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ON THE HEIGHT OF DIGITAL TREES AND RELATED PROBLEMS

Wojciech Szpankowski*

Department of Compuler Science
Purdue University
Wesl Lafayetie, IN 47907, USA

Abstract

This paper studies in a probabilistic framework some lopics concerning the way words
(strings) can overlap, and relationship of this to the height of digilal trees associated with this
set of words. A word is defined as a random sequence of (possibly infinite) symbols over a
finite alphabet. A key notion of an alignment mawix {Cy;}7;., is introduced where C;; is the
length of the longest string that is a prefix of the i-th and the j-th word. It is proved that the
height of an associated digital tree is simply related o the alignment matrix through some order
statistics, In particular, using this observation and proving some inequalities for order statistics,
we cstablish that the height of a digital trie under an independent model (i.e., all words are sta-
tistically independent) is asymptotically equal 10 2 log,n where » is the number of words stored
in the trie and o is a parameter of the probabilisiic model. This result is generalized in three
directions, namely we consider b-lries, Markovian model (i.e., dependency among letters in a
word), and a dependent model (i.c., dependency among words) In particular, when consecutive
letters in a word are Markov dependent (Markovian model), then we demonstrate that the height
converges in probability to 2:loggn where 8 is a parameier of the underlying Markov chain. On
the other hand, for suflix trees which fall into the dependent model, we show that the height
does not exceed 2 log,.n, where « is a parameter of the probabilistic model. These results find
plenty of applications in the analysis of data structures buill over digital words.

* This rescarch was supportod by NSF gmnts NCR-8702115 snd CCR-8900305, and in part by grant RO1 LM05118
from National Library of Medicine, and by AFOSR grant 89NM407.




1. INTRODUCTION

Correlation on words are often studied through some assocjaled data structures such as
digilal trees built over these words (e.g., radix tries, subword trees, suffix trees, etc. [1,2,3]).
Digital trees are importani in their own right due to many applications in computer science (e.g.,
searching and sorting [1,2], dynamic hashing [4,5], pattern matching algorithms [1,3], etc.) and
telecommunications (e.g., coding, conflict resolution algorithms for broadcast communications
[6,7,8], eic.). In this paper, we invesligaie the height of digital trees under different probabilistic
models and show that the height is simply related to the longest common prefix of any two
words stored in the tree. The key notion of an alignment matrix C = {C;}/;.; is introduced,
where 7 is the number of words (keys, strings) and C;; measures the overlap on the first sym-
bols in the i-th and the j-th words. We shall study properties of the alignment C;; in a proba-
bilist‘ic framework, that is, we assume that words (keys) form a random sequence of (possible
infinite) symbols over a finite alphabet. The symbols occur independently or Markov depen-

dently in a word, and in addition words might be stalistically dependent (see Section 2).

By proving some theorems on order statistics (i.e, maximum) of dependent random vari-
ables (that is, alignments Cj;), we shall establish in this paper a new mclhodology lo study the
height of digital trees and some other related problems (e.g., the longest prefix of any pair of
words, the longest substring that can be fully recopied, testing for square-free words, memory
requirernents in the extendible hashing [5, 16], oplimization problems [23], and so forth [27]).
In particular, we prove that for large n, the height H,, of a digital trie with independent keys is
equal o 2 log,n in probability where o is a paramelter of the probabilistic model. This result is
generalized in four directions. Al first, we drop the assumption that the fixed number of keys
(words) are stored in the trie, and we prove thal under a Poisson distribution with parameter p
of keys the average height EH, is asymptotically equal to 2 log,u. Secondly, for digilal tries

that can store up lo b words in external nodes (i.e., b-tries) we eslablish that the height H,, is
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asymptolically equal to (1 +1/&)loggn, where B is a parameter of the model depending upon b.
Then, we assume Markov dependency among consecutive lellers, and establish that the height
behaves asymplotically like loggn where 6 is reciprocal of the largest eigenvalue of the Schur
product of the transition matrix for the underlying Markov chain. Finally, we consider a depen-
dent model, that is, the case when keys (words) are slatistically dependent (e.g., suffix tree

[1,3]). We prove that the height in this case does not exceed 2 log,.» for some x.

The height of digital trees has been previously investigated in [2,5, 9-15]. In [5], Flajolet
studied an independent model of binary symmetric b-trics. Based on some classical counting
results in occupancy problems, Flajolet derived the asymplotic disiribution of the height. Using
complex analysis (e.g., Cauchy integral formula) he also found the average height of a trie. Jac-
quet and Regnier [9], extended Flajolet’s result 1o binary asymmetric (i.e., symbols occur with
different probabilities) tries. They have made exlensive use of the Mellin transform technique.
Devroye [10] analyzed binary symmelric tries (indecpendent model again), and based on the
occupancy problem he derived some inequalities on the asymptotic distribution of the height.
The most general resulls were oblained by Pitlel [11] (see also [12]), where general asymmetric
tries (i.c., dependency among letters are allowed but not among words) with b = 1 were investi-
gated (in [12] b >1 was discussed but only under independent model). Unfortunalely, the
proofs in [11] are not constructive and the resulls are well hidden. For some more resulls, see
also [13] and [14]. We note here that all resulls discussed so far have been eslablished for
independent models, that js, for stalistically independent keys. To the best of our knowledge,
the dependent models were only studied by Szpankowski [15], and Apostolico and Szpankowski

[16]. In [16] the authors investigale the height of suffix trees.

