On the Height of the Sylvester Resultant

Carlos D'Andrea and Kevin G. Hare

CONTENTS

1. Introduction
2. Quadratic Polynomials
3. Cubic Polynomials
4. Conclusions and Comments

Acknowledgments
References

2000 AMS Subject Classification: Primary 11G50; Secondary 12 Y 05

Keywords: Sylvester resultants, heights, quadratic and cubic polynomials

Let n be a positive integer. We consider the Sylvester resultant of f and g, where f is a generic polynomial of degree 2 or 3 and g is a generic polynomial of degree n. If f is a quadratic polynomial, we find the resultant's height. If f is a cubic polynomial, we find tight asymptotics for the resultant's height.

1. INTRODUCTION

Let m and n be positive integers, f and g be generic univariate polynomials of degrees m and n, respectively:

$$
\begin{align*}
& f(x):=f_{0}+f_{1} x+\cdots+f_{m} x^{m} \tag{1-1}\\
& g(x) \\
& :=g_{0}+g_{1} x+\cdots+g_{n} x^{n}
\end{align*}
$$

Here, f_{i}, g_{j} are new variables. The Sylvester resultant of f and g is the determinant of the following square matrix of order $m+n$:

$$
\begin{align*}
& \operatorname{Res}(f, g):= \\
& \operatorname{det}\left[\begin{array}{cccccc}
f_{0} & & & & g_{0} & \\
f_{1} & f_{0} & & & g_{1} & \ddots \\
\vdots & \vdots & \ddots & & \vdots & \ddots
\end{array}\right) \tag{1-2}\\
& f_{m} \\
& \\
& f_{m-1} \\
& \\
& \\
& \\
& \\
& \\
&
\end{align*}
$$

where the first n columns contain coefficients of f and the last m contain coefficients of g.

From the definition, it is very easy to see that $\operatorname{Res}(f, g)$ is a homogeneous polynomial in the variables f_{i} and g_{j}. Further $\operatorname{Res}(f, g)$ is homogeneous in each group of variables, having degree n in the f_{i}, and m in the g_{j}. It is not hard to see that the resultant is ω-homogeneous of "degree" $m n$, where $\omega=(0,1, \cdots, n, 0,1, \cdots, m)$. This means that if a monomial $f_{0}^{\alpha_{0}} \cdots f_{m}^{\alpha_{m}} g_{0}^{\beta_{0}} \cdots g_{n}^{\beta_{n}}$ appears with nonzero coefficient in the expansion of $\operatorname{Res}(f, g)$,
then $\sum_{i=1}^{m} i \alpha_{i}+\sum_{j=1}^{n} j \beta_{j}=m n$ (see [Sturmfels 94, Theorem 6.1]).

Resultants are widely used as a tool for polynomial equation solving; this has sparked a lot of interest in their computation (see, e.g., [Cox et al. 96, Cox et al. 98, Gelfand et al. 94]). The absolute height of a polynomial $g=\sum_{\alpha} c_{\alpha} U^{\alpha} \in \mathbb{C}\left[U_{1}, \cdots, U_{p}\right]$ is defined as $H(g):=$ $\max \left\{\left|c_{\alpha}\right|, \alpha \in \mathbb{N}^{p}\right\}$. In this paper we will be concerned with the computation of the height of $\operatorname{Res}(f, g)$.

The sharpest upper bound for the height was given in [Sombra 04, Theorem 1.1], where it is shown that $H(\operatorname{Res}(f, g)) \leq(m+1)^{n}(n+1)^{m}$. Previous upper bounds were given in [Bost et al. 94, Krick et al. 01, Philippon 95, Rojas 00, Sombra 02], for more general resultants which include $R(f, g)$.

However, up to now there have been no known exact expressions for $H(\operatorname{Res}(f, g))$, for any nontrivial cases. We only know the exact value of the coefficients of the resultant for extremal monomials with respect to a generic weight, and they are equal to ± 1 (see [Sturmfels 94, Corollary 3.1]).

The purpose of this paper is to give nontrivial estimates on the height of the resultant for polynomials f of low degree.

1.1 Quadratic Polynomials

In the case $m=2$, we get an exact solution for the height of $\operatorname{Res}(f, g)$ in terms of an integer number A_{n}. To define A_{n}, first consider $p_{n}(z):=(n-2 z+1)(n-2 z+2)-$ $z(n-z)$. It is easy to see that if $n \geq 3$, then $p_{n}(0)>0$ and $p_{n}\left(\frac{n}{2}\right)<0$. As $p_{n}(z)$ is a quadratic polynomial in z, we define, for $n \geq 3, r_{n}$ as the unique root of $p_{n}(z)$ lying in $\left[0, \frac{n}{2}\right]$. Set $A_{n}:=\left\lfloor r_{n}\right\rfloor$, the floor of r_{n}. In Table 1, we have listed some values of A_{n}.

Theorem 1.1. Let $n \geq 3$. The coefficient of highest absolute value in the expansion of $\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g\right)$ is the coefficient corresponding to $g_{0} g_{n} f_{0}^{A_{n}} f_{1}^{n-2 A_{n}} f_{2}^{A_{n}}$. Moreover,

$$
\begin{aligned}
H\left(\operatorname { R e s } \left(f_{0}\right.\right. & \left.\left.+f_{1} x+f_{2} x^{2}, g\right)\right) \\
& =H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g_{0}+g_{n} x^{n}\right)\right) \\
& =n \frac{\left(n-A_{n}-1\right)!}{\left(n-2 A_{n}\right)!A_{n}!}
\end{aligned}
$$

Remark 1.2. As $A_{n}<\frac{n}{2}$, it turns out that $\left(n-2 A_{n}\right) \geq 0$.

Before we give the next result, we must introduce some notation.

A_{n}	n	A_{n}	n	A_{n}	n
1	3,4	10	$34,35,36,37$	19	$67,68,69,70$
2	$5,6,7,8$	11	$38,39,40,41$	20	$71,72,73$
3	$9,10,11,12$	12	$42,43,44$	21	$74,75,76,77$
4	$13,14,15$	13	$45,46,47,48$	22	$78,79,80,81$
5	$16,17,18,19$	14	$49,50,51,52$	23	$82,83,84$
6	$20,21,22,23$	15	$53,54,55$	24	$85,86,87,88$
7	$24,25,26$	16	$56,57,58,59$	25	$89,90,91$
8	$27,28,29,30$	17	$60,61,62$	26	$92,93,94,95$
9	$31,32,33$	18	$63,64,65,66$	27	$96,97,98,99$

TABLE 1. Values of A_{n} (Theorem 1.1).

