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Wojciech Szpankowsk.i*

Department of Computer Science
Purdue University

Wesl LaI.yelle, IN 47907, USA

Abstract

This paper studies in a probabilistic framework some topics concerning the way words
(strings) can overlap, and relationship of this to the height of digital trees associated with this
set of words. A word is defined as a random sequence of (possibly infinite) symbols over a
finite alphabet. A key notion of an aLignment matrix {Cij}~j_l is introduced where Cij is the
length of the longest string that is a prefix of the i-th and the j-th word. It is proved that the
height of an associated digital tree is simply related to the alignment maU'ix through some order
statistics. In particular, using this observalion and proving some inequalities for order statistics,
we establish that the height of a digital trie under an independent model (Le., all words are sta­
tistically independent) is asymptotically equal to Zlogg:n where n is the number of words slored
in the trie and a is a parameter of the probabilistic model. This result is generalized in three
directions, namely we consider b-lries, Markovian model (Le., dependency among letters in a
word), and a dependent model (i.e., dependency among words) In particular, when consecutive
letters in a word are Markov dependent (Markovian model), then we demonstrate that the height
converges in probability to Z'logen where 8 is a parameter of the underlying Markov chain. On
the other hand, for suffix lrees which fall into the dependent model, we show that the height
does not exceed ZlogKn, where 1C is a parameter of the probabilistic model. These results find
plenty of applications in the analysis of data structures built over digital words.

• This n:scarch Wll3 supported by NSF gmnl.'l NCR-8702115 Dnd CCR-8900305, ond in part by granl ROl LMOS118

from National UbnllY or Medicine, and by AFOSR grnnl89NM407.
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1. INTRODUCTION

Correlation on words are often studied through some associated data structures such as

digital Irees built over these words (e.g., radix tries, subword trees, suffix trees, etc. [1,2,3]).

Digital trees are important in their own right due to many applications in computer science (e.g.,

searching and sorting [1,2], dynamic hashing [4,5], pattern matching algorithms [1,3], etc.) and

telecommunications (e.g., coding, conflict resolution algorithms for broadcast communications

[6,7,8], etc.). In this paper, we investigate the height of digital trees under different probabilistic

models and show that the height is simply related to the longest common prefix of any two

words stored in the tree. The key notion of an alignment matrix C = {elj}?'i -1 is introduced,

where n is the number of words (keys, strings) and Cjj measures the overlap on the filst sym­

bols in the i-th and the j-th words. We shall study properties of the alignment Cij in a proba­

bilistic framework, that is, we assume that words (keys) form a random sequence of (possible

infinite) symbols over a finite alphabet. The symbols occur independently or Markov depen­

dently in a word, and in addition words might be statistically dependent (see Section 2).

By proving some theorems on order slalislics (i.e, maximum) of dependent random vari­

ables (that is, alignments Ci), we shall establish in this paper a new methodology to study the

height of digital trees and some other related problems (e.g., the longest prefix of any pair of

words, the longest substring that can be fully recopied, testing for square-free words, memory

requirements in the extendible hashing [5, 16], optimization problems [23], and so forth [27]).

In partiCUlar, we prove that for large n, the height BTl of a digital lrie with independent keys is

equal to 2 logan in probability where a is a parameter of the probabilistic model. This result is

generalized in four directions. At first, we drop the assumption that the fixed number of keys

(words) are stored in the trie, and we prove that under a Poisson distribution with parameter I.l

of keys the average height EH Po is asymptotically equal to 210ga l.l. Secondly, for digital tries

that can store up to b words in external nodes (Le., b.tries) we establish that the height B n is
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asymptotically equal to (1 + 1/b)loglJn, where ~ is a parameter of the model depending upon b.

Then, we assume Markov dependency among consecutive letters, and establish that the height

behaves asymptotically like logan where a is reciprocal of the largest eigenvalue of the Schur

product of the transition matrix for the underlying Markov chain. Finally, we consider a depen­

dent model, that is, the case when keys (words) are statistically dependent (e.g., suffix tree

[1,3]). We prove that the height in this case does not exceed 210glC n for some K.

The height of digital trees has been previously investigated in [2,5, 9-15]. In [5}. Flajolet

studied an independent model of binary symmetric b-tries. Based on some classical counting

results in occupancy problems, Flajo!et derived the asymptotic distribution of the height. Using

complex analysis (e.g., Cauchy integral formUla) he also found the average height of a trie. Jac­

quet and Regnier [9], extended Flajolet's result to binary asymmetric (Le., symbols occur with

different probabilities) tries. They have made extensive use of the Mellin transform technique.

Devroye [10] analyzed binary symmetric Iries (independent model again), and based on the

occupancy problem he derived some inequalities on the asymptotic distribution of the height.

The most general resullS were oblained by Pittel [11] (see also [12]), where general asymmetric

tries (Le., dependency among letters are allowed but not among words) with b = 1 were investi­

gated (in [12] b > 1 was discussed but only under independent model). Unfortunately, the

proots in [11] arc not constructive and the resulls are well hidden. For some more resulls, see

also [13] and [14]. We note here that all resulls discussed so far have been eslablished for

independent models, that is, for statistically independent keys. To the best of our knowledge,

the dependent models were only studied by Szpankowski [15], and Apostolico and Szpankowski

[16]. In [16] the authors investigate the height of suffix trees.

Our approach to compute the height of digital trees is quite different in comparison with

the ones established in [2,5, 9-14]. In contrast to the previous analyses, we use here some novel

rcsulls from order statistics, and therefore avoid explicit computation of the height distribution.
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In addition, the purpose of this paper is to establish solid methodology which can be applied to

analyze different algorithms and data structures built over digital words. Therefore, we do not

restrict ourselves to a particular data structure or algorithm, and rather focus on methodological

aspecls of the problem.

