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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS

R. DANIEL MAULDIN AND S. C. WILLIAMS

ABSTRACT. Consider the functions

oo

wb(x)= ]T b-an{<s>(bnx + en)-<s>(en)],

n= — oo

where 6 > 1, 0 < a < 1, each 6n is an arbitrary number, and $ has period one.

We show that there is a constant C > 0 such that if b is large enough, then the

Hausdorff dimension of the graph of Wf, is bounded below by 2 - a — (C/ In b).

We also show that if a function / is convex Lipschitz of order a, then the graph

of / has (7-finite measure with respect to Hausdorff's measure in dimension

2 — a. The convex Lipschitz functions of order a include Zygmund's class

AQ. Our analysis shows that the graph of the classical van der Waerden-

Tagaki nowhere differentiable function has cr-finite measure with respect to

h(t) = t/\n(l/t).

We consider the Hausdorff dimension of the graphs of various continuous func-

tions. We introduce a new geometric property of a function: convex Lipschitz of

some order, and obtain an upper bound on the dimension of a graph with this

property. In particular, our analysis includes functions of the form

oo

fb(x) = Yb-anHbnx + en),
n=0

where 0 < 6n < 1, b > 1, 0 < a < 1, and $ is periodic with period one. For

example, we show that the graphs of the van der Waerden-Takagi functions have

Hausdorff dimension one. We also give lower bounds on the dimension of graphs of

the form
oo

Wb(x)=     Y    b-an[®(bnX + 6n)-®(0n)],

n = — oo

where 0< a < 1, 6 > 1, 0 < f?„ < 1, and $ has period one. We note that this series

converges uniformly on compact sets if $ is Lipschitz and bounded. In particular,

if $' is continuous and a is fixed, then there is a positive constant C such that

2 - a - (C/lnb) < dimfb = dimWb < 2 - a,

for sufficiently large 6.
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794 R. D. MAULDIN AND S. C. WILLIAMS

The fonctions of the form fb or Wb have a colorful history, and continue to make

an appearance in various fields. In 1872, Weierstrass introduced the functions

oo

K(x) = E''"an(cos27r6Tlx)

n=0

and showed that they were nowhere differentiable in certain cases. G. H. Hardy

not only showed that K(x) is nowhere differentiable for all b > 1 and 0 < a < 1,

but, in addition, obtained some exact results concerning the local Lipschitz order

of these functions [5]. Besicovitch and Ursell obtained lower estimates, somewhat

similar to ours, on the dimension of graphs of functions which were required to

have a large amount of lacunarity [2]. The functions Wb and /;, treated here do not

meet their requirement. Mandelbrot proposed a study of the functions Wb with a

view to applications and for its intrinsic properties. It has been conjectured that

dim(W(,) = 2 — a, for all b > 1, in case $(x) — cos27rx [1,4,8]. The computer

studies of Berry and Lewis indicate the complicated behavior of these functions [1].

If each 9n = 0, then Wb satisfies the functional equation g(x) = b~ag(bx), and fb

satisfies the functional equation g(x) = b~ag(bx) + $(x). The addition of the phases

eliminates such scaling behavior. Our techniques show that one can nevertheless

recover enough scaling to obtain our estimates on the dimension.

Graphs of functions of the form fb also appear as attractors in dynamical sys-

tems [7, 9]. Kaplan, Mallet-Paret, and Yorke have obtained exact results on the

Lyapunov dimension of some higher dimensional analogues of these functions and

have shown the capacity dimension of K(x) is 2 - a for 6 > 1, 0 < a < 1.

Throughout the paper, we will consider functions as graphs. By dim(.E'), we

mean the Hausdorff dimension of E. Our notation mostly follows that of Rogers

[10]. Thus, if h is a generalized dimension function, h — m(E) denotes the measure

of E with respect to the measure induced by h. In particular, if a is a positive

number, then a — m(E) denotes the measure of E with respect to h(x) = Xa. Our

first theorem which we offer without proof is useful in reducing the calculation of

the dimension of a graph to the complicated part of the function.

THEOREM 1.   If g is Lipschitz, then

(1) dim(/ + 9) = dim/.

In particular, dim Wb = dim/f,, where

oo

(2) fb := Y b~anHbnx + en),
n=0

whenever $ is bounded and Lipschitz.