Notation. 1.3. Let $\alpha(n)$ be a positive sequence. We say that a sequence $\beta(n)$ is equal to $\mathcal{O}(\alpha(n))$ if there exist positive constants c_{1}, c_{2}, and N such that for all $n>N$ we have $c_{1} \alpha(n) \leq \beta(n) \leq c_{2} \alpha(n)$.

Based on Theorem 1.1 we get

Corollary 1.4. Let $\alpha \approx 1.6180$ be the positive root of $x^{2}-x-1$ and $\beta \approx 2.3644$ be the positive root of $4 x^{4}-125$. Then

$$
H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g\right)\right)=\frac{\beta}{\sqrt{n \pi}} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n \sqrt{n}}\right)
$$

1.2 Cubic Polynomials

In the case $m=3$, we get a tight bound for the height. In particular, we get the following:

Theorem 1.5. Let $\beta \approx 8.13488$ be the real root of $x^{3}-$ $18 x^{2}+110 x-242$, and $\alpha \approx 1.83928$ be the real root of $x^{3}-x^{2}-x-1$. Let g be a generic polynomial of degree n. Then
$H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}, g\right)\right)=\frac{\beta}{\pi n} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)$.

1.3 Organization of Paper

Section 2 gives a proof of Theorem 1.1 and Corollary 1.4. A proof of Theorem 1.5 is given in Section 3. Section 4 gives some conclusions and conjectures, and lists some open questions.

2. QUADRATIC POLYNOMIALS

Proof of Theorem 1.1: The proof will be made by induction on n. For this section, denote with $H(n)$ the height of the resultant of a degree- 2 generic polynomial f and a generic polynomial g of degree n.

For $n=3$, an explicit computation shows that

- $A_{3}=1$,
- $H(3)=3$, and this is the coefficient of $g_{0} g_{3} f_{0} f_{1} f_{2}$.

Suppose now $n>3$. As the degree of $\operatorname{Res}(f, g)$ in the g_{j} is 2 , we will first consider two special cases:

- if we pick a term in the expansion of $\operatorname{Res}(f, g)$ which is not a multiple of g_{0}, this term will appear in the expansion of

$$
\begin{aligned}
\operatorname{Res}\left(f, g_{n} x^{n}+\cdots\right. & \left.+g_{1} x\right)= \\
& \pm f_{0} \operatorname{Res}\left(f, g_{n} x^{n-1}+\cdots+g_{1}\right)
\end{aligned}
$$

and by the inductive hypothesis, all the coefficients of this expansion are bounded by $H(n-1)$.

- if we pick a term in the expansion of $\operatorname{Res}(f, g)$ which is not a multiple of g_{n}, this term will appear in the expansion of

$$
\operatorname{Res}(f, g)= \pm f_{2} \operatorname{Res}\left(f, g_{n-1} x^{n-1}+\cdots+g_{0}\right)
$$

and reasoning as in the previous case, all the coefficients in this case will be bounded by $H(n-1)$.

In order to conclude, we have to bound all the coefficients corresponding to monomials of the form $g_{0} g_{n} f_{0}^{a} f_{1}^{b} f_{2}^{c}$ for some a, b, and c, and compare this bound with $H(n-1)$.

Without loss of generality we compute $\operatorname{Res}\left(f_{2} x^{2}+\right.$ $\left.f_{1} x+f_{0}, g_{n} x^{n}+g_{0}\right)$. Moreover, we can also set $g_{n}:=$ $f_{2}:=1$. Let $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)$. Then,

$$
\begin{align*}
\operatorname{Res}(f, g) & = \pm\left(x_{1}^{n}+g_{0}\right)\left(x_{2}^{n}+g_{0}\right) \\
& = \pm\left(\left(x_{1} x_{2}\right)^{n}+\left(x_{1}^{n}+x_{2}^{n}\right) g_{0}+g_{0}^{2}\right) \tag{2-1}
\end{align*}
$$

In order to write the right-hand side of $(2-1)$ in terms of f_{1}, f_{0}, we apply the classical Girard formulas (see, for instance, [Gelfand et al. 94, Chapter 4 F]):

$$
\begin{align*}
& x_{1}{ }^{n}+x_{2}^{n}= \\
& (-1)^{n} n \sum_{i_{1}+2 i_{0}=n}(-1)^{2 i_{1}+i_{0}} \frac{\left(i_{1}+i_{0}-1\right)!}{i_{1}!i_{0}!} f_{1}{ }_{1} f_{0}{ }^{i_{0}} \tag{2-2}
\end{align*}
$$

So, we have to maximize $\frac{\left(i_{1}+i_{0}-1\right)!}{i_{1}!i_{0}!}$ subject to the condition $i_{1}+2 i_{0}=n$. Set $z:=i_{0}$, then $i_{1}=n-2 z$, and we have to study the behaviour of the function

$$
P(z):=\frac{(n-z-1)!}{(n-2 z)!z!}, \text { for } z=0,1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor .
$$

As

$$
P(z)-P(z-1)=\frac{(n-z-1)!}{(n-2 z+2)!z!} p_{n}(z),
$$

and due to the fact that $p_{n}(z)$ is a quadratic equation having r_{n} as the unique root in the interval $\left[0, \frac{n}{2}\right]$, we have

- P is increasing for $z=0,1, \ldots, A_{n}$.
- P decreases for $z=A_{n}, A_{n}+1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$.

Hence, the maximum of P is attained when $z=A_{n}$, and $H(n)=n P\left(A_{n}\right)$ because of (2-1) and (2-2).

In order to conclude, we only have to prove that $H(n)>H(n-1)$. Since

$$
H(n-1)=(n-1) \frac{\left(n-A_{n-1}-2\right)!}{\left(n-1-2 A_{n-1}\right)!A_{n-1}!}
$$

and

$$
\begin{equation*}
H(n) \geq n \frac{\left(n-A_{n-1}-1\right)!}{\left(n-2 A_{n-1}\right)!A_{n-1}!} \tag{2-3}
\end{equation*}
$$

it is easy to check that the right-hand-side of $(2-3)$ is bigger than $H(n-1)$ if and only if $n \geq 3$.