Our approach to compule the height of digilal trees is quite different in comparison with
the ones established in [2,5, 9-14]). In conirast (o (he previous analyses, we use here some novel

resulls from order statislics, and therefore avoid explicil compulation of the height distribution.
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In addition, the purpose of this paper is to establish solid methodology which can be applied 1o
analyze different algorithms and data structures built over digital words. Therefore, we do not
restrict ourselves to a particular data structure or algorithm, and rather focus on methodological

aspects of the problem.

The paper is organized as follows, In the next seclion, we present our probabilistic frame-
work. Section 3, the heart of this paper, presenis our contribution lo the analysis of some order
statistics of dependent random variables, and contains our main results. Finally, Section 4 pro-
vides some generalizations of the results from Section 3, namely it presents the analysis of b-

fries, Markovian model, and dependent models.

2. MODEL FORMULATION

In this section we build our probabilistic framework, which sets up a stochastic model for
our studies. Let A4 = {w;,wy,..., wy} be an alphabet of V symbols, and let
A = {X,X; ..., X,} be a set of n (possibly infinite) strings (keys, words, sequences) over the
alphabet 4. To characterize the stochastic model, we need to describe the probabilistic features

of the set A. In our basic probabilistic model, we assume:
(i) A word X =x}x? -+, is an infinite sequence of symbols from 4 such that it forms

an independent sequence of Bernoulli trials with probability of sampling symbol w;

14 .
equal to p;, where > p; =1, that is, p;=Pr{xf=w;} for any k& and j If

i=1
P1=pz= """ =py=1/V, then the model is called symmetric, otherwise it is

asymmelric.
(ii) The words X;,X,..., X, are slatislically independent.

(iii) The number of words is fixed and equal 1o n.

These three assumptions form our basic probabilislic framework called the Bermoulli
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model. Some modifications of this basic model might be considered (see Section 4). For exam-

ple, one can replace (iii) by more general assumption

(iii”) The number of keys is a random variable N with a probability distribution function
p(n)=Pr{N =n}.

I p () is Poisson distribuled, then the model (i), (ii) and (jii’) is called the Poisson model (see

Remark (ii) in Section 3). The next exlension concerns assumption (i) since in some cir-

cumslances this assumption is too unrealistic. For example, if the alphabet 4 consisis of

English letters or 4 contains either four nucleolides or twenty amino acids (for DNA and pro-

leins analysis, respectively [25, 26]), then (here is a dependency between the occurrence of two

consecutive symbols. In a more elaborate random model, the assumption (i) is replaced by

(i) There is a Markovian dependency between neighboring symbols in a word

Xi = xgxf -+~ , that is, the probability p;; = Pr{xf = ©;|xf*! = w;}, prescribes the
conditional probability of sampling symbol w; [ollowing symbol w;.

The model (i’), (ii), (iii) or (iii") is called Markovian model. A more sophisticated dependency

may occur (see [11,12]). Note that the models discussed so far are very suitable for the analysis

of digital search tries, since it is reasomable lo assume that keys are independent (assumption

(i)). This is not the case, however, for suffix trees [1, 3] because the keys X5, X3, ..., X, are

suffixes of the first key, hence strongly dependent. Therefore, we modify the assumption (ii} as

follows.
(ii’) The keys X1,X5, ..., X, are dependent.

A probabilistic model coniaining assumption (ii’) is called dependent model in contrast lo

independent model when assumpltion (ii) is adopted.

The most popular dala structure associated with a set of (digital) words (keys) is a digital

tree [1,2]. Such a tree is built in a fairly natural way, that is, edges are labeled by symbols from




-6-

the alphabel 4 and leaves (exlernal nodes) contain the keys. The access path from Lhe root 1o a
leaf is @2 minimal prefix of informalion contained in the leaf. A brute force construction of such
a lree is simple, that is, on the k-th level of the (ree, we look at the &-th symbol, and if it is w,
we ““go left’” in the tree, if it is w, then we ‘“go next 1o the left’’, and so on. This Process
continues until all words X;,X,,..., X, can be separated (distinguished) and the words are
slored in external nodes. The following three examples present different types of digital trees.

EXAMPLE 2.1. Radix tries

Figure 1 shows V = 3-ary trie (see {1,2] for delailed definition of (ries) built over alphabet

4 = {0,1,2} with n = 6 records (keys, words, sirings) A, B, ..., F. The internal nodes

A =000
B =010
C =012
D =100 D
E =200
F=221
A E F
B C

Figure 1. Example of a 3-ary digital tric with n = 6.

(circles in Figure 1) are used to branch keys, while exiemal nodes (squares in the figure) contain

the words.

EXAMPLE 2.2. Suffix tree

The purpose of this example is 1o present a digital tree illusirating the dependent model.
We concentrate on the sufftx free [1,3], which is a data structure relatively often used in com-

binatorial algorithms on words [3]. Let 4 = {a,b} be a binary alphabet, and X = abbabaa... 2
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string. We build five suffixes of X, that is, X| = X, X, = bbabaa..., X5 = babaa... and so on

(see Figure 2). The suffix tree constructed from the first five suflixes of X is shown in Figure 2.

X, = abbabaa...
X5 = bbabaa...
X3 = babaa...
X4 = abaa...

X = baa...

X, X || xs X,

Figure 2. A suffix tree built from the first five suffixes of X = abbabaa - -+ .

EXAMPLE 2.3. b-fries

For keys A,B, ..., F as in Example 2.1 we build a trie, but now we allow to store up to b

keys in an external node. Such a digital tree is called b-trie.

A B,C

Figure 3. Example of a 3-ary digilal 2-irie with n = 6.