Let us mention that without some restriction on / and g, dim(/ + g) may be

greater than dim /. This may be seen as follows:

THEOREM 2. B — {f | dim/ — 1} is a dense Gs subset of C[0,1]. Moreover,

if f G C[0,1], then f = gi — 32, where gf and g2 have dimension 1.

PROOF. For each a > 1, let La = {/ G C[0,1] | a - m(f) - 0}. It is easy to

check that La is a G s subset of C[0,1] and, of course, every polynomial is in La.

Finally, |XLi Li+i/n = B.
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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS 795

Now, suppose / £ C[0,1]. Since B and B + f are dense G$ subsets of C[0,1],

Bn(B + f)¿0. Therefore, f = gi - g2, where gug2G B.    Q.E.D.

REMARK. Theorem 2 shows that almost every function has Hausdorff dimension

one. However, we note that almost every function does not have rj-finite linear

measure. This follows from the facts that for almost every /, f^1(y) is uncountable

unless y is the maximum or minimum value of / [3] and, on the other hand, if /

has rj-finite measure, then for almost all y, f~l(y) is countable [4, p. 74].

Our next theorem is useful for obtaining upper bounds on the Hausdorff dimen-

sion of a graph. Let 6 map R+ into R+.

DEFINITION. A function / is said to be convex Lipschitz of order 6 on an interval

[a, b] provided there is a constant M such that ifa<x<x + y<6 and 0 < 6 < 1,

then

(3) |A(x,y,S)\ := \f(x + Sy) - (6f(x + y) + (1 - 6)f(x))\ < M6(y).

We note that if / is in the class AQ described by Zygmund [11], then / is convex

Lipschitz of order xa. However, the converse is not necessarily true.

THEOREM 3. Let 6 be a continuous map of R+ into itself such that (1) ift > 0,

9(t) > 0, (2) Iimt^0 t/9(t) < co, and (3) 3/3 > 0 such that limt^o6(ct)/e(t) = cß
for all c > 0. // / is a continuous map on [0,1] which is convex Lipschitz of order

6, then f has o-finite h - m measure, where h(y) = y2/0(y).

We first set some notation. We will consider the dyadic expansion of numbers

in [0, l]:x =  .o"i£2£3 ••■, and the nth approximation:  xn(x) =  .efS2---en-

PROOF. For each M0 > M, set

A(Mo) = {x G [0,1]| for infinitely many n,

|/(xn(x)) - f(xn(x) + 2-")| < M09(2-n)}.

Claim 1. h-m(f\A{Mo)) < +oo.

To prove this claim, temporarily fix m G N. For each x G A(Mo), let n(x) be

the first n> m such that

(5) \f(xn(x)) - f(xn(x) + 2"")| < M0e(2~n).

For each x G A(M0), let I(x) = [xn(x)(x),x„(x)(x) + 2"n(x)]. Note that if x,y G

A(M0) and x ^ y, then either I(x) = I(y) or else I\x) and I(y) are nonoverlapping.

Consider Cm — {P\x)\x G A(Mo)}. Then Cm is a cover of A(M0) by nonoverlapping

intervals. Thus,

(6) U     /(x)x/(7(x))DGraph(/U(Mo)).
x€A(M0)

Now,

(7) diam/(/(x)) < 2M6(2-n{x))+Mo6(2-n(-x}) < 3M0e(2~n^).
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796 R. D. MAULDIN AND S. C. WILLIAMS

Therefore, the rectangle I(x)xf(I(x)) can be covered by (3M09(2-n(-x'>)/2-n^) + l

squares each with edge length 2~n^x>. Thus, we have

(8)

(h - m)[f\A{Mo)] <   lim £ *

2~2n(x)

<   lim
m—r<x>

6M0 E2"n

i(x)eC

(x)    0(2-n<*>)

6(V22-nW) 3M0   ;    . , ' + 1
2~n(x)

E_V22r!(!)_
^ e(V22-n^)6(V22-nW)

But, if t is small enough, we have

(9) t/0(t) <Q<+oo,

and

(10) Ci9(t) < 9(V2t) < C29(t),

for some positive constants Cf and C2. Therefore,

(h-m)(f\A(Mo))<   lim   [[6M0/Ci+Q>/2]E2"n(l
m—»oo L

(11) < Q\/2 + oMo/Cf < +00.

This completes the proof of Claim 1.