From here, we can prove Corollary 1.4:
Proof of Corollary 1.4: By noticing that

$$
r_{n}=\frac{6+5 n-\sqrt{5 n^{2}-4}}{10}
$$

we get

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{n}=\frac{5-\sqrt{5}}{10}
$$

Thus for large n we get

$$
\begin{aligned}
& \left.n \frac{(n}{(n-}-2 A_{n}-1\right)! \\
& \quad=n \frac{\Gamma\left(n-A_{n}\right)}{\Gamma\left(n-2 A_{n}+1\right) \Gamma\left(A_{n}+1\right)} \\
& \quad=\frac{n \Gamma\left(n-A_{n}\right)}{\left(n-2 A_{n}\right) A_{n} \Gamma\left(n-2 A_{n}\right) \Gamma\left(A_{n}\right)} \\
& \quad=\frac{n^{2}}{\left(n-2 A_{n}\right) A_{n}} \times \frac{\Gamma\left(n-A_{n}\right)}{n \Gamma\left(n-2 A_{n}\right) \Gamma\left(A_{n}\right)}
\end{aligned}
$$

From the comment above, we see that the first fraction will approach $\frac{5(1+\sqrt{5})}{2}$. This then gives us

$$
\begin{aligned}
& \approx \frac{5(1+\sqrt{5})}{2} \frac{\Gamma(n / 2+n \sqrt{5} / 10)}{n \Gamma(n \sqrt{5} / 5) \Gamma(n / 2-n \sqrt{5} / 10)} \\
& =\frac{\beta}{\sqrt{\pi n}} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{3 / 2}}\right)
\end{aligned}
$$

which gives the desired result. The last line of this inequality was derived with the help of Maple.

Here we ignored a number of problems that occur with respect to errors in approximation. These are done in the same way that they will be done in the proof of Theorem 3.7.

3. CUBIC POLYNOMIALS

In this section, we will denote with $H(n)$ the height of a generic degree-3 polynomial f and a generic degree- n polynomial g. By an argument similar to Theorem 1.1, if $H(n)>H(n-1)$, then both g_{n} and g_{0} must divide the terms which gives rise to $H(n)$. We will see that this holds for $n \gg 0$. We have then that three g_{i} must divide each of the terms of $\operatorname{Res}(f, g)$ and two of them are known if $H(n)>H(n-1)\left(g_{n}\right.$ and $\left.g_{0}\right)$. This gives rise to the following definitions

Definition 3.1. Define $H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)$ to be the coefficient of $f_{0}^{m} f_{1}^{k} f_{2}^{k^{\prime}} f_{3}^{m^{\prime}} g_{0} g_{l} g_{n}$ in $\operatorname{Res}(f, g)$.

Definition 3.2. Define

$$
H_{l}(n)=\max _{m+k+k^{\prime}+m^{\prime}=n}\left|H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)\right|
$$

The main results of the paper will be derived by being able to write $H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)$ in terms of some auxiliary functions $F\left(m, k, k^{\prime}, m^{\prime}\right)$ which are defined as follows:

Definition 3.3. Define $F\left(m, k, k^{\prime}, m^{\prime}\right)$ to be the number of occurrences of $f_{0}^{m} f_{1}^{k} f_{2}^{k^{\prime}} f_{3}^{m^{\prime}}$ in the determinant of the matrix

$$
\left[\begin{array}{ccccccc}
f_{2} & f_{1} & f_{0} & & & & \\
f_{3} & f_{2} & f_{1} & f_{0} & & & \\
& f_{3} & f_{2} & f_{1} & f_{0} & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & f_{3} & f_{2} & f_{1} & f_{0} \\
& & & & f_{3} & f_{2} & f_{1} \\
& & & & & f_{3} & f_{2}
\end{array}\right]
$$

of dimension $m+k+k^{\prime}+m^{\prime} \geq 1$. For $m+k+k^{\prime}+m^{\prime}=1$ or 2 the determinant would be of the matrices

$$
\left[f_{2}\right] \text { and }\left[\begin{array}{ll}
f_{2} & f_{1} \\
f_{3} & f_{2}
\end{array}\right]
$$

respectively.
For convenience we define $F(0,0,0,0)=1$.
For example, for $m+k+k^{\prime}+m^{\prime}=3$, we have

$$
\operatorname{det}\left[\begin{array}{ccc}
f_{2} & f_{1} & f_{0} \\
f_{3} & f_{2} & f_{1} \\
0 & f_{3} & f_{2}
\end{array}\right]=f_{2}^{3}-2 f_{1} f_{2} f_{3}+f_{0} f_{3}^{2}
$$

Thus we see that $F(1,0,0,2)=1, F(0,1,1,1)=-2$ and $F(0,0,3,0)=1$.

Lemma 3.4. $F\left(m, k, k^{\prime}, m^{\prime}\right)$ satisfies the recurrence relation

$$
\begin{aligned}
F\left(m, k, k^{\prime}, m^{\prime}\right)= & F\left(m, k, k^{\prime}-1, m^{\prime}\right) \\
& -F\left(m, k-1, k^{\prime}, m^{\prime}-1\right) \\
& +F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)
\end{aligned}
$$

with $F(0,0,0,0)=1$ and $F\left(m, k, k^{\prime}, m^{\prime}\right)=0$ if any of m, k, k^{\prime} or $m^{\prime}<0$.

Proof: The recurrence follows by considering the three possibilities from the first row.

$$
\left[\begin{array}{ccccccc}
\hline f_{2} & f_{1} & f_{0} & & & & \\
\hline f_{3} & f_{2} & f_{1} & f_{0} & & & \\
& f_{3} & f_{2} & f_{1} & f_{0} & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & f_{3} & f_{2} & f_{1} & f_{0} \\
& & & & f_{3} & f_{2} & f_{1} \\
& & & & f_{3} & f_{2}
\end{array}\right],
$$

By induction we will prove the following lemma, whose statement was first discovered experimentally via [Sloane 98].

Lemma 3.5. If $m^{\prime}=2 m+k$, then:

$$
\begin{equation*}
F\left(m, k, k^{\prime}, k+2 m\right)=(-1)^{k}\binom{m+k}{k}\binom{k^{\prime}+k+m}{k+m} \tag{3-1}
\end{equation*}
$$

If $m^{\prime} \neq 2 m+k$, then $F\left(m, k, k^{\prime}, m^{\prime}\right)=0$.

Proof: By examining the recurrence relation, we see that $F\left(m, k, k^{\prime}, m^{\prime}\right)=0$ if $m^{\prime} \neq 2 m+k$.