The paper is organized as follows. In the next seclioR, we present OUf probabilistic frame-

work. Section 3, the heart of this paper, presents our contribution La the analysis of some order

statistics of dependent random variables, and conlains OUf main resulls. Finally, Section 4 pro-

vides some generalizations of the results from Seclion 3, namely it presents the analysis of b-

tries, Markovian model, and dependent models.

2. MODEL FORMULATION

In this section we build our probabilistic framework, which sets up a stochastic model for

our studies. Let...& ... {Wl,O)z, ... , wv} be an alphabet of V symbols, and let

.& 1:11 {X l'X2 , ••• , XII} be a set of n (possibly infinite) strings (keys, words, sequences) over the

alphabet A. To characterize the stochastic model, we need to describe the probabilistic features

of the set,b. In our basic probabilistic model, we assume:

(i) A word Xk = xlxf ... , is an infinite sequence of symbols from A such that it forms

an independent sequence of Bernoulli trials with probability of sampling symbol Wi

v
equal to Pi, where ~ Pi .. I, lhat is, Pi .. Pr{xj l:> w;} for any k and j. If

i-I

PI = P2 = ... l:> Pv l:> l/V, then the model is called symmetric, otherwise it is

asymmetric.

(ii) The words X I,X2, ••• , XII are statislically independent.

(iii) The number of words is fixed and equal \0 n.

These three assumptions fonn our basic probabilistic framework called the Bernoulli
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model. Some modifications of this basic model might be considered (see Section 4). For exam~

pIe, one can replace (iii) by more general assumption

(iii') The number of keys is a random variable N with a probability distribution function

p(n) ~Pr{N ~ nJ.

Ifp(n) is Poisson distributed, then the model (i), (ii) and (iii /) is called the Poisson modeL (see

Remark (ii) in Section 3). The next extension concerns assumption (i) since in some cir­

cumstances this assumption is too unrealistic. For example, if the alphabet.4 consists of

English letters or..& contains either four nucleotides or twenty amino acids (for DNA and pro­

Leins analysis, respectively [25, 26]), then lhere is a dependency between the occurrence of two

consecutive symbols. In a more elaborate random model, the assumption (i) is replaced by

(i') There is a Markovian dependency between neighboring symbols in a word

Xk = xlxf . .. ,that is, the probability Pi; = Pr{xi = Wj Ix.f.+l .. Wj}, prescribes the

conditional probability of sampling symbol w; following symbol Wj.

The model (i'), (ii), (iii) or (iii') is called Markovian model. A more sophisticated dependency

may occur (see [11,12]). Note that the models discussed so far are very suitable for the analysis

of digital search tries, since it is reasonable (0 assume that keys are independent (assumption

(ii)). This is not the case, however, for sulfix trees [1, 3] because the keys X 2 ,X3 , .•. , Xn are

suffixes of the fiTSt key, hence strongly dependent. Therefore, we modify the assumption (ii) as

follows.

(ii') The keysXIoX 2•..• , Xn are dependent.

A probabilistic model containing assumption (ii') is called dependent model in contrast lo

independent model when assumption (ii) is adopted.

The most popular data slructure associated with a set of (digital) words (keys) is a digital

tree [1,2]. Such a tree is built in a fairly nalural way, that is, edges are labeled by symbols from
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the alphabelA and leaves (external nodes) contain the keys. The access path from lhe root to a

leaf is a minimal prefix of information contained in the leaf. A brute force construction of such

a tree is simple, that is, on the k-th level of the lrce, we look at the k-th symbol, and if it is 001

we "go left" in the tree, if it is 002 then we "go next to lhe left", and so on. This process

continues until all words X I ,X2, ••• , XII can be separated (distinguished) and the words are

slored in external nodes. The following three examples present different types of digital trees.

EXAMPLE 2.1. Radix tries

Figure 1 shows V = 3-ary me (see [1,2] for detailed definition of mes) built over alphabet

.4 ... {D, 1,2} with n "" 6 records (keys, words, strings) A, B, ... ,F. The internal nodes

A =000
B =010
C =012
D=100
E=200
F=221

A

C

E F

Figure 1. Example of a 3-ary digital trie with n = 6.

(circles in Figure 1) are used to branch keys, while external nodes (squares in the figure) contain

the words.

EXAMPLE 2.2. SuffIX tree

The purpose of this example is to present a digital lree illustrating lhe dependent model.

We concentrate on the suffix tree [1,3], which is a data structure relatively often used in com-

binatorial algorithms on words [3]. Let A = {a,b} be a binary alphabet, and X = abbabaa... a
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smog. We build five suffixes of X, that is, XI =X, X 2 = bbabaa..., X 3 = babaa... and so on

(see Figure 2). The suffix tree constructed from the first five suffixes of X is shown in Figure 2.

Xl" abbabaa .
X 2 .. bbabaa .
X 3 "" babaa .
X 4 .. OOaa .
X s III baa .

X2

Figure 2. A suffix tree built from the first five suffixes of X = abbabaa ...

EXAMPLE 2.3. b-tries

For keysA,B•...• F as in Example 2.1 we build a trie, but now we allow to stofe up to b

keys in an external node. Such a digital lIee is called b-trie.

A

E,F

Figure 3. Example of a 3-ary digilal 2-lrie with n = 6.