Assume Mo > 2M. If x =  .£\ • • • en ■ ■ ■ ̂  A(M0), then 3m(x) G N such that for

n > m(x),

(12) \f(xn(x)) - f(xn(x) + 2"")| > M09(2~n).

Claim 2. sgn(/(xn(x)) - /(xn(x) + 2 n)) is constant for n > m(x). Otherwise,

we have, for example, setting xn = xn(x)

(13) M0ö(2-")</(xn)-/(xn + 2-")

and

(14) -Mo0(2-("+1>) > /(x„+1) - f(xn+i + 2-("+1>).

If e„+i = 0, then xn+x — xn and

f(xn + \2~n) - \(f(xn + 2"") + /(Xn))

= f(xn + \2~n) - f(xn) - \(f(xn + 2"") - /(xn))

= (/(xn+1 + 2-("+1>) - f(xn+l)) - \(f(Xn + 2~n) - f(xn))

> Mo0(2-("+1>) + (M0/2)9(2~n) > M9(2~n),

a contradiction. The other cases are similar. In other words, if M0 > 2M and

|/((j + l)/2")-/(i/2")|>M0ö(2-"),

then f((2j + l)/2"+1) is between f((j + l)/2") and f(j/2n). This completes the

argument for Claim 2.

Set

(15)

(16)    B(M0, m) = {xG [0, l]|Vn > m, /(xn(x) + 2"n) - f(xn(x)) > M09(2~n)}
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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS 797

and

(17) C(M0, m) = {xG [0, l]|Vn > m, f(xn(x) + 2~n) - f(xn(x)) < -M09(2-n)}.

We have B(M0,m) Ç B(M0,m+ 1) and C(Ma,m) C C(M0,m+ 1). Since M0 >
2M, Claim 2 implies

(18) [0, lM(Mo) [J B(Mo,m)öC(Mo,m)
.m=0

Fix m.   We will show that each f\B(M0,m) has finite /i-measure.   For e = (Sf,

£j) G {0, lp and k < j, define

(19) I(e):=[.£f-e3, .ex ■ ■ • e3- + 2~'\

and

(20) Ae,fc/ := /(. ei • • -ek + 2~fc) - /(. £l ■ ■ ■ ek).

For each n > m, set

(21) Cn = {sG {0, l}n|A£ifc/ > M09(2-k), for m < fc < n}.

Now,

(22) E A^+if < Y A^f-
£GCn+l £€Cn

This follows from the facts that if (ei, ...,en,6) G Cn+i, then (ei,... ,£n) 6 Cn;

A£*o,n+i/ + AEtf¡n+if = A£i„/; and, by the argument given for Claim 2, all of

these differences are positive.

For each n>m,

(23) Graph(/|B(Moim)) ç   \J 1(e) x f (1(e)).
£€C„

For each e G Cn, we need no more than (diam/(/(e))/2~n) + 1 squares with

diameter \f22~n to cover the rectangle 1(e) x f(I(e)).

Let

Tn= E(diam/(/(e))/2_n + 1)^V/22-")

eeCn

V- ,-      1IT, ^HV22~n)
Y diamf(I(e))   ^v >

.eeCn

< + V2Q < co.

Obviously,  the /i-measure of /|ß(M0,m)  is dominated by limT1...,00 T„.     Since,

diam/(/(e)) < Ae,„/ + 2M0(2"n),

(25)

So, for each n>m,

h(V22~n)
J« -       2-" E A£,„/ + 2M^0(r)

.£€C„ É^Cn

+ v/2Q.

(26) Tr,   <
h(V22~n)

2-n E ¿w
UeCr

ff(>/22-B)

Since limh(s/2t)/t < co as t -> 0 and lim0(2-n)/0(>/22-n) = 2^/2, the Tn's are

uniformly bounded. Therefore, /|s(M0,m) has finite /i-measure.
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798 R. D. MAULDIN AND S. C. WILLIAMS

THEOREM 4. Let $(x) = cos27rx. IfO < a < 1, then Wb is Lipschitz of order

a and consequently dim{Wb) < 2 — a and Wb has finite (2 — a)-measure. If a = 1,

then fb is not necessarily Lipschitz, but it is always convex Lipschitz of order 1.

Consequently, if a = 1, dim/, = 1 and fb has a-finite measure with respect to

linear Hausdorff measure in R2.