Equation (3-1) is true for $m+k+k^{\prime}=1$ by some simple calculations. So we have that

$$
\begin{aligned}
& F\left(m, k, k^{\prime}, k+2 m\right) \\
&= F\left(m, k, k^{\prime}-1, k+2 m\right)-F\left(m, k-1, k^{\prime}, k+2 m-1\right) \\
&+F\left(m-1, k, k^{\prime}, k+2 m-2\right) \\
&=(-1)^{k}\binom{m+k}{k}\binom{k^{\prime}-1+k+m}{k+m} \\
& \quad-(-1)^{k-1}\binom{m+k-1}{k-1}\binom{k^{\prime}+k-1+m}{k+m-1} \\
&=(-1)^{k}\binom{m+k}{k}\binom{k^{\prime}-1+k+m}{k+m} \\
&+\binom{k^{\prime}+k-1+m}{k+m-1}\binom{m+k-1}{k-1} \\
&\left.\left.+\binom{m+k-1}{k}\right)\right) \\
&=(-1)^{k}\binom{m+k}{k}\binom{k^{\prime}-1+k+m}{k+m} \\
&\left.\left.+\binom{k^{\prime}+k-1+m}{k+m-1}\right)\right) \\
&=(-1)^{k}\binom{m+k}{k}\binom{k^{\prime}+k+m}{k+m}
\end{aligned}
$$

Theorem 3.6. Let F be as in Definition 3.3. Then

$$
\begin{aligned}
& H_{0}\left(m, k, k^{\prime}, m^{\prime}\right) \\
& \quad=F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)-F\left(m, k, k^{\prime}-1, m^{\prime}\right) \\
& \quad=+2 F\left(m, k, k^{\prime}, m^{\prime}\right) \\
& \quad=(-1)^{k}\left(3 m+2 k+k^{\prime}\right) \frac{\left(m+k+k^{\prime}-1\right)!}{k!m!k^{\prime}!}
\end{aligned}
$$

The value of $H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)$ is given in Table 3 for l from 0 to 5 . We will provide only the proof for $H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)$ here. The other cases listed in Table 3 are similar. Code which automates this process is available upon request.

For all l, we can also write $H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)$ as a sum of various F. Instead of three cases, we tend to get six, depending on which column the g_{0}, the g_{l}, and the g_{n} are taken from. In each of these cases we get a finite number of ways to account for the terms above the g_{l} term, and below the g_{n} term. The terms between the g_{l} and the g_{n} can be accounted for with F functions. So each of these finite number of ways will account for some $F\left(m-?, k-?, k^{\prime}-?, m^{\prime}-?\right)$ which will then be taken into the final sum.

Proof of Theorem 3.6: The second statement of the theorem follows directly from Lemma 3.5 , so it suffices to prove the first statement.

We notice that there are three different ways in which we can get $g_{0} g_{0} g_{n}$ as a factor. We will do each case separately.

Case 1.

So we get that this case contributes $F\left(m, k, k^{\prime}, m^{\prime}\right)$.

Case 2.

$\left[\begin{array}{cccccccccc}f_{0} & & & & & & & g_{0} & & \\ f_{1} & f_{0} & & & & & & g_{1} & g_{0} & \\ f_{2} & f_{1} & f_{0} & & & & & g_{2} & g_{1} & \\ f_{3} & f_{2} & f_{1} & f_{0} & & & & g_{0} \\ & f_{3} & f_{2} & f_{1} & \ddots & & & g_{2} & g_{1} \\ & & f_{3} & f_{2} & \ddots & f_{0} & & \vdots & \vdots & \vdots \\ & & & f_{3} & \ddots & f_{1} & f_{0} & \vdots & \vdots & \vdots \\ & & & & \ddots & f_{2} & f_{1} & g_{n} & g_{n-1} & g_{n-2} \\ & & & & & f_{3} & f_{2} & & \boxed{g_{n}} & g_{n-1} \\ & & & & & & f_{3} & & & \\ & & & & & & & & & g_{n}\end{array}\right]$

First notice that this must have a factor of f_{3} from the last row. We see that there are two possibilities for the first column. Either it is f_{1} or f_{3}. If it is f_{1}, then the remainder of the expression is given by $F(m, k-$ $1, k^{\prime}, m^{\prime}-1$). If it is f_{3}, then we see that the second column must contain f_{0}. After this, the remainder of the expression is given by $-F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)$. Thus we see that this case will contribute
$-1 \times\left(F\left(m, k-1, k^{\prime}, m^{\prime}-1\right)-F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)\right)$.
Here the -1 in front comes from the sign of the matrix of the $g_{0}^{2} g_{n}$.

Case 3.

With a little work we see that this will contribute

$$
F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)
$$

This combines together to give that

$$
\begin{aligned}
H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)= & F\left(m, k, k^{\prime}, m^{\prime}\right) \\
& -F\left(m, k-1, k^{\prime}, m^{\prime}-1\right) \\
& +2 F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)
\end{aligned}
$$

By noticing that

$$
\begin{aligned}
F\left(m, k, k^{\prime}, m^{\prime}\right)= & F\left(m-1, k, k^{\prime}, m^{\prime}-2\right) \\
& -F\left(m, k-1, k^{\prime}, m^{\prime}-1\right) \\
& +F\left(m, k, k^{\prime}-1, m^{\prime}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)= & 2 F\left(m, k, k^{\prime}, m^{\prime}\right) \\
& +F\left(m-1, k, k^{\prime}, m^{\prime}-2\right) \\
& -F\left(m, k, k^{\prime}-1, m^{\prime}\right)
\end{aligned}
$$

which is the desired result.
From here we can prove one of the main results which will help us prove Theorem 1.5.

Theorem 3.7. Let $\beta \approx 8.13488$ be the real root of $x^{3}-$ $18 x^{2}+110 x-242$, and $\alpha \approx 1.83928$ be the real root of $x^{3}-x^{2}-x-1$. Then

$$
H_{0}(n)=\frac{\beta}{n \pi} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)
$$

In order to prove Theorem 3.7, we will find an asymptotic for $H_{0}(n)$ by maximizing $H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)$ over the real numbers, and then accounting for the error introduced.

Proof of Theorem 3.7: Let us find where $\left|H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)\right|$ is maximized. (Notice that m^{\prime} is completely determined by k and m, and further that $n=3 m+2 k+k^{\prime}$.) By writing the factorials as Γ functions, and ignoring the $(-1)^{k}$ we are maximizing
$\hat{H}\left(m, k, k^{\prime}\right)=\left(3 m+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)}$
subject to the condition

$$
G\left(m, k, k^{\prime}\right)=3 m+2 k+k^{\prime}=n
$$

Thus, to solve for the maximums, we use Lagrange multipliers to solve the equations:

$$
\nabla \hat{H}=\lambda \nabla G \text { and } G\left(m, k, k^{\prime}\right)=n
$$

Recall that $\Psi(x)$ denotes the digamma function of x, i.e., $\Psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. The latter gives rise to the following four equations:

n	Maximum at H_{l}	n	Maximum at H_{l}	n	Maximum at H_{l}
1	H_{0}	8	H_{0}	15	H_{3}
2	H_{1}	9	H_{3}	16	H_{3}
3	H_{0}	10	H_{3}	17	H_{3}
4	H_{1}	11	H_{0}	18	H_{0}
5	H_{1} and H_{2}	12	H_{0}	19	H_{0}
6	H_{3}	13	H_{3}	\vdots	\vdots
7	H_{3}	14	H_{3}	72	H_{0}

TABLE 2. Maximal H_{l} value.