In Figure 3 we show a 2-(rie. Nole that the average searching time for a key decreases in com-

parison to the standard trie shown in Figure 1, however, for searching one needs additionally to




look up a linear list in an external node. O

Parameters of interest for digital trees are: depth of a leaf D,, external path length L,
height of the tree A, and the shortest path k,. We first introduce the depth of the i-th leaf DY
which counts the number of edges from the root (o the i-th leaf. Then, the above parameters are

defined as follows

D, = L i Dy (2.1a)
noi
L,= f‘, D& (2.1b)
i=1
H, = max {D§R (2.1c)
h, = min {D®} (2.1d)
lsisn

The height H, could be the most useful parameter in the analysis of algorithms since by
definition it upper bounds other parameters (for L, one must consider nH,). Moreover, it is rea-
sonable 1o believe that H,, D, and h, have the same order of magnitude, whence the height is
worth studying. We note, however, that the height is not a good measure of balancing property
for trees (see [17] for more delails). In this paper, we concentrate on establishing asymptotics
for the height A,. For b-tries, the depth D, was extensively studied by Szpankowski in [17],
external path length by Knuth [2], Kirschenhofer, Prodinger and Szpankowski [18] and the shor-
lest path by Pittel [12].

In this paper we propose a novel approach (and some new results) to evaluale the hejght
H, of digital trees under different models discussed above. The key notion is the alignment
matrix C = {Cy;}; ;1. For every pair (,), i = j, {,j =1,2,..., n, we define alignment Cy; as
the length of the longest string that is a prefix of both X; and X;. Thus, C;; = k iff X; and X;
agree exactly on (heir first & symbols, but differ on their (k + 1)-st. Then, the height H,,, the

extenal path lenpth L, and the shortest path /i, can be alternatively defined as (cf. (2.1)),
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H, = max {C”} +1 (223)

lsi<j=n

L,= i max {C;}+n (2.2b)

'-_lls;sn

h,= min { max {Cy}}+1 (2.20)

lsisn l=jsn

Hereafler, we concentrate only on the height f,, (for applications of definition (2.2b) and (2.2¢),

see [16]). At first, however, we illustrate (he new definitions by an example.

EXAMPLE 2.4. Alignment matrix

Let us reconsider the suffix uee from Example 2.2 (see also Figure 2). Then the

corresponding alignment matrix C = {C;;} is as follows:

*0020
0*101
C=|01*02
200*0
0120H*

From C and the expressions (2.2), we oblain H,, =3, h, =2, D, =14/5and L, = 14. U

In order to evaluale H,, we note that by definition (2.2a) we need to eslimate the max-
imum of m = n(n-1)/2 dependent random variables Cj;, i < j =1,2,..., #. The “maximum”’
is an example of an order statistic [19,20], and has been investigated vigorously over the lasl
twenly years, however, mosl resulls concern independent random variables [19]. In the next
section, we propose how to deal with dependent random variables C;; (see also [27]), and we

derive asymplotics for the height A,,.

3. MAIN RESULTS

In (his seclion we derive various resulls concerning asymptotic behavior of the height H,
of a regular trie (b = 1) under our basic mode] assumplions (i)-(iii). In fact, as a side effect, we

present also a fairly general approach lo investigate asymplolic behavior of some order slatistics
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for a class of dependent random variables.

By definition (2.2a), the height H,, of a digilal trie is one plus a2 maximum of n? depen-

2

dent random variables (alignments) Cj. In fact, since Cj; = Cj;, we can reduce n° to

F
m = n(n-1)/2 different alignmenits. It is relalively easy lo evaluate the distribution function
F(k) = Pr{Cy; = k} of the alignments C;;. Note that all alignments C;; are identically distri-
buted, whence we drop indices { and j in the notation of the distribution function F(k). Indeed,

let us adopt our basic stochaslic model consisling of assumpltions (i)-(iii). In parlicular, assump-

tions (i) and (i) immediately imply that Cj; is geometrically disiributed with parameter

14
P =Y p?, thatis,

inl

1-F(k)=P* k=0,1,..., (3.1
If alignments Cj; were independent random variables, then the knowledge of the distribution
function F (k) alone would be enough (o compute the order slatistics 12}3};\; {Cy} [15,20,21].
Otherwise, for computing the distribution of the maximum (whence the average, variance and so
on), we normally need joint distributions. Forlunately, in some cases, to estimate asymplotic
behavior of max {C;;}, (he marginal distribution (3.1) is almost enough (see Lemma 2 and

Lemma 3 below for more specific condilions). Using these methods we prove in (his seclion

our main resulls.

THEOREM. Suppose assumptions (i)-(iii) of our basic probabilistic model hold.

14
(i) LetR = - log P = - log > p#, where log is the natural logarithm. Then
ial

. H, 2 : -
r!l_rg og 7 =2 in probability (pr.) (3.2)

that is, for every €> 0 the following holds lim Pr{(1-¢)2logn /R sH,s(1+e)}2logn /R}= 1.
=0

In another nolation, this means that H, = (1+ o (1))-log n? /R (pr.).
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(ii) The r-th moment EH} of the height H, for large  satisfies the following relationship

EH] — (%-logn)’ (3.3a)
where ~ means asymptotically equivalent. In particular, the variance var H,, is

var H, = o(1) log?n = o(log?n) (3.3b)
Another analysis thal concentrates on proving convergence of H,, in distribution (see for exam-
ple [12]), can lead lo a betier estimate of the variance, namely, it can be proved that

varH, =n?/(6R)+1/12. &

We prove the theorem in two sleps by deriving an upper bound and then a lower bound
on max {Cy}. One needs to notice that the alignments C;; are dependent random variables.
More precisely, C,; depends on 2n alignments Cy; where either & or { is equal 10 one or two,
and C, is independent for the rest #n%/2—2n alignments Cyy with &,/ >2. This observation
suggesis thal we must compute some order stalislics for dependent random variables. In the
next three lemmas we suggest fairly general methods for establishing upper and lower bounds
for asymptotic behavior of some order stalistics. In Section 4, which deals with some generali-

zation of the above model, we shall appreciate this general approach.