If 0 < a < 1, it is easy to see that Wb is Lipschitz of order a. The first statement

follows from [2]. The last two statements of this theorem follow from Theorem

3 and Hardy's result that if a = 1 and each 0n = 0, fb is nowhere differentiable

[5], and therefore cannot be Lipschitz of order 1. We will generalize the results of

Theorem 4 in Theorems 6 and 7. We also note that if / is convex Lipschitz of order

1, then / is in Zygmund's class A*.

THEOREM 5. Let f be continuous on an open interval J. Then f is convex

Lipschitz of order 1 on J if and only if f is in Zygmund's class A* on J.

PROOF. It is easy to check that if / is convex Lipschitz on J, then / is in A*.

For the converse, let M be such that |A2(x,/i)| < Mh, where A2(x,h) :=

f(x + h) + f(x — h) — 2f(x). Fix x, x + y G J, x < x + y. Define an auxiliary

function g on [0,1] by g(6) := A(x,y,6). To prove / is convex Lipschitz it suffices

to show \g(6)\ < My for all 6 in [0,1]. Now, |g(l/2)| < A2(x + y/2,y/2)/2 < My/4.
For each n, set Dn = {(2j + l)/2n|0 < j < 2n~l - 1}. Since / G A», we have

or

2/ + 1
2n+1

2j + l

1 \      3
< - \q ( —
- 2 r \2"

1
+ 2

J + l
2n +

My
2■2n+1'

<sup{|<7(c0| \dG\J{Dk\k<n}} +
My

2 ■ 2"+12"+!

By induction, we obtain

suP{|«7(d)| |d G Dn} < My(l/22 + ■■■ + l/2"+1).

Since g is continuous, \g(6)\ < My for all 6 G [0,1].    Q.E.D.

THEOREM 6.   Suppose $: R —> R is bounded and convex Lipschitz of order 1.

If b> 1,0 < a <1, and

(27) fb(x) = Yb~an*(bnx + 9n),

n=0

then fb is convex Lipschitz of order a. Consequently,

dim(fb) <2-a.

PROOF. Fix 6 > 1 and set a = b~a and / = fb- We have

\A(x,y,6)\<

(28)

E a^Wx + 8V>y + 9P) - <S>(b"x + 9P)
p=0

- ê(mr°x + bpy + 9P) - mfx + 9P))]

+311*11 E °p-
p=n + l
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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS 799

So, letting M be a convex Lipschitz constant for $,

n

(29) |AO,y,6)\< My Y(ab)P + 3||$IK+1/(1 - a).
p=0

Thus,

(30) \A(x,y,6)\ < My(ab)n+1/(ab - 1) + 3||$||an+1/(l - a).

Choose n such that b~ln+1) < y < b~n. Then an+1 = (¿,-(«+i))<* < ya. So,

(31) |A(x,i/,6)| < (M6/(a&- 1) + 3||^||/(1 -a))ya.

Thus, / is convex Lipschitz of order a.    Q.E.D.

REMARK. If each 0n = 0 in equation (27), then /¡, is the unique bounded solution

of the functional equation f(x) = b~af(bx) + $(x). Moreover, there are 2C solutions

of this functional equation, and the dimension of a solution can be any number in

[2-a, 2].

The functions considered in the next theorem include the van der Waerden-

Tagaki functions. (Set $(x) = dist(x, Z).)

THEOREM 7.   Consider

OO

fb(x) = Yb~n*(bnX + (>n),

n=0

where b > 1. If $ is a bounded Lipschitz continuous function on R, then fb has

o-finite h-measure where h(y) = y/ln(l/y) and each fb has Hausdorff dimension

one. If $ : R —♦ R is bounded, absolutely continuous and $' is Lipschitz, then fb

has o-finite linear measure.

PROOF. Set a — b~x. If $ is bounded and Lipschitz, it follows from inequality

(28) that

\A(x,y,b~)\ < 2\\&\\nèy + 3||$||a"+1/(l - a)

for all n.

If fc-(n+l) < y < ¿,-n^ then n < \rf(\Iy)I \a.b.  So,

\A(x,y,6)\ < (2||i'||/ln6)»ln(l/i,) + (36||*||/(6 - l))y.

Thus, there is a constant D such that

\A(x,y,6)\<Dyln(l/y).

Therefore, by Theorem 3, /¡, has o-finite measure with respect to h(y) = y/ m(l/y).

This implies that the graph of / has Hausdorff dimension one.

