for computation. However, it is possible to obtain
the derivatives in Theorem 1 with an error as small as we want using finite differ-
ence methods, which do not require great computational effort. Very often, we can
write these densities as linear combination of simpler densities than those from
the exponentiated distributions. For example, the Harris-exponential p.d.f. may be
written as a linear combination of exponential densities. The same holds for the
Harris–Burr XII distribution. The proof of these results mimics closely the proof
of Theorem 2. Equation (2.1) is the main result of this section.

Finally, the following result may be used for the parametric characterization of
the Harris-G density function.

Theorem 3. If g(x) is monotonically decreasing in an open interval D and
0 < θ < 1, then f (x) is also monotonically decreasing in D. Besides, if g(x) is
monotonically increasing in D and θ > 1, then f (x) is also monotonically in-
creasing in D.

3 Moments and generating function

Henceforth, let X be a random variable distributed according to (1.4) and Yi be a
random variable having the exp-G distribution with power parameter i + 1. Based
on Theorem 2, we can write the m.g.f. of X as a linear combination of m.g.f.’s of
Yi (for i = 0,1, . . .), namely

MX(t) =
∞∑
i=0

wiMYi
(t).

The raw j th moment of X becomes

μ′
j =

∞∑
i=0

wiμ
′(i)
j , (3.1)

where μ
′(i)
j represents the j th raw moment of Yi . Central moments (μj ), cumulants

(κj ) and factorial moments (μ(j)) can be obtained from the following relations:

μj =
j∑

i=0

(
j

i

)
(−1)j−iμ′

jμ
′
1
j−i

, κj = μ′
j −

j−1∑
i=1

(
i − 1

k − 1

)
κiμ

′
j−i ,

and

μ(j) = E
[
X(X − 1) × · · · × (X − j + 1)

] =
j∑

i=0

s(j, i)μ′
i ,
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where s(r, i) = (i!)−1[dix(r)/dxi]x=0 represents the Stirling number of the first
kind, and x(n) = x(x + 1) · · · (x + n − 1) denotes the ascending factorial.

Incomplete moments are useful in several areas such as insurance and credibil-
ity, and allow us to obtain the mean deviations around the mean and median. The
j th incomplete moment of X, denoted by Jj (z) = ∫ z

0 xjf (x) dx, can also be ob-
tained from Theorem 2 as a linear combination of the incomplete moments of Yi .
Denoting the j th incomplete moment of Yi as J

(i)
j (z) = ∫ z

0 xjdG(x)i+1, we have

Jj (z) =
∞∑
i=0

wiJ
(i)
j (z). (3.2)

Equations (3.1) and (3.2) are the main results of this section.

4 Entropies

Entropy refers to the amount of uncertainty (or surprisal) associated to a random
variable. It is an important concept in many areas of knowledge, specially theory
of communication, physics and probability. Possibly the most famous measure of
entropy was introduced in the seminal work of Shannon (Shannon, 1948). For a
continuous distribution F(x) with density f (x), the Shannon entropy is given by

HSh
[
f (x)

] = EX

{− log
[
f (X)

]} = −
∫ +∞
−∞

{
log

[
f (x)

]}
f (x) dx.

It is possible to relate HSh[f (x)] with Hi+1
Sh [gi+1(y)], i ∈ N, where Hi+1

Sh repre-
sents the measure of entropy based in the distribution of Yi . For doing that, the
following lemma will be useful.

Lemma 1. For the random variable Yi having the exp-G distribution with power
parameter i + 1, we have

EYi

{
log

[
g(Yi)

]} = Hi+1
Sh

[
gi+1(y)

] − log(i + 1) + 1

i + 1
.

The proof of Lemma 1 is given in the Appendix. We now give the following
result.

Theorem 4. The Shannon entropy for the Harris-G distribution can be expressed
as a linear combination of entropies of exp-G distributions, namely

HSh
[
f (x)

] = −1

k
log(θ) +

(
1 + 1

k

)
I (k, θ)

+
∞∑
i=0

wi

{
Hi+1

Sh

[
gi+1(x)

] − log(i + 1) + 1

i + 1

}
,
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where

I (k, θ) = θ1/k
∫ 1

0

log(1 − θ̄ tk)

(1 − θ̄ tk)1+1/k
dt.

Notice that I (k, θ) does not depend on the choice of g(x). The proof of Theo-
rem 4 is given in the Appendix.