We slart with an upper bound for some order slatistics, Let Y,Y5,..., Y,, be identically
distributed random variables with the distribulion function F(). We assume that F(') satisfies

the following two condilions.

F(y)<Ilforall y<w (3.4a)
1-F
im ==£@) Lo for c»1 3.4b
y—== 1-F(y) ( )

Let also a,, be the smallest root of the following equations

m[1 - F(a,)] = 1 (3.5)

The nex!t lemma establishes an upper bound for the maximum M, of the random variables
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Yl! cvey Yoo i.e., M, = max {Yl,Yz, Ceey Ym}
Lemma 1. Let conditions (3.4) hold for a sequence Y,,Y,,..., ¥, of identically distributed

random variables. Then, the maximum JM,, salisfies

M, . -
IIm — =<1 in probability (3.6)

n—w dy

that is, lim Pr{M,, > (1+€)a,} =1, where a,, is the root of equalion (3.5).
TH—=
Proof. We proceed as follows. Nole first that Boole’s inequality implies

PriMy >r}=Pr{Yy >r or Yo>r or "+ or Y, >r}=
smPr{Y, >r} =m[l-F(r)]

that is,

Pr{M,, > r} = min {1,m][1 - F(r)]} (3.7
Let now r = (1 + €)a,, where € is any posilive number. Then quoting condition (3.4a), inequali-

ties (3.7) becomes

Pr{M, >r}=m[l-F({(1+¢)a,)]
To complete the proof we must show that the RHS of of the above is o(1) for large m. Bul,

condition (3.4b) with ¢ = 1 + € > 0 and (3.5) imply

PriM, > (1 +€)a,} sm[l - F((1 +e)a,)] =m - o()[1 - Fla,)] = o (1) (3.8)

whence (3.6) follows. ™
The nice thing about Lemma 1 is that in order to eslablish an upper bound, we need only
information about (marginal) distribution of ¥’s, and not the joint distribution Pr{¥, <r,
Y; <r,..., Y, <r}. Unfortunately, this is not any longer true for lower bounds. The next
two lemmas show how to establish lower bounds, but this lime we need much more restriclive
assumptions. For the next lemma, which is also called the mixing condition approach, we

replace (3.4) by the following

lim ﬂﬂ)b—=[3=const forall b<1 (3.9)
y== [1-FQ)]
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In addilion, we curb the joint distribution Pr{Y, <r,..., Y, <r} by assuming existence of

o(m) = Q(m*) for some conslant x such that

Pri¥y<r,Y,<r,..., Y, <r}som)y[Pr{Y, <r}]" =a(m)F"{r) (3.10)
Then, the following lemma can be proved.

Lemma 2. If condition (3.9) and (3.10) with o = O(m*) hold, then

o My
lim inf — =1 almost surely (3.11)

n —- o am

where a,, is the smallest root of (3.5).

Proof. Let r = (1 - €}a,, in (3.10), that s,

Pr{M, < (1 -e)a,} som)F™((1 -¢)a,) (3.12)

Bui, by (3.9) with b =1 - ¢, one finds

1= F((L -£)a,) = (L + o(L)[L - Fla) = LL+od)

ml—e

Substituting the above into (3.12), we show that

Pr{M,, < (1-c)a,} s a(m) (1 - ﬂl”%ﬂﬂ) < o(m) exp[-mB(L + o (1))]

where the last inequalily is the consequence of the fact that (1-x/n)*se™ for x/n—=0 as

n—+®. Since = O(m*), then (3.11) follows from Borel-Cantelli Lemma [21]. ®

Before we leave this approach, we nole thal condition (3.10) in Lemma 2 can be replaced by a

weaker one (but easier to prove), namely

Pr{Y;<r,Y;<r}saPr{Y;<r}Pr{¥;<r} (3.10a)

for some a< 1.
The second method to establish a lower bound for M, is based on the so-called second
moment method [27,28]. We follow here the approach suggested in Aldous [27]. To recall, for

a random variable Z = 0 such that EZ? < =, the following inequality is (he basis for the second




-14 -
moment method

2
Pr{Z » 0} = 1@% (3.13)
EZ '
Note that Pr{Z > 0} lends to one, provided (EZ)?/EZ% — 1. This fact is used to derive the

next lemma. Let us define for some sequence r,, the following quantity

m Pr{Y,=r,,Y=ry}

Fy) = 3.14
Y () ;Ez m Prz{}’l =7} @14
Then, the second moment method can be formulated as below.
Lemma 3. Suppose that lim m[l — F(r,,)] = e logether with
m == o
lim y(r,) =1 (3.15)
M —- o

Then, lim Pr{M, =r,} =1 where M,, = max{Y,Yy,..., ¥,}. In particular, if for every

£> 0, r, =(1 -€)a,, where a, is given in (3.5), and (3.15) holds, then M, /a,, = 1 (pr.) that
is,

lim Pr{M, > (1L -&)a,} =1 (3.16)

m —= o
Proof: The proof follows immediately from Aldous [27], however, we present it for complete-

n
ness. Deline a set of events &; = {Y; = 1, }, and consider Z,, = 314, where 15 is the indicalor
i-1

function of the event @. To prove the lemma it suffices to note (hat
m

{Zm > 0} = {_UIB i} = {M, = r,} and apply inequality (3.13). ™
im

Now we are ready lo prove our Theorem. We note that the height H, is maximum over
m = n(n-1)/2 dependent random variables C;;. By (3.1) we immediately find that the root a,
of (3.5) (we prefer to use here a, instead of a,, since 7 ~ n? and n is the original ree parame-

ter) is

2 - log n(n-1)/2 2-logn
" log P! log P!