In Figure 3 we show a 2-lrie. Note that the average searching time for a key decreases in com-

parison to the standard trie shown in Figure 1, however, for searching one needs additionally 10
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look up a linear list in an external node. 0

Parameters of interest for digital trees are: depth of a leaf Dn. external path length Lm

height of the tree Hn and the shortest path h,.. We first introduce the depth of the i-th leaf D~i)

which counts the number of edges from the root 10 the i-th leaf. Then, the above parameters are

defined as follows

n

L • '" D(i)
n "'" ni_I

Hn = max {D~i)}
1 :s j S II

hn - min {D~)}
Is'$/7

(2.la)

(2.lb)

(2.lc)

(2.ld)

The height Hn could be the most useful parameter in the analysis of algorithms since by

definition it upper bounds other parameters (for Ln one must consider nH,,). Moreover, it is rea-

sonable 10 believe that H", D" and hn have the same order of magnitude, whence the height is

worth studying. We note, however, that the height is not a good measure of balancing property

for trees (see I17] for more details). In this paper, we concentrate on establishing asymptotics

for the height B". For b-tries, the depLh D" was extensively slUdied by Szpankowski in [17],

external path length by KnuLh [2], Kirschenhofer, Prodinger and Szpankowski [18] and the shor~

lest path by Pitte) [12].

In this paper we propose a novel approach (and some new results) to evaluate the height

Hn of digital trees under different models discussed above. The key notion is the alignment

matrix C = {Cij};,j_l' For every pair (i,j), i;oo! j, i,j = 1,2, ... , n, we define alignment Cjj as

the length of the longest slring Ihat is a prefix of bolh X j and Xj. Thus, Cij co k iff X j and Xj

agree exactly on their first k symbols, but differ on their (k + 1)-SL Then, the height Hn , the

exlernal path length LnI and the shortest path lin can be alternatively defined as (cf. (2.1)),
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H" = ~a~ {Cjj } + 1
ISI(J,.;,n

•
L,,=~ m~x {Cjj}+n

i_I 1";'/:5"

h. ~ min { max {e'j)) + 1
l,ci:sn Isjsn

(2.20)

(2.2b)

(2.20)

Hereafter, we concentrate only on the height H" (for applications of definition (2.2b) and (2.2c),

see [16]). At finit, however, we illustrate Ute new definitions by an example.

EXAMPLE 2.4. Alignment matrix

Let us reconsider Ute suffix lrce from Example 2.2 (see also Figure 2). Then Ute

corresponding alignment matrix C = {Cjj } is as follows:

'" 0 0 2 0
0 '" 1 0 1

C. o 1 • 0 2
200 • 0

012 o •

From C and the expressions (2.2), we obtain H" III 3, hn = 2, D" = 14/5 and Ln = 14. 0

In order to evaluate Htu we note that by definition (2.2a) we need to estimate the max-

imum of m = n(n-l)/2 dependent random variables Cjj• i < j = 1,2, ... I n. The "maximum"

is an example of an order statistic [19,20], and has been investigated vigorously over the last

twenly years, however, mosl results concern independent random variables [19]. In the next

section, we propose how to deal with dependent random variables Cjj (see also [27]), and we

derive asymplotics for Ihe height Hn .

3. MAIN RESULTS

In Ihis seclion we derive various resulls concerning asymptotic behavior of the height Hn

of a regular trie (b co 1) under our basic model assumplions (i)-(iii). In fact, as a side effect, we

present also a fairly general approach to invcsligate asymptotic behavior of some order slatistics
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for a class of dependent random variables.

By definition (2.2a), the height Hn of a digilal lrie is one plus a maximum of n2 ctepen-

dent random variables (alignments) Cjj . In fact, since Cij - Cii. we can reduce n2 to

m .. n(n-l)/2 different alignments. Il is relatively easy 10 evaluate the distribution function

F(k) = Pr{G;j s k} of the alignments C jj " Note that all alignments C;j are identically dislri-

bUled, whence we drop indices i and j in the notation of the distribution function F(k). Indeed,

let us adopt our basic stochastic model consisting of assumpLions (i)-CHi). In parlicular, assump-

tions (i) and (ii) immediately imply that ejj is geometrically distributed with parameter

v
P = "i:. pt, that is,

j~l

I_F(k)=pk+l k = 0,1, ...• (3.1)

If alignments eij were independent random variables, then the knowledge of the distribution

function F(k) alone would be enough to compute the order statistics max {Cjj } [19,20,21].
lsi<jsn

Otherwise, for computing the distribution of the maximum (whence the average, variance and so

on), we normally need joint distributions. Fortunately, in some cases, to estimate asymptotic

behavior of max {C;j}, the marginal distribution (3.1) is almost enough (see Lemma 2 and

Lemma 3 below for more specific conditions). Using these methods we prove in this section

our main results.

THEOREM. Suppose assumptions (i)-(iii) of our basic probabilistic model hold.

v
(i) Let R '" - log P .. - log L pt, where log is the natural logarithm. Then

i-I

. Hn 2
11m -- -­
n"""'" logn R

in probability (pr.) (3.2)

that is, for every e> 0 the following holds lim Pr{(I-E)·2 log n IR :s:Hn:s: (1+e)o210g n IR} .. l..-
In another notation, this means tbat Hn = (l + 0 (1))·log n2 IR (pr.).
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(ii) The r-th moment EH~ of the height Hn for large n satisfies the following relationship

(3.3.)

where - means asymptotically equivalent. In particular, the variance var Hn is

(3.3b)

Another analysis lhaL concentrates on proving convergence of Hn in distribution (see for exam-

pie [12]), can lead 10 a better estimate of the variance, namely, it can be proved that

varH. =1r?-/(6R) + 1/12. •

We prove the theorem in two steps by deriving an upper bound and then a lower bound

on max {Cij}' One needs to notice that the alignments Gij are dependent random variables.