The entropy of Shannon may also be used to identify probability models. Such
an approach can be seen in Jaynes (1957). Consider a class of distributions defined
by a set of constraints such as

F = {
f (x)|EX

[
Ti(X)

] = ai, i = 1,2, . . . ,m
}
,

where ai ∈ R, ∀i. We can choose a member of F as the p.d.f. of a random variable
X if it maximizes the Shannon entropy under these constraints. The chosen p.d.f. is
called maximum entropy distribution. This approach ensures that no other assump-
tions except those from the constraints are made. For instance, we can show that if
the first and second moments are constrained, the maximum entropy distribution
is the normal distribution. The statistical approach for the theory of information
is a vast and interesting field. The following result gives the maximum entropy
characterization for the Harris-G class.

Theorem 5. Let h(x) be a p.d.f. under the following constraints:

• EX[1 − θ̄ Ḡ(X)k] = I (k, θ),
• EX{log[g(X)]} = EW [log{g[G−1(W)]}],
where W has p.d.f. given by m(w) = θk−1

(1 − θ̄wk)1+k−1
. Then, f (x) defined in

(1.4) is the only solution for the optimization problem

f (x) = arg max
h

HSh
[
h(x)

]
.

The Rényi entropy is another very popular measure. It is defined for continuous
distributions by

Hα
R

[
f (x)

] = 1

1 − α
log

[∫ +∞
−∞

f (x)α dx

]
, α > 0.

The Shannon entropy follows as a special case when α → 1. We derive the follow-
ing result.

Theorem 6. The Rényi entropy of the Harris-G distribution is given by

Hα
R

[
f (x)

] = 1

1 − α
log

[ ∞∑
i=0

ai

∫ +∞
−∞

g(x)αG(x)i dx

]
,
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where

ai =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)iθα/k

[ ∞∑
j=0

θ̄ j

(
kj

i

)(
j + α + αk−1 − 1

j

)]
, if 0 < θ < 1,

(−1)iτ α

[ ∞∑
j=0

j∑
l=0

(−1)l τ̄ j

(
j

l

)(
lk

i

)(
j + α + αk−1 − 1

j

)]
, if θ > 1

and τ = θ−1 as before.

The above integral can be computed, at least numerically, for most baseline
distributions. The proof of this result is much similar to the that of Theorem 2, and
thus it is not included here.

5 Quantile function

The quantile function of X is easily obtained by inverting (1.3). We have

x = QF (u) = QG

(
1 − (1 − u)

[θ + θ̄ (1 − u)k]1/k

)
, (5.1)

where QG(u) = G−1(u) is the quantile function of G.
The use of power series methods is at the heart of many aspects of applied

mathematics and statistics. If the function QG(u) does not have a closed-form
expression, it can usually be expressed as a power series of the form

QG(u) =
∞∑
i=0

eiu
i, (5.2)

where the coefficients ei are suitably chosen real numbers. For several important
distributions, such as the normal, Student t , gamma and beta distributions, QG(u)

does not have closed-form but it can be expressed as (5.2). For example, for the
standard normal distribution, the coefficients ei are given by

ei = (2π)i/2
∞∑

m=i

(−1

2

)m−j(
m

i

)
pi,

where the quantities pi are defined by pi = 0 for i = 0,2,4, . . . and pi = q(i−1)/2
for i = 1,3,5, . . . , and the qk’s are calculated recursively from

qk+1 = 1

2(2k + 3)

k∑
r=0

(2r + 1)(2k − 2r + 1)qrqk−r

(r + 1)(2r + 1)
.

Here, q0 = 1, q1 = 1/6, q2 = 7/120, q3 = 127/7560, . . . .
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For θ > 1/2, we can obtain a power series for the denominator of (5.1) using
the expansion given in the Appendix (Theorem 2). We have

[
θ + θ̄ (1 − u)k

]−1/k = θ−1/k

[
1 + θ̄

θ
(1 − u)k

]−1/k

=
∞∑

j=0

mj(1 − u)kj ,

where

mj = θ−1/k

(
j − k−1 − 1

j

)(
− θ̄

θ

)j

.

Then the argument of QG(·) in (5.1) becomes

1 − (1 − u)

[θ + θ̄ (1 − u)k]1/k
= 1 −

∞∑
j=0

mj(1 − u)kj+1.