+ O(1) =- 2logpn + O(1) (3.17)
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To establish the upper bound for /7, we just check that conditions (3.42) and (3.4b) hold for the

geometric distribution (3.1). This immedialely proves that H,/log n < 2/R (pr.)

To prove the lower bound for H,,, we either use the mixing-condition approach (Lemma 2)

or the second moment method (Lemma 3). In either case, we must compute the joint distribu-
tion of the alignments {C;;}. In particular, one needs to evaluate Pr{Cy; = r, Cj; = r} for some
Lj€{1,2,..., n}. We note that for i,j > 2, the above alignments are independent, (hat is,
Pr{Cizr,Cjar}=Pr{Cp=r}Pr{C;2r}, provided {,j > 2, The dependency is among
the first 2 random variables, that for i=1 or j=1. Bui, a simple probabilisiic analysis reveals

that

PriCp=zr,Cy=r}= (2> + g (3.18)
(and the same holds for j=I). For symmelric case, i.e, p =g = %, we note that (3.18) implies
Pr{iCp=r, Cjzr}=(1/4) = Pr{Cy; =r}Pr{C,; = r}, hence Lemma 2 holds with = 1.
The asymmetric case needs, however, a litlle different treatment. We appeal to Lemma 3. Set

m = n?/2 in (3.14), and by the above discussion, we split y(r,,) into two terms, namely

n Pr{Cipzr,,Cyzr,} 2p _2n
Ym) =23 — + 5
iz nRPr{Cp=r,} n<f2

The second term of the above is the consequence of the independence of Cj; and Ci, for

(3.19)

L,j > 2. To verify (3.15) we need only 1o prove, that the first term of (3.19), say y,(r,,) tends to
zero for approprialely chosen r,. Now, as in (3.16) we assume r, = (1 -€)a, where
a, = — 2logpn as in (3.17). To prove ¥,(r,) — 0 as n — o, we need an upper bound for the
joint distribution in the numerator of y; (r,). Bui, thc following inequality can be easily proved
L i
@*+3%)° =(p* +4¢%)? (3.20)
Indeed, it is enough (o note that the function f (x) = (p* + g")*, p + g = 1, is decreasing for

x =1, Then, (3.18) and (3.20) imply

PriCip=(l-8)a, Cu=(-¢)a,}sn!®Pri{Cy = (1 -¢e)a,}, (3.21a)
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n{-¢)g,)=n**n> >0 a5 n-—ro (3.21b)
"This proves the lower bound of H, by appealing lo Lemma 3, and it completes the proof of our
Theorem (i). To establish the convergence in mean presented in Theorem (ii), one needs lo
show uniformly integrability of {H/(log #)"}. But this directly follows from the proof of
Theorem 5 in [21] by noting that the alignments C;; are geomelrically distributed, (hence (3.4b)
holds as needed in [21]). Finally, regarding our comments of the variance of H,, that is,
var H, =n?/(6R)+1/12=1.6445/R+1/12. This is a consequence of (he limiting distribution of
H, which can be proved is equal lo Pr{H, <x}==exp[- 1/2n(n-1)P*] (the proof of this
fact is beyond the scope of this paper, and the reader is referred to [10] and [12]). The term

1/12 comes from a uniform correction.

Remarks

(i) Second-order asympiotic approximation. Our main Theorem of this section establishes
first-order asymptotics (i.., leading term) for the height H,. A natural question arises, namely
what are the next lerms of the asymplolic approximation of H,. Although our approach
presented in Lemmas 1 to 3 limits the asymplolics (0 the Icadiﬁg faclor, we may, however, com-
ment on the other terms. Let us concentrale on the average height EH,,. In the next section, we
prove (repealing arguments from Lai and Robbins [21]), the following bound ( see also Section
4.3, Lemma 4)

EH, s a, + % n(n-1) k% [1 - F(k)] (3.22)

where a, is given in (3.17). Using it and (3.1), we find

EH, = % logn+1+ 1%33 + O™ (3.23)
14

where as in Theorem R = - log 3 p?. How light is this bound ? For binary symmelric tries
i=1
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(R = log 2) Devroye [10] proved that

EH, = 2logon+1 + 11—2’53 (3.24)

hence the upper bound (3.23) is greater than (3.24) by 0.61. On the other hand, Flajolet [5]

demonstrated that for binary symmetric tries

EH, = 2log,n + IIT:? + P(log n) + o(1) (3.25)

where P(log ») is a periodic function with very small amplitude. The derivation of (3.24) and
(3.25) require, however, much more advanced lechniques. In both cases, the average H, was

obtained through the analysis of limiting distribution functions of H,,.

(ii) Poisson model. We replace assumption (iii) by (iii’), that is, we assume that the number of
words (records) N stored in a frie is a random variable distributed according 1o Poisson with
parameter . Let H,, H, denote the heights in the Poisson and Bernoulli models, respectively.
Restricting our analysis (o r-th moments EH}, of the height H ,, we find out that
EH', = ' EH “ (3.26)
n=0 !
where EH}, for Bernoulli model is discussed in our Theorem. In particular, for r = 1 we obtain

EH s%e“Zlogn—+l —1033 G27

n=1
where in the above we explicitly used the upper bound (3.23). To evaluate the series in (3.27),
we use the inequality log n = ¥ ,, where X, is (he s-th Harmonic number. Then, after some

algebra and using some properlies of the Harmonic numbers [24, p.79, Ex. 20] we prove

E +¥+ 1-log2
EHFs%logu+ 1) YR & +1

where E (i) is the exponential integral defined as E (x) = f et ldr (| argx [ <m). A
x

stronger result is obviously available. Referring to (3.3) in our Theorem and the above, one can
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easily prove that EH |, ~ 2-log u/R. Finally, we noie that this asymplotic approximation can be

exlended to some other distributions of keys.