More precisely, C 12 depends on 2n alignments ekJ where either k or 1 is equal to one or two,

and e l2 is independent for the rest n212_2n alignments e/d with k,l>2. This observation

suggests that we must compute some order statislics for dependent random variables. In the

nexl three lemmas we suggest fairly general methods for establishing upper and lower bounds

for asymptotic behavior of some order statistics. In Section 4, which deals with some generali-

zation of the above model, we shall appreciate this general approach.

We start with an upper bound for some order statistics. Let y lo Y2, .•. , YIIl' be identically

distributed random variables with the distribulion function F(} We assume that F(') satisfies

the following two conditions.

F(y) < 1 for all y < 00 (3.40)

lim
y--

1-F(9') -0
1 - F(y)

for c> 1 (3.4b)

Let also a", be the smallest root of the following equations

m[l - F(am )]· 1 (3.5)

The next lenuna establishes an upper bound for the maximum M", of the random variables
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Lemma 1. Let conditions (3.4) hold for a sequence YloYZ,"" Ym of identically distributed

random variables. Then, lhe maximum Mm satisfies

Mm
lim -- sl

n _0> am
in probability (3.6)

that is, lim PriMm > (1+e) am} =1, where am is the root of equalion (3.5).
m_m

Proof: We proceed as follows. Note first that Boole's inequality implies

PriMm > r} .. Pr{Y I > r or Y 2 > r or ... or Ym > r} =

smPr{Y l >r} ~m[I-F(r)l

that is,

PriMm > r} s min {I, m[1 - F(r)]J (3.7)

Let now r = (1 + e)am where E is any positive number. Then quoting condition (3.4a), inequali-

ties (3.7) becomes

PriMm > r} s m[l- F«1 + E)am)]

To complete the proof we must show that the RHS of of lhc above is 0 (1) for large m. BUI,

condition (3.4b) with c = 1 + E > 0 and (3.5) imply

PriMm > (1 +E)am} s m[1 - F«1 +E)am)] ~ m . 0(1)[1 - F(am)] ~ 0 (1) (3.8)

whence (3.6) follows.•

The nice thing about Lemma 1 is thai in order to eslablish an upper bound, we need only

information aboul (marginal) distribution of Y's, and not the joint distribution Pr{Y1 < r,

y 2 < r, ... , Ym < r}. Unfortunately, this is not any longer true for lower bounds. The next

two lemmas show how to establish lower bounds, but this lime we need much more restriclive

assumptions. For the next lemma, which is also called the mixing condition approach, we

replace (3.4) by the following

lim
y-.

1 - F(by)
[1_F(y)]b

= ~ =const forall b<l (3.9)
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In addition, we curb the joint distribution Pr{Yl < r, ... , Ym _< r} by assuming existence of

a(m) _O(m K
) for some conslant K such that

Pr{Y1 < r , Y, < r , ... , Ym < r} s a(m)·[Pr{Y1 < r} t ~ a(m)·Fm(r) (3.10)

Then, the following lemma can be proved.

Lemma 2. If condition (3.9) and (3.10) with ex. "" O(m K
) hold, then

limm-_ almost surely (3.11)

where am is the smallest root of (3.5).

Proof Let r - (1- .)am in (3.10), that is,

But, by (3.9) with b = 1 - E, one finds

Substituting the above into (3.12), we show that

PriMm < (1- .)am} s a(m) [1- ~(1 + :(l))m'rs a(m)exp[-m'~(l + 0(1))]

(3.12)

where the last inequalily is the consequence of the fact that (l-xlntse-J: for xln-O as

n - <XI, Since ex. '" OemK), then (3.11) follows from Borel~Cantelli Lemma [21]. •

Before we leave this approach, we nole that condilion (3.10) in Lemma 2 can be replaced by a

weaker one (but easier to prove), namely

Pr{Yi < r, Yj < r} sU'Pr{Yj < r} Pr{Yj < r}

for some a.s 1.

(3.10a)

The second method to establish a lower bound for Mm is based on the so·called second

moment method [27.28J. We follow here the approach suggested in Aldous [27]. To recall, for

a random variable Z ~ 0 such that EZ2 < 00, the following inequality is the basis for the second
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moment method

(EZ)'
Pr{Z > O} • 2 (3.13)

EZ

Note that Pr{Z > O} lends to one, provided (EZlIEZ 2 -1. Tills fact is used to derive the

next lenuna. Let us define for some sequence rm the following quantity

00 cP-'r-'{"y"J,..•.,,:r00::-:-'"y~k"."r"m'-'..}y(rm)-L- 2
k-2 m Pr {Y1 ~ r",}

Then, the second moment method can be formulated as below.

Lemma 3. Suppose that lim m[l - FCrm)] = co together with00_00

lim y(rm )-100_·

(3.14)

(3.15)

Then, lim Pr{M",;o: r",} = 1 where M", "" max{y1>y l> ...• Ym }. In particular, jf for every00_.