Using (5.2), QF (u) reduces to

QF (u) =
∞∑
i=0

ei

(
1 −

∞∑
j=0

mj(1 − u)kj+1

)i

=
∞∑
i=0

ei

i∑
p=0

(−1)p
(

i

p

)( ∞∑
j=0

mj(1 − u)kj+1

)p

.

Now, we consider a result of Gradshteyn and Ryzhik (2000, Section 0.314) for
a power series raised to a positive integer p( ∞∑

j=0

mjz
j

)p

=
∞∑

j=0

cp,j z
j , (5.3)

where the coefficients cp,j (for j = 1,2, . . .) are easily obtained from the recur-
rence equation

cp,j = (jm0)
−1

i∑
�=1

[
�(p + 1) − j

]
m�cp,i−�, (5.4)

and cp,0 = mn
0. The coefficient cp,m can be determined from cp,0, . . . , cp,j−1, and

hence from the quantities m0, . . . ,mj . We can write( ∞∑
j=0

mj(1 − u)kj+1

)p

= (1 − u)pj

( ∞∑
j=0

mj(1 − u)kj

)p

=
∞∑

j=0

cp,j (1 − u)(p+k)j ,

where the coefficients cp,j are determined by (5.4). Finally, changing
∑∞

i=0
∑i

p=0
by

∑∞
p=0

∑∞
i=p , we can write QF (u) as a double power series given by

QF (u) =
∞∑

p,j=0

dp,j (1 − u)(p+k)j , (5.5)
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where dp,j = (−1)pcp,j

∑∞
i=p ei

( i
p

)
. Combining equations (5.3) and (5.5) gives a

useful procedure to obtain alternative expressions for the ordinary and incomplete
moments, generating function, mean deviations of any distribution in the Harris-G
class.

6 Estimation

Estimation of the model parameters of the Harris-G distribution can be accom-
plished by the maximum likelihood method. Let φ = (φ1, . . . , φj )

� be the vector
of parameters of G(x). Based on a sample x1, x2, . . . , xn, the logarithm of the like-
lihood function for the parameters in (1.4) is given by

� = �
(
θ, k,φ�) = n

k
log(θ) +

n∑
i=1

log
[
g(xi)

] −
(

1 + 1

k

) n∑
i=1

log
[
1 − Ḡ(xi)

k].
Then we can write

∂�

∂k
= − n

k2 + 1

k2

n∑
i=1

log
[
1 − θ̄ Ḡ(xi)

k] + θ̄

(
1 + 1

k

)
Ḡ(xi)

k log[Ḡ(xi)
k]

1 − θ̄ Ḡ(xi)k
,

∂�

∂θ
= n

kθ
−

(
1 + 1

k

) n∑
i=1

Ḡ(xi)
k

1 − θ̄ Ḡ(xi)k

and

∂�

∂φj

=
n∑

i=1

∂ log[g(xi)]
∂φj

+ θ̄

(
1 + 1

k

) n∑
i=1

1

1 − θ̄ Ḡ(x)k

∂Ḡ(xi)
k

∂φj

.

Setting these derivatives to zero yields the maximum likelihood estimators (MLEs)
of the Harris-G parameters. Unfortunately, the j + 2 equations cannot seem to be
simplified any further for a generic distribution G and we require any iterative nu-
merical method such as the Newton–Raphson or quasi-Newton procedures, even in
the simple cases. Under general regularity conditions, the asymptotic distribution
of (θ̂ , k̂, φ̂�) is Nj+2(0,K−1), where K = K(θ, k,φ�) is the expected informa-
tion matrix. The matrix K can be replaced by the observed information matrix for
constructing approximate confidence intervals for the model parameters.

Care is advised when extracting a numerical approximation for the matrix K
from the iterative methods used to obtain the point estimates of the parameters. For
some methods, such as the BFGS, an approximation of the Hessian matrix is used
in the calculations at each iteration. This approximation may not be reliable if the
convergence of the methods happens too fast. If the number of iterations is small
(e.g., five iterations), using the BFGS method, the output it gives for the approx-
imate Hessian matrix may be unreliable, even when the point estimates are very
accurate. Bootstrap confidence intervals are a reliable alternative in these cases.
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The convergence of the estimation procedures usually depends on the choice of
the starting values of the parameters. We advise first using a nondeterministic op-
timization routine, such as simulated annealing, to obtain the initial guesses of the
parameters and then using the Newton or quasi-Newton methods. Although it adds
to the total computational time, this is usually reliable, especially when dealing
with simulation and bootstrap.