$H_{0}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $F\left(m-1, k, k^{\prime}, m^{\prime}-2\right)-F\left(m, k, k^{\prime}-1, m^{\prime}\right)+2 F\left(m, k, k^{\prime}, m^{\prime}\right)$ $H_{1}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $2 F\left(m-1, k, k^{\prime}-1, m^{\prime}-1\right)-F\left(m, k-1, k^{\prime}-1, m^{\prime}\right)+2 F\left(m, k-1, k^{\prime}, m^{\prime}\right)-3 F(m-$ $\left.1, k, k^{\prime}, m^{\prime}-1\right)$ $H_{2}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $2 F\left(m-1, k, k^{\prime}-2, m^{\prime}\right)-4 F\left(m-1, k, k^{\prime}-1, m^{\prime}\right)-F\left(m-2, k-1, k^{\prime}, m^{\prime}-3\right)-3 F(m-$ $\left.2, k, k^{\prime}, m^{\prime}-2\right)+F\left(m-1, k-2, k^{\prime}, m^{\prime}-2\right)-F\left(m, k-2, k^{\prime}-1, m^{\prime}\right)+2 F\left(m, k-2, k^{\prime}, m^{\prime}\right)$ $H_{3}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $-2 F\left(m-2, k, k^{\prime}-2, m^{\prime}-1\right)+3 F\left(m-1, k-1, k^{\prime}-2, m^{\prime}\right)-6 F\left(m-1, k-1, k^{\prime}-\right.$ $\left.1, m^{\prime}\right)+F\left(m-3, k, k^{\prime}, m^{\prime}-3\right)+5 F\left(m-2, k, k^{\prime}, m^{\prime}-1\right)-2 F\left(m-2, k-1, k^{\prime}, m^{\prime}-\right.$ $2)-F\left(m-2, k-2, k^{\prime}, m^{\prime}-3\right)+F\left(m-1, k-3, k^{\prime}, m^{\prime}-2\right)-F\left(m, k-3, k^{\prime}-1, m^{\prime}\right)+$ $2 F\left(m, k-3, k^{\prime}, m^{\prime}\right)$ $H_{4}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $-2 F\left(m-5, k, k^{\prime}, m^{\prime}-6\right)-F\left(m-4, k, k^{\prime}, m^{\prime}-4\right)+3 F\left(m-3, k-1, k^{\prime}-1, m^{\prime}-\right.$ $3)-9 F\left(m-2, k-2, k^{\prime}-1, m^{\prime}-2\right)+F\left(m-2, k-3, k^{\prime}, m^{\prime}-3\right)-7 F(m-2, k-$ $\left.2, k^{\prime}, m^{\prime}-2\right)+13 F\left(m^{\prime}-3, k-1, k^{\prime}, m^{\prime}-3\right)+6 F\left(m-3, k, k^{\prime}-2, m^{\prime}-2\right)+2 F(m-$ $\left.2, k, k^{\prime}-3, m^{\prime}\right)+F\left(m-1, k-4, k^{\prime}, m^{\prime}-2\right)-F\left(m, k-4, k^{\prime}-1, m^{\prime}\right)+2 F(m, k-$ $\left.4, k^{\prime}, m^{\prime}\right)+4 F\left(m-1, k-2, k^{\prime}-2, m^{\prime}\right)-8 F\left(m-1, k-2, k^{\prime}-1, m^{\prime}\right)$ $H_{5}\left(m, k, k^{\prime}, m^{\prime}\right)=$ $2 F\left(m-3, k, k^{\prime}-3, m^{\prime}-1\right)+18 F\left(m-3, k-1, k^{\prime}-2, m^{\prime}-2\right)-7 F\left(m-3, k, k^{\prime}-\right.$ $\left.2, m^{\prime}-1\right)+12 F\left(m-4, k-1, k^{\prime}-1, m^{\prime}-4\right)-13 F\left(m-4, k, k^{\prime}-1, m^{\prime}-3\right)-F(m-$ $\left.5, k-1, k^{\prime}, m^{\prime}-6\right)-3 F\left(m-5, k, k^{\prime}, m^{\prime}-5\right)+5 F\left(m-2, k-1, k^{\prime}-2, m^{\prime}\right)+2 F(m-$ $\left.1, k-5, k^{\prime}, m^{\prime}-2\right)+F\left(m, k-5, k^{\prime}, m^{\prime}\right)-F\left(m, k-6, k^{\prime}, m^{\prime}-1\right)+5 F\left(m-1, k-4, k^{\prime}-\right.$ $\left.1, m^{\prime}-1\right)-5 F\left(m-1, k-3, k^{\prime}-1, m^{\prime}\right)-15 F\left(m-2, k-4, k^{\prime}, m^{\prime}-3\right)-25 F(m-$ $\left.2, k-3, k^{\prime}, m^{\prime}-2\right)+10 F\left(m-3, k-2, k^{\prime}-1, m^{\prime}-3\right)+15 F\left(m-4, k-2, k^{\prime}, m^{\prime}-5\right)$

TABLE 3. A table of $H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)$ values, (Theorem 3.6).

$$
\begin{aligned}
3 \lambda=(3 m & \left.+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi\left(k^{\prime}+k+m\right) \\
- & \left(3 m+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi(m+1) \\
+ & 3 \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
2 \lambda=(3 m & \left.+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi\left(k^{\prime}+k+m\right)
\end{aligned}
$$

$$
\begin{aligned}
- & \left(3 m+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi(k+1) \\
+ & 2 \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
\lambda=(3 m & \left.+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi\left(k^{\prime}+k+m\right) \\
- & \left(3 m+2 k+k^{\prime}\right) \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
& \times \Psi\left(k^{\prime}+1\right) \\
+ & \frac{\Gamma\left(m+k+k^{\prime}\right)}{\Gamma(k+1) \Gamma(m+1) \Gamma\left(k^{\prime}+1\right)} \\
n=3 m & +2 k+k^{\prime} .
\end{aligned}
$$

Upon some simplification, this becomes

$$
\begin{aligned}
3 \lambda & =F\left(m, k, k^{\prime}\right)\left(\Psi\left(k^{\prime}+k+m\right)-\Psi(m+1)+3 / n\right) \\
2 \lambda & =F\left(m, k, k^{\prime}\right)\left(\Psi\left(k^{\prime}+k+m\right)-\Psi(k+1)+2 / n\right) \\
\lambda & =F\left(m, k, k^{\prime}\right)\left(\Psi\left(k^{\prime}+k+m\right)-\Psi\left(k^{\prime}+1\right)+1 / n\right) \\
n & =3 m+2 k+k^{\prime} .
\end{aligned}
$$