Now, if $ is bounded, absolutely continuous and $' is Lipschitz, it follows from

(28) that

|A(x,2/,f5)|< Eop \6Vy f $'(6Px + SVyt + 9P) - &(Px + Vyt + 9P) dt
p=0

+ 3||$||a"+1/(l-a)
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800 R. D. MAULDIN AND S. C. WILLIAMS

(1 - 6)b"yt dt + 3||$||an+1/(l - a)

Choose B such that |$'(it) - $'(v)| < B\u - v\. Thus,

\A(x,y,6)\<B6yY(ab)P f (
P=o        -/o

< ¿(1 - 6)(By2)(ab2)n+1 /2(ab2 - 1) + 3||$||an+1/(l - a).

Choose n such that b^n+^ < y < b~n. Then y262n < 1, and an+1 = b~(n+V < y.

So

IA(x,y,6)\< (b2B/8(ab2 - 1) + 3||*||/(1 - a))y.

Thus, / is convex Lipschitz of order 1.    Q.E.D.

REMARK. We do not know whether the van der Waerden-Tagaki function has

rj-finite linear measure.

THEOREM 8. Suppose $: R —> R (1) is nonconstant and continuous, (2) has

a piecewise continuous derivative, (3) $(x + 1) = $(x), and (4) ||$|| = 1. Fix

0 < q < 1. Let I be a subinterval of [0,1] with length I > 0 such that (i) $' is

continuous on I and (ii) inf $' > e > 0 on I. There is a constant C > 0 such that

ifb> 3/1, then
dim(fb) >2-a-C/lnb,

where
oo

fb(x) = Yb~an*(bnX + °n),

n=0

and 0o,0i,02, ■• • are arbitrary phases.

Theorem 8 follows from Theorem 9.

THEOREM 9. Assume the hypothesis of Theorem 8. Then there is a constant

C > 0 and a function G: [3//,co) —► R+ such that ifb> 3/1, then there is a Cantor

subset K of R and a probability measure v supported on fb H (K x R) such that if

X is a square of side z <b~l with sides parallel to the coordinate axes, then

u(X)<G(b)z^2~a)-c,Xub.

PROOF. For convenience, we assume 0o = 0. Set f = fb and set r = [bl] — 1.

Note that the integer r > 2. We define a system of intervals {Ja\o G r*}, where

r* = UnLii*' • • • 'r}"' as follows- F°r each i, 1 <i <r, let g¿ be the largest integer

in the interval b[I + (i - 1)] + 0i. Since this interval has length bl, the integer g¿ - r

is also in it. Set

(32) J,
9f-r  qi-9f

So, Ji C I + (i - 1), i = 1,..., r, and $'(x) > e if x G J¿.

Suppose J„ has been chosen of the form

(33) Jo
<la

where qa is a positive integer, and |er| denotes the length of the sequence a.  For

each t'e {1,..., r}, let qct.¿ be the largest integer in the interval

H„.i =b(I + q„-r + i-l- 0H) + 0k|+1.
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ON THE HAUSDORFF DIMENSION OF SOME GRAPHS 801

Set

(34) J<j*i —
Q.o-1 -0|<r|+i -r  q„*i eH+i

h\o\ + l ' ¿,|<r| + l

We note the following facts:

( Jl) For each n, {JCT|(T G {1,..., r}n} is a collection of pairwise disjoint intervals

of length rb~n.

(J2) For each o and i = 1,..., r,

JCT.¿ C 6~H(J + qa - r + i - 1 - 0k|)

(^ - r + ¿ - 1 - 0|CT|   q„-r + i- 0H '
C

61-1 6M
c JCT.

(J3) If x G JCT, then ^'(b^~lx + 0khl) > e.

Of course, (Jl) follows immediately from the construction. The first inclusion

of (J2) follows from the fact that since the interval Ha*i has length bl > r + 1,

q„'i — r G Ha-i. The second inclusion follows from J C [0,1]. The last inclusion is

obvious. Fact (J3) follows from the construction of Ja.

Let

(35) *=n
n=l

U '.
|<r|=n

let v be the unique probability measure supported on K defined by the condition

HJo) and let v be the probability measure supported on Graph(/|x)

defined by

(36) /    g(x,y)dv(x,y) := /  g(x,f(x))dv(x),
Jr* Jr

for g G Co(R2). It can be checked that v also satisfies

(37) /    g(x,y)du(x,y)=  lim — Y g(xa,f(xa)),
Jp2 n—>oo r      *—'

where x„ = inf^).