Other estimation methods such as the method of moments (see Cramér, 1946,
Section 33) or the generalized method of moments (Hansen, 1982) may be used.
Particularly, the generalized method of moments may be used in conjunction with
the maximum entropy characterization given in this paper to produce estimates of
the parameters. This is, however, a discussion which may be long, and thus fit to
be presented in a separate work.

7 Applications

To motivate the use of the distributions in the Harris-G class, we present two ap-
plications for the Harris-exponential and Harris–Burr XII distributions.

The Harris–Burr XII distribution is obtained by inserting the Burr XII survival
function in (1.3). The Burr XII survival function is given by

Ḡ(x) = (
1 + xc)−α

, x, c,α > 0.

Inserting Ḡ(x) in (1.3) yields

F̄ (x) =
[

θ(1 + xc)−kα

1 − θ̄ (1 + xc)−kα

]1/k

, k, θ > 0.

If we add location and scale parameters to the Harris–Burr XII distribution, it
becomes a very flexible model. For doing this, we just change x by σ−1(x − μ),
with σ > 0 and μ ∈ R in the equation for F̄ (x) as usual. In this case, we have
x > μ.

Consider the faithful dataset found in the datasets package of the de-
fault installation of R. This dataset contains 272 observations of two random vari-
ables which are traditionally modeled using a mixture of two normal distributions.
The second column of this dataset corresponds to the waiting times between con-
secutive eruptions of the Old Faithful, a geyser located in the Yellowstone area
in the United States. Figure 1 displays the histogram for the dataset. It is fairly
evident that this dataset presents two modes.

The six parameter Harris–Burr XII distribution was fitted to these data. The pa-
rameters were estimated using the fitdistr() function from the MASS pack-
age, with initial values provided by simulated annealing using the GenSA() func-
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Figure 1 The histogram and two fitted densities to this dataset.

tion from the GenSA package in R. Also, a mixture of normal densities given by

h(x) = λσ−1
1 φ

(
x − μ1

σ1

)
+ (1 − λ)σ−1

2 φ

(
x − μ2

σ2

)
,

with 0 < λ < 1, σ1, σ2 > 0 and φ(·) representing the standard Gaussian function
was fitted using the nomalmixEM() function from the mixtools in R. The
two fitted distributions are given in Table 1. The logarithm of the maximized like-
lihood function for both models were close: −1034.03 for the normal mixture and
−1038.44 for the Harris–Burr XII model. The AIC and BIC were −1024.04 and
−1021.17 for the normal mixture and −1026.42 and −1023.35 for the Harris–
Burr XII model, respectively. Both estimated densities are superposed to the data
histogram in Figure 1.

The normal mixture model has as advantage the good mathematical properties
of the normal distribution. However, when used to model strictly positive data,
with prediction being the main focus, this model may assign positive probability
to negative values. Such a “trap” is reasonably more dangerous in the context of re-
gression models, since points in the remote regions of the design matrices column
space may lead to unreasonable predictions. From this point of view, the Harris–
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Table 1 Fitted distributions to the old faithful dataset

Model Parameter MLE Standard error AIC BIC

Harris–Burr XII k 22.3062 2.0982×10−2 −1026.42 −1023.35
θ 0.0001 8.5370×10−5

c 48.7521 7.3411×10−2

α 6.6527 4.5274×10−4

σ 75.2536 1.9180×10−4

μ 40.0204 2.7802×10−1

Normal mixture λ 0.3609 0.0322 −1024.04 −1021.17
μ1 54.6149 0.7047
σ1 5.8712 0.5448
μ2 80.0911 0.4980
σ2 5.8677 0.3909

Burr XII model is preferred for modeling this dataset although at the expense of
an extra parameter.

In the second application, we present the Harris-exponential (HEE) distribution.
This model is obtained by inserting the exponential distribution survival function
in (1.3). The resulting survival function is given by (for x, λ, k, θ > 0)

F̄ (x) =
[

θ exp(−λkx)

1 − θ̄ exp(−λkx)

]1/k

. (7.1)

Many properties of this distribution are given in Pinho et al. (2015). This rather
simple distribution finds application in the field of SAR [synthetic aperture radar]
image statistical modeling. SAR images are used in remote sensing and mapping of
surfaces, even outside our planet. The statistical treatment of SAR images allows
for target detection, boundary identification and noise reduction, for example. This
application is indeed the main reason why this paper was written.