& > 0, 'm = (1 - E)a",. where am is given in (3.5), and (3.15) holds, then Mmla", ~ 1 (pr.) that

is,

lim PriMm > (1 - E)am} - 1m_m (3.16)

Proof" The proof follows immediately from Aldous [27], however, we present it for complete-

"ness. Define a set of events tB j =0 {Yj O!: rm}, and consider Zm = L 1mI where 1121 is the indicator
i-I

function of the event fB . To prove the lemma it suffices to note that

00

{Zoo> O} - {Ut8 i }oo {Mm. roo} and apply inequality (3.13). •.-1
Now we are ready 10 prove our Theorem. We note that Ute height Hn is maximum over

m co n(n-l)/2 dependent random variables Cij . By (3.1) we immediately find that the root an

of (3.5) (we prefer to use here an instead of am. since m - n2 and n is the originallree parame-

tee) is

a" ""
log n(n-l)/2

log p-l
2 0 1ogn-=-=_.;:., + 0(1) ~ - 2logp n + 0(1)
IngP

(3.17)
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To establish the upper bound for Hm we just check that conditions (3.4a) and (3.4b) hold for the

geometric distribution (3.1). This immediately proves that Hn/log n s 2/R (pr.)

To prove the lower bound for B", we either use the mixing-condition approach (Lemma 2)

or the second moment method (Lemma 3). In either case, we must compute the joint distribu-

lion of the alignments {Cjj}. In particular, one needs to evaluatePr{C 12 O!: r, Cij:e: r} for some

i,j E {l,4 ... , n}. We note that for i,j > 2, the above alignments are independent, that is,

Pr{C 12 :e: r. Cij :;:: r} = Pr{C 12 O!: r}'Pr{C;j:! r}, provided i,j > 2, The dependency is among

the first 2n random variables, lhal for i ...l or j ...1. BUI, a simple probabilistic analysis reveals

that

(3.18)

(3.19)

(and the same holds for j =1). For symmetric case, i.e., p = q ... ;, we note thai (3.18) implies

Pr{C I2 O!: r, Cij 2!: r} = (1/4)' = Pr{C I2 2!: r}'Pr{C 1j O!: r}, hence Lemma 2 holds with 0.= 1.

The asymmetric case needs, however, a little diIferent treatment. We appeal to Lemma 3. Set

m = n2 /2 in (3.14), and by (he above discussion, we split y(rm ) into two terms, namely

n Pr{C I2 O!: rn , C lk O!: rn} n 2(l - 2n
y(rm)-2~, +,

k_3 n (l'Pr{C I2 ~ rn} n /2

The second term of the above is the consequence of the independence of Cij and C 12 for

i,i > 2. To verify (3.15) we need only to prove, that the first term of (3.19), say Y1 (rn) tends to

zero for appropriately chosen rn. Now, as in (3.16) we assume rn = (1 - E)an where

an" - 2logpn as in (3.17). To prove YI(rn) - 0 as n - 00, we need an upper bound for the

joint distribution in the numerator of YI (rn ). But, the following inequality can be easily proved

.!.. ...!..
(p' + q')' • (p' + q')' (3.20)

Indeed, it is enough to note that the function f(x) = (p% + q%)If%, P + q "" 1, is decreasing for

x • 1. Then, (3.18) and (3.20) imply

(3.21a)
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so

(3.2Ib)

This proves the lower bound of H" by appealing to Lemma 3, and it completes the proof of our

Theorem (i). To establish the convergence in mean presented in Theorem (ii), one needs 10

show uniformly integrability of {H~/(logny}. But this directly follows from the proof of

Theorem 5 in [21J by noting that the alignments Cij are geometrically distributed, (hence (3Ab)

holds as needed in [21]). Finally, regarding our comments of the variance of H", that is,

var H" =:n;2/(6R)+1/12=1.6445/R+1I12. This is a consequence of the limiting distribution of

H" which can be proved is equal 10 Pr{H" < x} = ::::: exp [- lI2n(n-l)P.r] (the proof of this

fact is beyond the scope of this paper, and the reader is referred to [10] and [12]). The term

1/12 comes from a uniform correction.

Remarks

(1) Second-order asymptotic approximation. OUf main Theorem of this section establishes

fust-order asymptotics (Le., leading term) for the height Hn . A natural question arises, namely

what are the next terms of the asymptotic approximation of Hn . Although our approach

presented in Lemmas 1 to 3 limits the asymptotics to the leading factor, we may, however, com-

ment on the other terms. Let us concentrate on the average height EHn • In the next section, we

prove (repeating arguments from Lai and Robbins [21D, the following bound ( see also Section

4.3, Lemma 4)

EH• • a. + ~ n(n-I) ~ [1 - F(k)J

'-.
where an is given in (3.17). Using it and (3.1), we find

(3.22)

2
EHn s R logn+1+

I-log2
R

(3.23)

v
where as in Theorem R ... - log 2: pt. How light is this bound? For binary symmetric tries

i_I
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(R ~ log 2) Devroye [10] proved that

y-log2
ERn S 2log2n+l +

log 2

hence the upper bound (3.23) is greater than (3.24) by 0.61. On lhe other hand, Flajolet [5}

demonstrated that for binary symmetric tries

y-lo~2
EHn • 2log2n + log 2 + P(log n) + 0(1) (3.25)

where POog n) is a periodic function with very small amplitude. The derivation of (3.24) and

(3.25) require, however, much more advanced techniques. In both cases, !.he average Hn was

obtained through the analysis of limiting distribution functions of Hn .

(ii) Poisson model. We replace assumption (iii) by (iii'), that is, we assume that the number of

words (records) N stored in a trie is a random variable distributed according to Poisson with

parameter Il. Let H 11.' Hn denote the heights in the Poisson and Bernoulli models, respectively.