Let X be a square [xn, xq + z] x [yo,yo + z] with z < b~l. Let n be the positive

integer such that

(38) fc-(n+i) < z < fc-n

and let fc be the positive integer such that

(39) fc-"(n+k) < 2 < fc-ain+fc-l)

For each s G {0,1,..., fc - 1}, let

(40) #s = card{fj | |ct| = n + s and /|J(T 0X^0}.

We have

(41) u(X) = / lx(t, /(*)) dï(t) < #(fc - ljr-^*-1).

Our next task is to obtain some bounds on the size of #s.
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802 R. D. MAULDIN AND S. C. WILLIAMS

Suppose p = n + s, \o\ = p, and f\ja D X ^ 0. Let

p-i
(42) g(x)= Yb~am*(bmx + 0m).

m = 0

We have

oo

(43) ||/ - ff|| < E b~am = ^Q7(l - b~a)-
m = p

If (x,/(x))GX, then

(44) [g(x) - b~ap/(l - b~a),g(x) + b~ap/(l - b~a)} H [yo, Vo + z] * 0.

If x G Ja, then from (J3), we get

(45) g'(x) = Y b^™V(bmx + 9m)>e (^«'j*) ■
m=0 ^ '

In particular, g is increasing on Ja. Let

E = {x G Ja | eq. (44) holds}.

Thus, E is an interval and if f\j„.x íllj¿0, then Ja.i D E ^ 0. But JCT.¿ C

[(Qo- - r + i - 1 - 9p)/bp, (q„ - r + i - 9p)/bp] for i = 1,..., r. Since these last

intervals are nonoverlapping, E can meet at most 2 + bpX(E) of them, where A is

Lebesgue measure. So,

(46) card{i G {1,..., r} | f\J<r.. <~)X¿0}<2 + bpX(E).

Consequently,

(47) #(S + l)<[2 + 6"+8(m(n + S))]#S,

where m(n + s) is the maximum possible length of E on level n+s. Now, m(n + s) <

c/d, where c is the height of the box that g must be in if / is in X on JCT and

d = min{<7'(x) | x G J„}. Now, if (x, f(x)) G X, then (x, g(x)) is in a box of

height z + 2b-ap/(l - b~a). Since z < b^a(-n+k-^ and p < n + fc - 1, we have

2<ö-aP<6-aP/(l-6"a). So,

™<-.<Ki^)(^)-
Consider

2 + feP3.   6"aP     6l_a-

(50)
£l -6-«6(l-a)p_ J

-6l-aJ_j_ + 3/_L_Wl-fc-(1-tt)U

Consider the factor in { } as a function, hp(b). Note that for all p > 1, hp(b) <

hf(b) for b > 3/1. Now, hf(b) is continuous and lim/ii(6) = 3/e as b —> co. Let

ó = max{/i](6)|6 > 3/1}; 3/e <S<oo. Therefore, from (47), we obtain

(51) #(s + \)<6bl-a#8.
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Since #0 < 2, we find by recursion on (51)

(52) #(fc-l)<2<5fe-16(1-Q)fc-1.

Therefore, from (41)

(53) v(X) < 26k-1b{1-aKk-1)r~(n+k-1\

From (38) and (39),

(54) n(l- a)/a<k<n(l-a)/a+l + l/a.

Also, r"1 < 2/lb. Thus,

(55) v(X) < 2èl/a6n{l-a)lab-a{k-l)(2/l)n+k-lb-n,

or,

(56) U(X) < 2¿1/«¿n(l-a)/a(2//)(n+l)/a6-a(n(l-a)/a-l)6-n

(57) < 2(26/iy/°cba[(261-a/l)1/a]nb-n{2-al

Set A = 2(2¿//)1/a and B = (261~a/l)l/a. Since bz > b~n,

(58) v(X) < Ab2Bnz2-a.

Finally, since n < -Inz/lnb, Bn = enlnB < z-lnB/lnb.   Set C = InB.   Let

G(b) = Ab2. We have

(59) u(X)<G(b)z2-a-c/lnb.

To see that C > 0, it suffices to show that 261~a/l > 1. Since ||$|| = 1, el < 2.

Since S > 3/e, we have 261~a/l > 31"a(2//)Q. Thus, 261~a/l > 1, for 0 < a < 1.
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