We sampled an homogeneous area of a SAR image from Foulum (Denmark)
and extracted the values of the intensity of the pixels in the sampled area. The
details and actual dataset, which consists of 5588 points, are available in plain
text format upon request. Two distributions are very popular alternatives for mod-
eling this kind of dataset: the K distribution and the G0 distribution. For more
details on these two distributions, see Frery et al. (1997). The five parameter beta-
generalized normal (BGN) is presented in Cintra et al. (2014) as an alternative
to the K and G0 distributions. The gamma distribution is sometimes used in this
context. We compared the Harris-exponential fit to the ones of the K, G0, BGN,
gamma and exponentiated-exponential (EE) distributions. The distributions were
fitted using the fitdistr() routine in R. Table 2 gives a summary of the three
fitted distributions. We consider the logarithm of the maximized likelihood, Akaike
and Bayesian information criteria (AIC and BIC) and Cramér–von-Mises (CVM)
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Table 2 Fitted distributions to the foulum dataset

Model Parameter MSE Standard error AIC BIC CVM

BGN a 7.20 × 10 6.64 × 10−1 −60058.15 −60025.01 28.51
b 6.11 × 10 5.93 × 10−1

μ 1.34 × 10−3 2.43 × 10−5

σ 5.99 × 10−3 1.63 × 10−4

s 5.99 × 10−1 1.77 × 10−2

HEE k 1.26 × 10 2.30 × 10−1 −62615.02 −62595.16 2.23
θ 3.09 × 105 1.05 × 103

λ 8.31 × 102 1.22 × 10

K μ 2.37 × 10−3 1.47 × 10−5 −61218.88 −61199.00 19.65
ν 5.76 5.53 × 10−1

L 3.40 × 10 4.44 × 10−1

G0 n 7.82 × 10 1.28 −62413.62 −62393.74 962.31
α −6.23 1.92 × 10−1

γ 2.47 × 10−2 8.61 × 10−4

EE α 9.04 0.28 −61650.39 −61637.14 14.66
λ 1208.12 15.66

Gama α 4.53 0.08 −60897.36 −60884.10 24.06
β 1893.89 36.55

statistics as measures of the quality of the fits. For information on the Cramér–
von-Mises, see Chen and Balakrishnan (1995). Generally speaking, we may favor
models with lower values of the CVM statistic. The Harris-exponential distribu-
tion outperforms the K, G0 and the other distributions for the current dataset based
on the chosen criteria. Figure 2 displays the HEE, K and G0 fitted densities over-
lapping the data histogram. It suggests that the three distributions are well suited
to the current dataset.

However, the Harris-exponential distribution seems not to be adequate for het-
erogeneous or highly heterogeneous areas, such as cities for example. Although the
K and G0 distributions fitted to the data almost as well as the Harris-exponential
distribution, it is computationally much easier to deal with the latter distribution.
The mathematical properties of the Harris-exponential distribution are also much
simpler than those from the K and G0 distribution.

8 Conclusions

We present several new structural properties of the Harris-G class of distributions,
including moments, generating and quantile functions, mean deviations, entropies
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Figure 2 The histogram and three fitted densities to this dataset.

and order statistics. These results are different from those obtained by Aly and
Benkherouf (2011). Also, we provide two applications of special models of the
Harris-G class to real univariate datasets to promote the use of this class. The ap-
plications indicate that some distributions in this class are very promising. Particu-
larly, we expect this fact will attract more attention to the Harris-G class in reliabil-
ity, engineering and in other areas of research. Properties of equation (1.4) not con-
sidered in this paper are: cumulative residual entropy, Song’s measure, goodness-
of-fit tests, Bayesian estimation, estimation using bootstrap and estimation using
L-moments. We hope to address some of these in a future paper.

The infinite sums presented in this paper, for practical purposes, can be limited
to 30 or 40 terms and the error is already very small. Of course, one can always
use numerical integration where those sums are suggested. However, numerical
integration often misbehaves or fails completely. When this happens inside some
software routines, the results may be very different from the ones intended. These
sums are a useful alternative in some cases.
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Appendix: Proofs of the results

Proof of Theorem 1. For 0 < θ < 1, if ϕ(s, k, θ) is a p.g.f., we can write

F̄ (x) = ϕ
(
Ḡ(x), k, θ

)
=

∞∑
j=1

P(N = j)Ḡ(x)j =
∞∑

j=1

1

j !
∂jϕ(t, s, θ)

∂tj

∣∣∣∣
t=0

Ḡ(x)j

=
∞∑

j=1

1

j !
∂jϕ(t, s, θ)

∂tj

∣∣∣∣
t=0

[ j∑
i=0

(
j

i

)
(−1)iG(x)i

]

=
∞∑
i=1

(−1)i

[ ∞∑
j=i

(
j

i

)
1

j !
∂jϕ(t, s, θ)

∂tj

∣∣∣∣
t=0

]
G(x)i.