Restricting our analysis to r-Lh moments EH~ of the height H 11.' we find out that

(3.26)

where EH~ for Bernoulli model is discussed in our Theorem. In particular, for r ... 1 we obtain

2'" n 1-log2
EHJLs-e-1-l L logn L+ 1 +

R n_l n! R
(3.27)

where in the above we explicitly used the upper bound (3.23). To evaluate the series in (3.27),

we use the inequality log n s Jt '" where X n is the n-th Hannonic number. Then, after some

algebra and using some properties of the Hannonic numbers [24, p.79, Ex. 20] we prove

2
EHI-l s R loglJ.+

E,(~)+y+ 1-1og2

R

•

+1

where E 1 (IA-) is the exponential integral defined as E 1(x) = Je -Ir 1dt (I arg x I < :n:). A
,

stronger result is obviously available. Referring to (3.3) in our Theorem and the above, one can
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easily prove lhat EH 11 - 2'log ~/R. Finally. we note that this asymptotic approximation can be

extended to some other distributions of keys.

(iii) Almost sure convergence. Using OUf approach we can prove some stronger results, namely

lhat the convergence in probability of the height H". can be replaced in our Theorem by almost

sure convergence. According to Borel-Cantelli lemma, we need only to prove that

•
~Pr{IH"-a"1 >E}<~
"-,

where an =2/R·logn. Proofs of our Theorem and Lemma 2 (ef. (3.8» imply that

(3.28)

(3.29)

Nalurally, this bound by itself is not yet enough to show (3.28). But, selecling an appropriate

subsequence of n in (3.28) will do the trick. Indeed, if we replace n in (3.28) by a subsequence

s(k) =m Zk for all m ~ 1 and note that H". is a nondecreasing function of n, then one immedi-

alely proves (3.28). This is the main idea behind the proof of the almost sure convergence for

H", and details can be found in Kingman [30, Sec. 3.1].

(iv) More applications. In the next section, we present some generalization of our theorems to

more sophisticated digital trees. This, of course, does not limit the applications of our general

approach expressed in Lemma 1 to 3. In fact, the results can be easily applied to analyze max-

imum queue length, traveling salesman problems, spanning tree problems, assignment problems

and so on (for details see [23]). Ali mentioned in the introduction, we rather focus in this paper

on methodology needed to establish the height of some digital trees ( Le., maximum of some

dependent random variables). Therefore, we do not elaborate more on these applications.

4. GENERAUZATION

In this section we generalize our Theorem in three different directions by extending

assumptions (i)-(Hi) in our basic probabilistic model. At first, we shall investigate



· 19 •

generalization of tries to b-tries (see Example 2.3). Then, we focus on the Markovian model

(assumption (i'», and finally dependent models are considered (assumption (iii'». In particular,

we present some preliminary results for suffix trees.

4.1 Analysis of b-hies

In this section we are sliU within our basic probabilistic model ( assumptions (i)-(iii»,

however in addition we assume that an external node can store up to b keys (words) (see Figure

3 in Example 2.3). OUf interest is to compute the height Hn in such a h-trie. We need a gen-

eralization of llie alignments. Let X 1,X2•. .. , X" be the keys, and for

i.e., the number of digits that Xi, ..... X;h.l agree. Note that we have [b: 1) random vari·

abies Cj • i1 , ••• , h.I' and as in (2.18) the height Htl can be represented as

To evaluate Hm we apply Lemma 1 and Lemma 3 so we need the distribution .function of the

alignments Cjl;ll' .. ' h.I' But arguing as in Section 3 (see Eg. (3.1)), we immediately obtain

Pr{Ci,i~'" i~" <!: k} co P~ k = 0,1, ... , (4.1)

v
where Pb co L p, b+l. Again (4.1) is geometrically distributed, so condition (3.4) required for

<_I

Lemma 1 is satisfied. Then, an defined in (3.5) becomes

v
whereRb =-logPb =-Iog LPtb+l . But,

<-I

[ 1
nb+1

b n+ 1 ~ ~'---c:-;- (1 + O(n-1
))

(b + 1)!

so
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b + 1
a. - -- log n + 0(1)

Rb
(4.2)

Therefore, by Lemma 1 we conclude that Hn/logn :5.2/Rb (pr.), and the upper bound for the

height is established.

In order to derive a lower bound for Hn we apply the second moment method from

Lemma 3. The derivation goes along the same line as in the proof of OUf main Theorem, so we

would rather present only a sketch of the analysis. In particular, in order lO verify (3.15) we

must evaluate the joint distribution Pr{C 1,2, ... , b+l > rn , Ci,;" ... , ;b.! > rn}. This probability

depends on the cardinality of the set.f) = {I, 2, ...• b+l} n {ilti z, ... , h+l}' If Jj = 0 (0

means empty set), then the events {C 1,2, ... , b+l > rn} and {Cil;., ... , ;6., > rk} are independent,

and as in the case b ..l the contribution of it to y(rn ) is [n b - o (nb)]/n b -1 as n _ 00. For

[.8 I 'Ill k > 0 (Le., there are k common indices), we can easily find that

Pr{G ~ r C·· .:!!: r } _ (pb+l+k + pb+l+k)" s (pb+2 + qb+')"
1,2, ... ,b+l '" ""1"""6.' "

Using the following inequality (pb+2 + qb+2)1/(b+2) s (pb+l + qb+l)l/(b+l) (see (3.20)) we show,

as before, tbat for rn ... (I-E)a", with an given in (4.2), the above joint distribution can be upper

bounded as

Pr{C 1,2, ... , b+l :!!: (I-E)a" , Ci ";l' ..• ' ;6o':!!: (I-E)an} s n-b(1-e)'Pr 2{C 1,2, .•• , b+l > (I-E)a,,}

This implies that the conlribution YI (rn) of the dependent alignments is upper bounded by

Yl(1-E)an):S n b (l-e)/n b
_ 0 as n - co, and this compleles the verification of (3.15). Hence,

by Lemma 3 H"llog n :!!: (b +1)/Rb (pr.), and together with the upper bound proved above, we

finally show that

Hn b+l
lim -- ~ - (pr.),,_OXI logn Rb

(4.3)

The appropriate convergence in mean (see Eg. (3.3)) works too. In particular, for symmetric

case we obtain from (4.3)
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. EHn b+l
lim--.--
,,--:0 logyn b

which directly generalizes Flajolel's result [5) to V-ary b-tlies.