By redefining λ, we get

$$
\begin{aligned}
3 \lambda & =\Psi\left(k^{\prime}+k+m\right)-\Psi(m+1)+3 / n \\
2 \lambda & =\Psi\left(k^{\prime}+k+m\right)-\Psi(k+1)+2 / n \\
\lambda & =\Psi\left(k^{\prime}+k+m\right)-\Psi\left(k^{\prime}+1\right)+1 / n \\
n & =3 m+2 k+k^{\prime} .
\end{aligned}
$$

If we solve for $\lambda-1 / n$ in these equations, and equate them, we get the following three equations:

$$
\begin{aligned}
\Psi\left(k^{\prime}+k+m\right)-\Psi\left(k^{\prime}+1\right) & =\frac{\Psi\left(k^{\prime}+k+m\right)-\Psi(m+1)}{3} \\
\frac{\Psi\left(k^{\prime}+k+m\right)-\Psi(k+1)}{2} & =\Psi\left(k^{\prime}+k+m\right)-\Psi\left(k^{\prime}+1\right) \\
n & =3 m+2 k+k^{\prime} .
\end{aligned}
$$

By noticing that $\Psi(n)=\ln (n)+\mathcal{O}(1 / n)$, we can rewrite this as

$$
\begin{align*}
\frac{2}{3} \ln \left(k^{\prime}+k+m\right)-\ln \left(k^{\prime}+1\right)+\frac{1}{3} \ln (m+1) & =\mathcal{O}\left(\frac{1}{n}\right) \\
\frac{1}{2} \ln \left(k^{\prime}+k+m\right)-\ln (k+1)+\frac{1}{2} \ln \left(k^{\prime}+1\right) & =\mathcal{O}\left(\frac{1}{n}\right) \\
3 m+2 k+k^{\prime} & =n . \tag{3-3}
\end{align*}
$$

Here we use the fact that $\mathcal{O}(k)=\mathcal{O}(m)=\mathcal{O}\left(k^{\prime}\right)=\mathcal{O}(n)$.
Now, the question is, what sort of error do we get in the solution of these equations? For large k^{\prime}, k, and m, the right-hand side is approximately 0 , so we can find the solution for 0 , and then figure out how far off we are. Thus we need to find a bound for how quickly the lefthand side can change (i.e., derivative), and then figure out how skewed the solution is.

The gradients of the left-hand sides are

$$
\begin{gathered}
{\left[\frac{2}{3\left(k^{\prime}+k+m\right)}, \frac{2}{3\left(k^{\prime}+k+m\right)}-\frac{1}{k^{\prime}+1}\right.} \\
\left.\frac{2}{3\left(k^{\prime}+k+m\right)}+\frac{1}{3(m+1)}\right] \\
{\left[\frac{1}{2\left(k^{\prime}+k+m\right)}-\frac{1}{2(k+1)},\right.} \\
\left.\frac{1}{2\left(k^{\prime}+k+m\right)}+\frac{1}{2\left(k^{\prime}+1\right)}, \frac{1}{2\left(k^{\prime}+k+m\right)}\right]
\end{gathered}
$$

So we notice that the maximal directional derivatives are $\mathcal{O}(1 / n)$. This means that the maximal deviation from the actual solution is $\mathcal{O}(1)$.

By solving Equations (3-2), (3-3), and (3-4), where the right-hand size is 0 (via Maple [Geddes et al. 96]) and accounting for the $\mathcal{O}(1)$ term, we can write

$$
\begin{aligned}
m & =\hat{m} n+\Delta m \\
k & =\hat{k} n+\Delta k \\
k^{\prime} & =\hat{k}^{\prime} n+\Delta k^{\prime}
\end{aligned}
$$

where $\Delta m, \Delta k$, and Δk^{\prime} are all $\mathcal{O}(1)$, and such that m, k, and k^{\prime} are integers, and further that

$$
\begin{aligned}
\hat{m}= & -\frac{1}{66} \sqrt[3]{1331+231 \sqrt{33}}-1 / 3 \frac{1}{\sqrt[3]{1331+231 \sqrt{33}}} \\
& +1 / 3 \\
\hat{k}= & \frac{1}{66} \sqrt[3]{3267+627 \sqrt{33}}-2 \frac{1}{\sqrt[3]{3267+627 \sqrt{33}}} \\
\hat{k}^{\prime}= & \frac{1}{66} \sqrt[3]{3267+561 \sqrt{33}}+\frac{1}{\sqrt[3]{3267+561 \sqrt{33}}}
\end{aligned}
$$

We notice that, asymptotically

$$
\begin{aligned}
& \hat{H}\left(\hat{m} n+\Delta m, \hat{k} n+\Delta k, \hat{k}^{\prime} n+\Delta k^{\prime}\right) \\
&= n \frac{\Gamma\left(\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right) n+\Delta m+\Delta k+\Delta k^{\prime}\right)}{\Gamma(\hat{m} n+1+\Delta m) \Gamma(\hat{k} n+1+\Delta k) \Gamma\left(\hat{k}^{\prime} n+1+\Delta k^{\prime}\right)} \\
& \begin{aligned}
& \approx n \frac{\left(\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right) n\right)^{\Delta m+\Delta k+\Delta k^{\prime}}}{(\hat{m} n+1)^{\Delta m} \Gamma(\hat{m} n+1)(\hat{k} n+1)^{\Delta k} \Gamma(\hat{k} n+1)} \\
& \times \frac{\Gamma\left(\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right) n\right)}{\left.\hat{k}^{\prime} n+1\right)^{\Delta k^{\prime}} \Gamma\left(\hat{k}^{\prime} n+1\right)} \\
& \approx \frac{\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{\Delta m+\Delta k+\Delta k^{\prime}}}{\hat{m}^{\Delta m} \hat{k}^{\Delta k} \hat{k}^{\prime} \Delta k^{\prime}} \\
& \times n \frac{\Gamma\left(\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right) n\right)}{\Gamma(\hat{m} n+1) \Gamma(\hat{k} n+1) \Gamma\left(\hat{k}^{\prime} n+1\right)} \\
&= \mathcal{O}(1) n \frac{\Gamma\left(\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right) n\right)}{\Gamma\left(\hat{k}^{\prime} n+1\right) \Gamma(\hat{m} n+1) \Gamma\left(\hat{k}^{\prime} n+1\right)} \\
&=\mathcal{O}(1)\left(\frac{\beta}{\pi n} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)\right) .
\end{aligned}
\end{aligned}
$$