By differentiating both sides, we have

f (x) =
∞∑
i=1

(−1)i+1

[ ∞∑
j=i

(
j

i

)
1

j !
∂jϕ(t, s, θ)

∂tj

∣∣∣∣
t=0

]
ig(x)G(x)i−1,

and then

f (x) =
∞∑
i=1

wigi(x).
�

Proof of Theorem 2. For 0 < θ < 1, we consider the negative binomial series,

(1 − y)−r =
∞∑
i=0

(
i + r − 1

i

)
yi,

which holds for |y| < 1 and any real number r > 0. Using this expansion in the
denominator of (1.4), we have

f (x) = θ1/kg(x)

∞∑
j=0

(
j + k−1

j

)
θ̄ j Ḡ(x)kj

= θ1/kg(x)

∞∑
j=0

(
j + k−1

j

)
θ̄ j

[ ∞∑
i=0

(−1)i
(

kj

i

)
G(x)i

]

=
∞∑
i=0

∞∑
j=0

θ1/kθ̄ j (−1)j

i + 1

(
j + k−1

j

)(
kj

i

)
(i + 1)g(x)G(x)i

=
∞∑
i=0

wigi+1(x),
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where

wi = θ1/k(−1)i

i + 1

[ ∞∑
j=0

θ̄ j

(
j + k−1

j

)(
kj

i

)]
.

For θ > 1, we replace τ = θ−1. Then we can rewrite (1.4) as

f (x) = τg(x)

[τ − (τ − 1)Ḡ(x)k]1+1/k
= τg(x)

1 − (1 − τ)[1 − Ḡ(x)k]1+1/k

= τg(x)

{1 − τ̄ [1 − Ḡ(x)k]}1+1/k
,

where τ̄ = 1 − τ . Now, we can use the negative binomial expansion in the denom-
inator of the last expression to obtain

f (x) = τg(x)

∞∑
j=0

(
j + k−1

j

)
τ̄ j

j∑
l=0

(−1)l
(

j

l

)
Ḡ(x)lk

= τg(x)

∞∑
j=0

(
j + k−1

j

)
τ̄ j

j∑
l=0

(−1)l
(

j

l

) ∞∑
i=0

(−1)i
(

lk

i

)
G(x)i

=
∞∑
i=0

∞∑
j=0

j∑
l=0

τ τ̄ (−1)l+i

i + 1

(
j + k−1

j

)(
j

l

)(
lk

i

)
(i + 1)g(x)G(x)i

=
∞∑
i=0

wigi+1(x),

where

wi = (−1)iτ

i + 1

[ ∞∑
j=0

j∑
l=0

(−1)l τ̄ j

(
j + k−1

j

)(
j

l

)(
lk

i

)]
.

�

Proof of Theorem 3. The first derivative of f (x) is given by

f ′(x) = [1 − θ̄ Ḡ(x)k]1/k{g′(x)[1 − θ̄ Ḡ(x)k] − θ̄ (1 + k)g(x)2Ḡ(x)k−1}
{1 − θ̄ Ḡ(x)k}2(1+1/k)

.

Since [1 − θ̄ Ḡ(x)k]1/k and the denominator are always positive, we have

sgn
[
f ′(x)

] = sgn
{
g′(x)

[
1 − θ̄ Ḡ(x)k

] − θ̄ (1 + k)g(x)2Ḡ(x)k−1}
,

where sgn(x) is the signal function (sgn(x) = 1 if x is positive, sgn(x) = 0, if
x = 0 and sgn(x) = −1 otherwise). Then a simple analysis of this last expression
concludes the proof. �
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Proof of Lemma 1.