4.2 Markovian Model

We again assume b =1 (for simplicity of further analysis), but we allow Markovian ctepen-

defiey among the consecutive letters as postulated in assumption (it) which replaces assumption

(i). In particular, we denote by P '" {Pjj}iJ-l, the transition matrix for the underlying Markov

chain. The analysis in this case does not differ significantly from what we have seen in Section

3. The major problem lies in the evaluation of lhe distributions Pr{Cij ~ k} and Pr{en O!: Ie,

C;j O!: k}, bUI a literature (ef. [27,29]) contains necessary mathematics.

We starL with the upper bound, hence we need to evaluate 1 - F(k) ... Pr{Cij O!: k} for

large Ie. Let 1(; .. [n:101&:2, ...• :ltv) be the slationary vector associated with the Markov matrix

P = {pji}jJ.l' Then, one easily shows (cf. [29])

Pr{Cji ~ k} co L [1tiIPiliz'···' pi._dJ2
{}l.h,· ..• il}

(4.4)

and the sum is over all 1:s jj :S V. In short, (4.4) can be written as the inner product of

rr? =r [1tT, .. . , 1t~J and ptZ]l u where P IZ] co PoP is Schur JXlwer of lhe malrix P (that is, ele-

menlwise product), and u = (1,1, ... , 1) (cL [29]). This compact representation suggesls to

apply Perror-Frobenius theory [27J (0 p[Z] in order to show that for large k [27,29]

Pr{Cij ~ k} -1 - F(k-l) - ~et2] (4.5)

where 81Z] is the largest eigenvalue of p(Z], and f3 is a constant. This asymptotics provide

enough information to apply Lemma 1. In particular, solving (3.5) one proves that

(4.6)

and by Lemma 1, we oblain the following upper bound

(4.7)
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for the height H".

The lower bound, surprisingly, is not difficult 10 prove (00, since most of our arguments

from Section 3 can be adopted here. We apply the second moment method, so one needs to

verify (3.15). As before, we split the sum y(r,,) into two terms as (3.19) shows. To prove

y(r,,) - 1 for Tn "" (I-E)an it suffices 10 show Ihat the first term 'f1(r,,) in (3.19) lends to zero for

n - co. We need to compute the joint distribution Pr{C12 :!:'no Cij :!: 'n}.

Let us concentrate for a moment on Pr{C12 <!: Ie, e lj <!: k}. We notc that the event

{C12 ::: k, c Ij O!: k} can be interpreted as the requirement that the common word (prefix) of the

following three strings Xl. X2 andXj has length at least k. This falls exactly into the analysis

of the longest common aligned word found in r sequences (in our case r =3) presented by Kar-

lin and Ost in [29]. Naturally, a simple extension of (4.4) leads to

Pr{C I2 :?:. Ie, Cij:?:. k}.. ~ [Jtj'Pid2'···' PiJ,_"iJ3
{j, •.. ,iI}

or in a compact representation

(4.8)

where <x,y> is the inner product of x and y. In particular, the above suggests that the largest

eigenvalue S{31 of Schur product P (31 = PoP 0 P must be considered. Naturally, for large k

To complete Ollr proof, we need (0 show that Ihe first term in y(r,,), namely

"YI(r,,)" ~ Pr{C I2 <: rno C lk :!: r,,}/(n2 'Pr{C I2 C!: r,,)} - S[31/(nS[:il) tends to zero for
'-3

appropriately chosen r"o Let r" = (1-£)a" where a" is given in (4.5). In [29] it is proved that

(S[m))l/m is a decreasing function of m, hence 8[3) :s; 8~{2 8&) and finally

as needed (see also (3.21b)). By Lemma 3, we prove that H,,12log%Jn-1 C!: 1 (pr.), and together
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with (4.2) it gives our final result, namely

lim.-- (4.9)

Interestingly enough, this result can be extended to a more general dependency than Markovian.

The crucial thing is to obtain the estimate suggested in (4.5). For more details, see [29].

4.3 Dependent model

In many applications keys (words) are statistically dependent, e.g., in DNA and RNA

structures [25,26], in suffix tree [1,3], and so on. In this subsection, we relax assumption (ii) by

adopting (iii) and keeping the others unchanged (with b = 1). We consider two examples. In

the first, we assume only slatistical dependency between directly aligned symbols in any two

words. In the next (more realistic) example, we analyze suffix tree (see Example 2.2) in which

keys are suffixes of a random word. We nole also that in dependent models, the alignments are

very rarely stationary (identically distributed), whence our Lemma 1 and 2 cannot be directly

applied. In addition, analytical difficulties rapidly build up, so we restrict our interest to the

average value of the height H".

Let us start with our first dependent model and let xi, x, i denote the i-th digits in the k-th

and the t-th keys. We assume that there is a dependency between xL, x, i, which we express in

terms of the joint distribution, that is,

(4.10)

where k, t .. 1,~ ... , n, and oomoom E.4. Therefore, the alignment Ck, is geometrically distri-

v
buted with parameter Pk, = :L pnCk,l). Note, however, that this time the alignments CM are

'-1

not identically distributed, so Lemma 1 and Lemma 2 cannot be applied. We use the following

resul~ which is a slight generalization of Lai and Robbins idea [21].