(iii) Almost sure convergence. Using our approach we can prove some stronger results, namely
that the convergence in probability of the height H, can be replaced in our Theorem by almost

sure convergence. According lo Borel-Cantelli lemma, we need only to prove that

§Pr{|H,,—a,,|>a}coo (3.28)

n=1

where a, =2/R-log n. Proofs of our Theorem and Lemma 2 (cf. (3.8)) imply that

Pr{|H,-a,| >e} <n®. (3.29)
Naturally, this bound by itself is not yet enough to show (3.28). But, selecling an appropriate
subsequence of » in (3.28) will do the trick. Indeed, if we replace n in (3.28) by a subsequence
s(k)=m2* for all m=1 and note that H, is a nondecreasing function of », then one immedi-
alely proves (3.28). This is the main idea behind the proof of the almost sure convergence for

H,, and deiajls can be found in Kingman [30, Sec. 3.1].

(iv) More applications. In the next section, we present some generalization of our theorems to
more sophisticated digital trees. This, of course, does not limit the applications of our general
approach expressed in Lemma 1 to 3. In fact, the resulis can be easily applied to analyze max-
imum queue length, traveling salesman problems, spanning tree problems, assignment problems
and so on (for details see [23]). As mentioned in the introduction, we rather focus in this paper
on methodology needed to establish the height of some digital trees ( i.e., maximum of some

dependent random variables). Therefore, we do not elaborate more on these applications.

4. GENERALIZATION

In this section we generalize our Theorem in three different direclions by extending

assumptions (i)-(iii) in our basic probabilistic model. Al first, we shall investigate
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generalization of tries 10 b-tries (see Example 2.3). Then, we focus on the Markovian model
(assumption (i')), and finally dependent models are considered (assumption (iii’)). In particular,

we present some preliminary results for suffix trees,

4.1 Analysis of b-fries

In this section we are still within our basic probabilistic model ( assumptions (i)-(iii)),
however in addition we assume that an external node can store up 10 b keys {(words) (see Figure
3 in Example 2.3). Our interest is {o compute the height H, in such a b-trie. We need a gen-
eralization of the alignments. Let X, X, ...,X, be the keys, and for

Eyigy oy Bpaa €{1,2,..., n} we denote C;; ,., e common prefix for X; ,..., X;

12 777 Gy I ?

i.e, the number of digils that X; ,..., X;

Ty

agree. Note that we have [b i 1] random vari-

ables C; and as in (2.2a) the height H,, can be represented as

|I--“..., f*_ll

H =1+ max {Ciigyeey v}

lsij< - <ig, sn
To evaluate H,, we apply Lemma 1 and Lemma 3 so we need the distribution function of the

alignments C; But arguing as in Section 3 (see Eq. (3.1)), we immediately obtain

[CF TERENE ™

Pr{C,-l,-z e

Iy,

=k}y=Pf  k=01,..., 4.1)

v
where P, = 3 p,*!. Again (4.1) is geometrically distributed, so condition (3.4) required for
i1

Lemma 1 is satisfied. Then, a, defined in (3.5) becomes

log [b . 1]
Qg = —————
R,

14
where R, = - log P, = - log ¥ p.*. Bu,
t=1

b+1

[b ' 1] - (bn+ o 4 o™

S0
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b+1
b

dy =

logn+0O(1) 4.2) .

Therefore, by Lemma 1 we conclude that H,/logn <2/R, (pr.), and the upper bound for the

height is established.

In order 1o derive a lower bound for H, we apply the second moment method from
Lemma 3. The derivation goes along the same line as in the proof of our main Theorem, so we
would rather present only a skeich of the analysis. In parlicular, in order o verify (3.15) we

must evaluate the joint distribution Pr{C;,5 . pu >ry, G > r,}. This probability

liil" =1 ibol
depends on the cardinality of the set.§ = {1,2,..., b+1} N {iy,iz, ..., ipa}. If5 =D (T

means emply set), then the evenls {Cy 5 .. 541 > ry} and {C; > r;} are independent,

L TEE 9
and as in the case b=1 the contribution of it to y(r,,) is [n® - O(@*)Yn® — 1 as n — . For

[-8| = &> 0 (ie., there are k common indices), we can easily find that

P"{Cl.z....b+1 =r,, C; zr,}= (Pb+1+k +pb+1+k)f. < (pb+2 + qb+2)!'.

lli‘.ll LIRS | '-b-l.
Using the following inequality (p**> + g,,5)"/®*2 < (pb+! 4 gb+)ME+) (see (3.20)) we show,
as before, that for r, = (1-€)a,, with 4, given in (4.2), the above joint distribution can be upper

bounded as

Pr{Cis,.... a1 2 (1-8)a,, C; = (1-€)a,} s n P DPr2{C,, . > (1-€)a,}

ls;'.h- =1 ITbol
This implies that the contribution y,(r,) of the dependent alignments is upper bounded by
Y1(1-€)a,) s n?U9/n® — 0 as n — o, and this completes the verification of (3.15). Hence,

by Lemma 3 H,/log n = (b +1)/R;, (pr.), and together with the upper bound proved above, we

finally show that

H, b+1
i = — . 4.3
n _l;l'lm IOg n Rb (pr ) ( )

The appropriate convergence in mean (see Eq. (3.3)) works too. In particular, for symmetric

case we oblain from (4.3)
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EHrr b+1

1i
e logyn b

which directly generalizes Flajolet's result [5] to V-ary b-tries.