Let us consider this $\mathcal{O}(1)$ term more precisely. Notice that, using the property that $3 \Delta m+2 \Delta k+\Delta k^{\prime}=0$, we have

$$
\begin{aligned}
& \frac{\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{\Delta m+\Delta k+\Delta k^{\prime}}}{\hat{m}^{\Delta m} \hat{k}^{\Delta k} \hat{k}^{\prime \Delta k^{\prime}}} \\
&=\frac{\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{\Delta m+\Delta k-3 \Delta m-2 \Delta k}}{\hat{m}^{\Delta m} \hat{k}^{\Delta k} \hat{k}^{\prime-3 \Delta m-2 \Delta k}} \\
&=\frac{\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{-2 \Delta m-\Delta k}}{\hat{m}^{\Delta m} \hat{k}^{\Delta k} \hat{k}^{\prime-3 \Delta m-2 \Delta k}} \\
&=\frac{\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{-2 \Delta m}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{-\Delta k}}{\hat{m}^{\Delta m} \hat{k}^{\Delta k} \hat{k}^{\prime-3 \Delta m} \hat{k}^{\prime-2 \Delta k}} \\
&=\frac{\hat{k}^{\prime 3 \Delta m} \hat{k}^{\prime 2 \Delta k}}{\hat{m}^{\Delta m}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{2 \Delta m} \hat{k}^{\Delta k}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{\Delta k}} \\
&=\frac{\hat{k}^{\prime 3 \Delta m}}{\hat{m}^{\Delta m}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{2 \Delta m}} \frac{\hat{k}^{\prime 2 \Delta k}}{\hat{k}^{\Delta k}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{\Delta k}} \\
&=\left(\frac{\hat{k}^{\prime 3}}{\hat{m}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)^{2}}\right)^{\Delta m} \times\left(\frac{\hat{k}^{\prime 2}}{\hat{k}\left(\hat{m}+\hat{k}+\hat{k}^{\prime}\right)}\right)^{\Delta k} \\
&=1^{\Delta m} 1^{\Delta k} \\
&=1
\end{aligned}
$$

where this last simplification was done via Maple.
So this becomes

$$
H_{0}(n)=\frac{\beta}{n \pi} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)
$$

where β is the real root of $x^{3}-18 x^{2}+110 x-242$, and α is the real root of $x^{3}-x^{2}-x-1$.

Theorem 1.5 follows directly from Theorem 3.7 and the following lemma.

Lemma 3.8. For n sufficiently large, $H_{l}(n) \leq H_{0}(n)$.
Proof: From the comments following the statement of Theorem 3.6 we see that

$$
\begin{aligned}
& H_{l}\left(m, k, k^{\prime}, m^{\prime}\right)=H_{l}\left(m, k, k^{\prime}-1, m^{\prime}\right) \\
& \quad-H_{l}\left(m, k-1, k^{\prime}, m^{\prime}-1\right)+H_{l}\left(m-1, k, k^{\prime}, m^{\prime}-2\right)
\end{aligned}
$$

From this it follows that

$$
H_{l}(n) \leq H_{l}(n-1)+H_{l}(n-2)+H_{l}(n-3)
$$

Notice that

$$
\begin{equation*}
H_{l}(n)=H_{n-l}(n) \tag{3-5}
\end{equation*}
$$

by considering the resultant with the reciprocal polynomial, namely that

$$
\operatorname{Res}(f, g)= \pm \operatorname{Res}\left(x^{3} f(1 / x), x^{n} g(1 / x)\right)
$$

So, we can suppose w.l.o.g. that $l \geq \frac{n}{2}$. We write this as

$$
\begin{aligned}
H_{l}(n) \leq & 1 \times H_{l}(n-1)+1 \times H_{l}(n-2) \\
& \quad+1 \times H_{l}(n-3) \\
:= & A_{1} H_{l}(n-1)+B_{1} H_{l}(n-2)+C_{1} H_{l}(n-3) \\
\leq & \left(A_{1}+B_{1}\right) H_{l}(n-2)+\left(A_{1}+C_{1}\right) H_{l}(n-3) \\
& \quad+A_{1} H_{l}(n-4) \\
:= & A_{2} H_{l}(n-2)+B_{2} H_{l}(n-3)+C_{2} H_{l}(n-4) \\
\vdots & \\
\leq & A_{n-l-2} H_{l}(l+2)+B_{n-l-2} H_{l}(l+1) \\
& \quad+C_{n-l-2} H_{l}(l) \\
= & A_{n-l-2} H_{2}(l+2)+B_{n-l-2} H_{1}(l+1) \\
& \quad+C_{n-l-2} H_{0}(l)
\end{aligned}
$$

where the last equality holds because of (3-5). The numbers A_{m}, B_{m}, and C_{m} satisfy linear recurrence relationships. Namely, we have that $A_{m}=A_{m-1}+B_{m-1}, B_{m}=$ $A_{m-1}+C_{m-1}$ and $C_{m}=A_{m-1}$. This simplifies to $A_{1}=1, A_{2}=2, A_{3}=4, A_{m}=A_{m-1}+A_{m-2}+A_{m-3}$, and further that $B_{m}=A_{m-1}+A_{m-2}$ and $C_{m}=A_{m-1}$.

Solving this gives $A_{m}=c \alpha^{m}+c_{1} \alpha_{1}^{m}+c_{2} \alpha_{2}^{m}$, where α is the real root of $x^{3}-x^{2}-x-1$, and α_{i} are its conjugates. Further c is the real root of $44 x^{3}-44 x^{2}+12 x-1$ and c_{1} and c_{2} are its conjugates.

Numerically,

$$
\begin{aligned}
c & \approx .6184199224 \\
c_{1} & \approx .1907900391+.01870058339 i \\
c_{2} & \approx .1907900391-.01870058339 i
\end{aligned}
$$

For $m \geq 3$, this gives us by the triangle inequality, $A_{m} \leq 0.7 \alpha^{m}$. Similarly, for $m \geq 5$ we get that

$$
B_{m}=A_{m-1}+A_{m-2} \leq \alpha^{m}\left(0.7 / \alpha+0.7 / \alpha^{2}\right) \leq 0.6 \alpha^{m}
$$

and for $m \geq 4$ we get that

$$
C_{m}=A_{m-1} \leq \alpha^{m}(0.7 / \alpha) \leq 0.4 \alpha^{m}
$$

Now, we have already shown that

$$
H_{0}(n)=\frac{\beta}{\pi n} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)
$$

where $\beta=8.13488$ (Theorem 3.7).
Using the same method, we can show that

$$
H_{l}(n)=\frac{\beta_{l}}{\pi n} \alpha^{n}-\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)
$$

for l from 0 to 6 , where

$$
\begin{aligned}
& \beta_{0}=8.13488 \\
& \beta_{1}=3.71205 \\
& \beta_{2}=0.92093 \\
& \beta_{3}=1.01680 \\
& \beta_{4}=0.31597 \\
& \beta_{5}=0.01923 \\
& \beta_{6}=0.05956 .
\end{aligned}
$$