Lemma 4. Let Yt>Y2,'." Ym be a sequence of random variables with distribution functions
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F 1(Y), F 2(Y), ... , Fm(Y), respectively. Lei Rdy) III Pr{Yj :l!: y} be the complement function of

the distribution function FjCY) (function RO is sometimes called the reliability function).

Finally, let Mm = max J'i. Then if am is a solution of
t"i"m

then

m -
EMm sam + L L R,U)·

k_I i-..

Proof: (i) Observe tha~ for any a (cf. [21])

m
Mm sa + L [Y./c-at

'.1

(4.11)

(4.12)

(4.13)

where t+ denotes max {O, t}. Since [Yk - ar is a nonnegative random variable, then [22]

-
E[Yk - at = !Rk(y)dy, so that (assuming for simplicity that Yi is a continuous random vari-

•
able) (4.13) implies

-m
EMm sa + L JR,(x)dx

k-l /2

(4.14)

Minimizing the right-hand side (RHS) of (4.14) with respect lo a, yields (4.11) and (4.12) with

the optimal am given by (4.11). •

To study the height Bn of a digilal tree, we usc our basic relationship between the height

and the alignments, namely Bn = max {C.lcd+l, that is, Bn is maximum over m - n2 (not
l:sk:S':S1l

necessary identically) distributed random variables. Let Fk,U) be lhe distribution function of

. V
eM and our assumptions imply FktU) = 1- pl{l wherePkt = L Pll(k,t). Then, by Lemma 4

'_1

" .
EH. s a" + 1 + L L [1- F"U)]

""-1 j_a.

where m .. n(n-1)12. The RHS of (4.15) is minimized for such all that

(4.15)
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• •
~ ~ R,,(a.) _ 1
k-l t·k+l

For the geometric distribution with parameter Pfd (4.16) becomes

(4.16)

• •

Let P max III max Pkt , then one proves that
k,'

P Q.. +1 1" . (4.17)

log m
log p;;;1c

where m - n2• Showing that the contribution of the sum in (4.14) is 0(1) we finally obtain

2
EH•• ~logn+O(l)

mm
(4.18)

where R min = - log P max- We also point oul that assumption Pn,m(k,t) < 1 is important. For

example, if one builds a prefix tree (Le., the k-th key is the prefix of the (k + 1)-5t key), then the

height is obviously equal La n. But in Ihis case Pn,m(k, t) is either zero or one, so the restriction

imposed in (4.10) is violated.

Finally, we consider one more sophisticated digital tree, namely a suffix tree [1, 3]. As

shown in Example 2.2, a suffix tree is constructed from a random sequence X of symbols by

laking the first n suffixes of X. Naturally, such a tree falls into the dependent model, and the i-

th symbol in the k·th suffix depends on an j-th U < i) symbol in the t-th suffix, (t < k). To

investigate the average height of the tree, we again apply Lemma 4. However, the major prob-

lem this time, is the computation of the distribution of the alignments Cij' It is not difficult to

observe that the distribution of Cij varies with i and j in a way that depends on the differences

d III 1j - i I, rather than on the specific individual values of i and j. In other words, all random

variables Cjj having the same value of d = Ij - i I, have the same distribution. Thus, it is

appropriate to reason in terms of the random variables Cd, where d = 1,2. ... , n-l. For exam-

pIe, C I,2-' C:z,3, ... , Cn_l,n have the same distribution, and are thus clustered in the new ran-
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dam variable C 1 (Le., d = 1).

The distribution of Cd was evaluated by Apostolico and Szpankowski in [16]. In partiCll-

lar, lhey have proved that the complement function RJC·) of lhe distribution function has the fol~

lowing form

where k has a unique decomposilion as k = de + r where r < d and e = 0, I, ...

(4.19)

Knowing

Rik) we can apply Lemma 4 to compute the height B n = max {Cij } + 1 of a random suffix

tree. In particular, we must solve (4.11) which in OUf case becomes

•L (n -d)Rd(a.) • 1
d-'

Then, according to (4.12)

• •
EH. sa. + L L (n -d)RdUl

j_~ d.l

(4.20)

(4.21)

It is not difficult to notice that (4.20) implies that lhe sum in (4.21) is o(a,,). So we concentrate

on compuling an, and for simplicity we consider only binary case.

The asymptotic solution of (4.20) needs some work, however, a rude upper bound for an is

immediately available. Indeed, noting that

(4.22)

where f ... lkld J and l· J denotes the floor function, one shows after some simple algebra (cf.

[16]) lhat

2
a. s ---"--c,-log n + 0(1)

10gp~BX
(4.23)

where Pmu. = m,ax {Pi}. To obtain more accurate estimate of an we fimt note that for d > k
1.:1: I sm

the function Rd(k) in (4.22) reduces 10 Rd(k) = (p2 +q2)" =pk, hence (4.20) can be rewritten as
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This can be easily solved asymptotically so that an becomes

2". - -,---"c:-_71 log n + O(lognlno)
log P

for some p::lsitive b. Details can be found in [16J. This and (4.21) establish a tight upper bound

on the average height of a suffix tree built from a random siring of characters.

A question arises whether a matching lower bound can be proved. Fortunately, Devroye,

Szpankowski and Rais [31] have recently shown (using the second moment method) the malCh-

ing lower bound, thus establishing the following remarkable result

. Hn 2
I,m --.­
n-"" logn R

(pr.) (4.25)

Note thai (4.25) proves that the suffix tree model is asymptotically equivalent to the independent

model. We note, however, that the second leading faclor for the suffix model is different than in

lhe case of independent model (see Theorem (i».
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