4.2 Marikovian Model

We again assume b =1 (for simplicity of further analysis), but we allow Markovian depen-
dency among the consecutive letlers as postulaled in assumption (i*) which replaces assumption
(i). In particular, we denote by P = {p,-}-},-‘:} -1, the trapsition matrix for the underlying Markov
chain. The analysis in this case does not differ significanly from what we have seen in Section
3. The major problem lies in the evaluation of the distributions Pr{C;; = k} and Pr{Cy; = k,

Cj; = k}, bul a literature (cf. [27, 29]) contains necessary mathematics.

We start with the upper bound, hence we need 1o evaluate 1~ F(k) = Pr{C;; = k} for
large k. Let m= [m),7;, ..., %] be the slationary vector associaled with the Markov matrix

P = {p;;}};-1. Then, one easily shows (cE. [29])

P!‘{C;j = k} = E [Ejapjlfz’ Tty Pfi-:fklz (44)
{J'.h.f‘h ey jl}

and the sum is over all 1= j; s V. In shor, (4.4) can be written as the inner product of
7 = [nf,..., nf] and Pf" v where Py = P o P is Schur power of the matrix P (that is, ele-
mentwise product), and u = (1,1,..., 1) (cf. [29]). This compacl representation suggests to

apply Perror-Frobenius theory [27] to P in order to show that for large & [27,29]

Pr{C;j z k}=1 - F(k~1) ~ B0 @4.5)
where 6z is the largest eigenvalue of Py, and B is a constant. This asymptotics provide
enough information to apply Lemma 1. In particular, solving (3.5) one proves that

a, ~2logg, nt (4.6)

and by Lemma 1, we obtain the following upper bound

Hy2logg, n™' <1 (pr.) 4.7
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for the height H,,.

The lower bound, surprisingly, is not difficult to prove too, since most of our arguments
from Section 3 can be adopted here. We apply the second moment method, so one needs 1o
verify (3.15). As before, we split the sum y(r,) into two terms as (3.19) shows. To prove
Y(r,) — 1 for r, = (1-€)a, it suffices 10 show (hat the first erm y,(r,) in (3.19) lends to zero for

n —c. We need to compute the joint distribution Pr{Cy; 2 r,, C;; = r,.}.

Let us concentrate for a moment on Pr{C,, =k C;; =k}. We note thai the event
{C12 2k C;j =k} can be interpreted as the requirement that the common word (prefix) of the
following three strings X, X5 and X; has length at least k. This falls exactly into the analysis
of the longest common aligned word found in r sequences (in our case r =3) presented by Kar-

lin and Ost in [29]. Naturally, a simple exlension of (4.4) leads 1o

Pr{iCupzk Cijzk}= 3 [% D - s Piil (4.8)
{jl.l“!ji}

or in a compact representation
PriCp =k Cijzk}=<w, Pl u>
where <x,y> is the inner product of x and y. In particular, the above suggests that the largest

eigenvalue 83 of Schur product P =P o P o P must be considered. Naturally, for large &
PriCip 2k Cy=zk}~B'o
To complete our proof, we need to show that lhe first term in y(r,), namely

n
'n(r,,) - 2 Pr{Clz er, Cup=z r,,}/(nz'Pr{Clz = ?‘n)} ~ ngll(ne[ri]) tends to zero for
k=3

appropriately chosen r,. Let r, = (1~g)a, where a, is given in (4.5). In [29] it is proved that

(Bpmp)'™ is a decreasing function of m, hence 83 = 0" 0% and finally

R 21-2)
V() ~—=— > 0as n—>w
n

as needed (see also (3.21b)). By Lemma 3, we prove that H,/2 [ogemn" = 1 (pr.), and together




with (4.2) it gives our final resull, namely

: H,
lim ————=2 (pr) 4.9
n—~ logg n

Interestingly enough, this result can be extended io a more general dependency than Markovian.

The crucial thing is to obtain the estimate suggested in (4.5). For more details, see [29].

4.3 Dependent model

In many applications keys (words) are statistically dependent, e.g., in DNA and RNA
structures [25,26], in suffix tree [1,3], and so on. In this subsection, we relax assumption (ii) by
adopting (ii’) and keeping the others unchanged (with & =1). We consider two examples. In
the first, we assume only statistical dependency between directly aligned symbols in any two
words. In the next (more realistic) example, we analyze suffix tree (see Example 2.2) in which
keys are suffixes of a2 random word. We nole also that in dependent models, the alignments are
very rarely stationary (identically distributed), whence our Lemma 1 and 2 cannot be directly
applied. In addition, analytical difficulties rapidly build up, so we restrict our interest 1o the

average value of the height /..

Let us start with our first dependent model and let x}, x,* denote the i-th digits in the k-th
and the £-th keys. We assume that there is a dependency between xi, x;*, which we €xpress in

lerms of the joint distribution, that is,

pn.m(k'lg) =Pr{x.£r =W, xﬂi =mm} <1 (410)

where &, £ =1,2,..., n, and w,,w, €4. Therefore, the alignment Cy; is geometrically distri-

14
buted with parameter Py, = 3 pé(kt). Note, however, that this time the alignments Cj, are
t-1

not identically distributed, so Lemma 1 and Lemma 2 cannot be applied. We use the following
result, which is a slight generalization of Lai and Robbins idea [21].