Hi+1
Sh

[
gi+1(y)

] = EYi

{− log
[
gi+1(Yi)

]}
= − log(i + 1) −EYi

{
log

[
g(Yi)

]} − iEYi

{
log

[
G(Yi)

]}
,

and then

EYi

{
log

[
g(Yi)

]} = −Hi+1
Sh (gi+1) − log(i + 1) − iEYi

{
log

[
G(Yi)

]}
. (A.1)

But

EYi

{
log

[
G(Yi)

]} =
∫ +∞
−∞

{
log

[
G(y)

]}
gi+1(y) dy

= (i + 1)

∫ +∞
−∞

{
log

[
G(y)

]}
g(y)G(y)i dy

= (i + 1)

∫ +∞
−∞

∂

∂a
g(y)G(y)i+a

∣∣∣∣
a=0

dy

= (i + 1)
∂

∂a

[∫ +∞
−∞

g(y)G(y)i+a dy

]∣∣∣∣
a=0

= − 1

i + 1
.

Substituting EYi
{log[G(Yi)]} in (A.1), the result follows. �

Proof of Theorem 4. From the definition of HSh[f (x)]
HSh

[
f (x)

] = EX

{− log
[
f (X)

]}
= −1

k
log(θ) −EX

{
log

[
g(X)

]}
(A.2)

+
(

1 + 1

k

)
EX

{
log

[
1 − θ̄ Ḡ(X)k

]}
.

We can obtain EX{log[g(X)]} from Theorem 2 and Lemma 1

EX

{
log

[
g(X)

]} =
∫ +∞
−∞

log
[
g(x)

]
f (x) dx

=
∞∑
i=0

wi

∫ +∞
−∞

log
[
g(x)

]
gi+1(x) dx

(A.3)

=
∞∑
i=0

wiEYi

{
log

[
g(X)

]}

=
∞∑
i=0

wi

{
Hi+1

Sh

[
gi+1(y)

] − log(i + 1) + 1

i + 1

}
.
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To obtain EX{log[1 − θ̄ Ḡ(X)k]}, let t = G(x). So,

EX

{
log

[
1 − θ̄ Ḡ(X)k

]} = θ1/k
∫ +∞
−∞ log[1 − θ̄ Ḡ(x)k]g(x)

[1 − θ̄ Ḡ(x)k]1+1/k
dx

= θ1/k
∫ 1

0

log(1 − θ̄ tk)

(1 − θ̄ tk)1+1/k
dt (A.4)

= I (k, θ).

Inserting (A.3) and (A.4) in equation (A.2) concludes the proof. �

Proof of Theorem 5. Consider the Kullback–Leibler divergence between the den-
sity functions f (x) and h(x) given by

D(h,f ) =
∫ +∞
−∞

h(x) log
[

h(x)

f (x)

]
dx.

The Gibbs’ inequality implies D(h,f ) ≥ 0 where the equality is attained iff h(x)

and f (x) are equal almost everywhere. Then

0 ≤
∫ +∞
−∞

h(x) log
[

h(x)

f (x)

]
dx,

0 ≤
∫ +∞
−∞

h(x) log
[
h(x)

]
dx −

∫ +∞
−∞

h(x) log
[
f (x)

]
dx,

HSh
[
h(x)

] ≤ −
∫ +∞
−∞

h(x) log
[
f (x)

]
dx,

HSh
[
h(x)

] ≤ −1

k
log(θ) −EX

{
log

[
g(X)

]} +EX

[
1 − θ̄ Ḡ(X)k

]
.

Under the imposed constraints and the definition of W given before, we have

HSh
[
h(x)

] ≤ −1

k
log(θ) −EW

{
log

{
g
[
G−1(W)

]}} + I (k, θ),

HSh
[
h(x)

] ≤ −1

k
log(θ) −

∫ +∞
−∞

log
{
g
[
G−1(w)

]} θ1/k

(1 − θ̄wk)1+1/k
dw + I (k, θ).

Setting w = G(x) and I (k, θ) = EX{log[1 − θ̄ Ḡ(X)k]} gives

HSh
[
h(x)

] ≤ −1

k
log(θ) −

∫ +∞
−∞

log
[
g(x)

] θ1/kg(x)

[1 − θ̄ ¯G(x)
k]1+1/k

dx

+EX

{
log

[
1 − θ̄ Ḡ(X)k

]}
,

HSh
[
h(x)

] ≤ −1

k
log(θ) −EX

{
log

[
g(X)

]} +EX

{
log

[
1 − θ̄ Ḡ(X)k

]}
,

HSh
[
h(x)

] ≤ HSh
[
f (x)

]
,

the equality holding iff f (x) equals h(x) almost everywhere. �
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