Lemma 4. Let ¥,,Y,,..., Y, be a sequence of random variables with distribulion functions
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F), Faly), ..., Fa(y), 1espectively. Lel R;(y) w Pr{Y; = y} bc the complement function of
the distribution function F;(y) (function R() is sometimes called the reliability funclion).

Finaily, let M,, = max Y;. Thenif 4, is a solution of

Isixm

S Rya,) =1, @.11)
k=1
then
EMp<an+3 3 Rij) (¢.12)
k=1 jma,

Proof: (i) Observe that, for any a (cf. [21])
M.sa+ E} [Y: - a]* (4.13)
k=1

where t* denotes max {0,¢}. Since [Y; - a]* is a nonnegative random variable, then [22]

E[Yp-a]" = f Ry(y)dy, so that (assuming for simplicily that Y; is a continuous random vari-

a

able) (4.13) implies

EM,<a+ E; S Ri(x)dx (4.14)
kal a
Minimizing the right-hand side (RHS) of (4.14) with respect lo g, yields (4.11) and (4.12) with

the optimal a,, given by (4.11). ®

To study the height A, of a digilal irec, we use our basic relationship between the height

and the alignments, namely H,, = rfax {Cu }+1, that is, H, is maximum over n ~n? (not
lsk=<t=<n

necessary identically) distributed random variables. Let Fy,(f) be the distribution funclion of

, v
Cy, and our assumptions imply Fy, (j) = 1 - Pf;"t where Py = 3 pZ(k,£). Then, by Lemma 4
21

EH,sa,+1+ 3 5 [1-Fu()] (4.15)
Keml oo,

where m = n(n-1)/2. The RHS of (4.15) is minimized for such a, that
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n H
X 3 Rug)=1 (4.16)
k=1 mk+l
For the geometric distribution with parameter Py, (4.16) becomes
n a a,+1
> 3 Py o=l 4.17)

kel Lektl

Let Ppq, = max Py, then one proves that
&t

< log m
log P71,

a,

where m ~ n2. Showing that the contribution of the sum in (4.14) is O(1) we finally obtain

EH, <

logn+O(1) (4.18)

min

where R, = — log Ppae. We also point oul that assumplion p,, .(%¢) < 1 is important. For
example, if one builds a prefix tree (i.c., the &-th key is the prefix of the (k¢ + I)-st key), then (he
height is obviously equal to #. Bul in (his case p, ,(k,£) is either zero or one, so the restriction
imposed in (4.10) is violated.

Finally, we consider one more sophisticaled digital iree, namely a suffix tree [1, 3]. As
shown in Example 2.2, a suffix tree is constructed from a random sequence X of symbols by
laking the first # suffixes of X. Naturally, such a tree falls into the dependent model, and the i-
th symbol in the k-th suffix depends on an j-th (j < {) symbol in the £-th suffix, (¢ <k). To
investigate the average height of the tree, we again apply Lemma 4. However, the major prob-
lem this time, is the computation of the distribution of the alignments C;. It is not difficult to
observe that the distribution of Cj; varies with i and f in a way that depends on the differences
d = |j - |, rather than on the specific individual values of { and j. In other words, all random
variables C;; having the same value of 4 = |j — i|, have the same distribution. Thus, it is
appropriate to reason in terms of the random variables Cy, where d = 1,2,..., n-1. For exam-

ple, Cy3, Cz3,..., Cyy,, have the same distribution, and are thus clustered in the new ran-
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dom variable C, (i.e.,, d = 1).

The distribution of C,; was evaluated by Apostolico and Szpankowski in [16]. In particu-

lar, they have proved that the complement function R4(") of the distribution function has the fol-

lowing form
v r v d-r
Pric= k=R~ {3 } {z o } @19
i=1 i=l
where & has a unique decomposilion as k = df + r where r <d and £ = 0,1, --- . Knowing

R;(k) we can apply Lemma 4 1o compute the height H, = max {C;;} + 1 of a random suffix

tree. In particular, we must solve (4.11) which in our case becomes

S (1-d)Ru(a,) = 1 (4.20)
d=1
Then, according to (4.12)
EH,<a,+ Y 3 (n-d)Ry()) (4.21)
j=a, d=1

It is not difficult to notice that (4.20) implies that the sum in (4.21) is o(a,). So we concentrate

on compuling a,, and for simplicity we consider only binary case.

The asymptotic solution of (4.20) needs some work, however, a rude upper bound for a,, is

immediately available. Indeed, noting that

Ry(k) s (p/*! + gy (a22)
where f = |k/d | and || denotes the floor function, one shows afier some simple algebra (cf.
[16]) that

2
a, s ———logn + 0(1) (4.23)
10Z Prax

where pr., = max {p;}. To oblain more accurate estimate of @, we first note that for d > &
Isism

the function R (k) in (4.22) reduces lo R,(k) =(p? +g2)* = P¥, hence (4.20) can be rewritten as
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la.] n? .
1= 3, (n-d)Ro(@n) + %5 P*
d=1

This can be easily solved asymptotically so that a, becomes

log n + O(lognin®) (4.24)

a, = o

for some positive d. Details can be found in [16]. This and (4.21) establish a tight upper bound

on the average height of a suffix free built from a random string of characters.

A question arises whether a matching lower bound can be proved. Fortunately, Devroye,
Szpankowski and Rais [31] have recently shown (using the second moment method) the maich-

ing lower bound, thus establishing the following remarkable result

n 2
i < 4.
ialogn R ") *2)

Nole thal (4.25) proves that the suffix ree model is asymplolically equivalent to the independent
model. We note, however, that the second leading faclor for the suffix model is different than in

lhe case of independent model (see Theorem (i)).
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