So, $H_{l}(n) \leq H_{0}(n)$ if $n-6 \leq l \leq n$ (this is again due to $(3-5))$. Suppose now that $l \leq n-7$. Then $n-l-2 \geq 5$ and all the bounds computed above for A_{m}, B_{m}, C_{m} hold. So, we have, for large n,

$$
\begin{aligned}
H_{l}(n) \leq & A_{n-l-2} H_{2}(l+2)+B_{n-l-2} H_{1}(l+1) \\
& +C_{n-l-2} H_{0}(l) \\
\leq & 0.7 \alpha^{n-l-2}\left(\frac{\beta_{2}}{\pi(l+2)} \alpha^{l+2}-\mathcal{O}\left(\frac{\alpha^{l+2}}{(l+2)^{2}}\right)\right) \\
& +0.6 \alpha^{n-l-2}\left(\frac{\beta_{1}}{\pi(l+1)} \alpha^{l+1}-\mathcal{O}\left(\frac{\alpha^{l+1}}{(l+1)^{2}}\right)\right) \\
& +0.4 \alpha^{n-l-2}\left(\frac{\beta_{0}}{\pi l} \alpha^{l}-\mathcal{O}\left(\frac{\alpha^{l}}{(l)^{2}}\right)\right) \\
\leq & 0.7 \alpha^{n-l-2} \frac{\beta_{2}}{\pi(l+2)} \alpha^{l+2} \\
& +0.6 \alpha^{n-l-2} \frac{\beta_{1}}{\pi(l+1)} \alpha^{l+1} \\
& +0.4 \alpha^{n-l-2} \frac{\beta_{0}}{\pi l} \alpha^{l} \\
= & 0.7 \frac{\beta_{2}}{\pi(l+2)} \alpha^{n}+0.6 \frac{\beta_{1}}{\pi(l+1)} \alpha^{n-1}+0.4 \frac{\beta_{0}}{\pi l} \alpha^{n-2} .
\end{aligned}
$$

The last expression of (3-6) is maximal when l is minimal, i.e., $l=n / 2$. So, for large n, we get that $H_{l}(n)$ is bounded above by

$$
\begin{aligned}
H_{l}(n) \leq & 0.7 \frac{\beta_{2}}{\pi(n / 2+2)} \alpha^{n}+0.6 \frac{\beta_{1}}{\pi(n / 2+1)} \alpha^{n-1} \\
& +0.4 \frac{\beta_{0}}{\pi n / 2} \alpha^{n-2} \\
\leq & 0.7 \frac{\beta_{2}}{\pi(n / 2)} \alpha^{n}+0.6 \frac{\beta_{1}}{\pi(n / 2)} \alpha^{n-1} \\
& +0.4 \frac{\beta_{0}}{\pi n / 2} \alpha^{n-2} \\
\leq & 2\left(0.7 \times \beta_{2}+0.6 \frac{\beta_{1}}{\alpha}+0.4 \frac{\beta_{0}}{\alpha^{2}}\right) \frac{\alpha^{n}}{\pi n} \\
= & \frac{5.6348}{\pi n} \alpha^{n} .
\end{aligned}
$$

This expression is bounded above by $H_{0}(n)=\frac{\beta_{0}}{\pi n} \alpha^{n}-$ $\mathcal{O}\left(\frac{\alpha^{n}}{n^{2}}\right)$ for large values of n, which gives the desired result.

Now we are ready for the proof of our main result.
Proof of Theorem 1.5: Due to Theorem 3.7, we will be done if we show that, for $n \gg 0, H(n)=H_{0}(n)$. As it was shown in Lemma 3.8, it turns out that $H_{0}(n)=$ $\max _{0 \leq l \leq n} H_{l}(n)$ if $n \gg 0$. As explained at the beginning of this section, notice that if $H(n)>H(n-1)$, then $H(n)=\max _{l} H_{l}(n)$, so we only have to prove that for infinite values of N, we have $H(N)>H(N-1)$.

Suppose this is not the case, then $H(N)$ is bounded as $N \rightarrow \infty$, and this is a contradiction with Theorem 3.7 which says that $H(N) \geq H_{0}(N)_{N \rightarrow \infty} \rightarrow+\infty$.

So pick N such that $H(N)>H(N-1)$, and sufficiently large such that $H(N)=H_{0}(N) \geq \max _{l} H_{l}(N)$ (Lemma 3.8) and $H(N+1) \geq H_{0}(N+1)>H_{0}(N)$. Hence by induction for all $m \geq N$ we have that $H(m)>$ $H(m-1)$ and $H(m)=H_{0}(m)$.

It should be pointed out that experimentally, $H(n)>$ $H(n-1)$ for all n and $H(n)=H_{0}(n)$ for all $n \geq 18$.

4. CONCLUSIONS AND COMMENTS

In this paper we give a precise description for $H(\operatorname{Res}(f, g))$, where f is a quadratic polynomial, and tight asymptotics when f is a cubic polynomial. The methods used in this paper should be extendible to the case of f being a polynomial of fixed degree m. In particular, most of Section 3 is done constructively, and can be extended to arbitrary m. So we can most likely find bounds such as $H(n) \leq \mathcal{O}\left(\alpha^{n}\right)$ for arbitrary fixed m, and α dependent on m. It would be interesting and worthwhile to do this.

Let $g(x)=g_{0}+\cdots+g_{n} x^{n}$ be a degree- n polynomial. As a result of Lemma 3.8 we proved that for sufficiently large n

$$
\begin{aligned}
& H\left(\operatorname{Res}\left(f_{0}+\cdots+f_{3} x^{3}, g\right)\right)= \\
& \quad H\left(\operatorname{Res}\left(f_{0}+\cdots+f_{3} x^{3}, g_{0}+g_{n} x^{n}\right)\right)
\end{aligned}
$$

(Experimentally, this appears to be true for $n \geq 18$.) Notice that if $\operatorname{deg}(f)=2$, for $n \geq 3$

$$
\begin{aligned}
& H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g\right)\right)= \\
& H\left(\operatorname{Res}\left(f_{0}+f_{1} x+f_{2} x^{2}, g_{0}+g_{n} x^{n}\right)\right)
\end{aligned}
$$

It is trivial to see that in the linear case

$$
\begin{aligned}
H\left(\operatorname{Res}\left(f_{0}+f_{1} x, g\right)\right) & =H\left(\operatorname{Res}\left(f_{0}+f_{1} x, g_{0}+g_{n} x^{n}\right)\right) \\
& (=1) .
\end{aligned}
$$

It is reasonable to conjecture the following:

Conjecture 4.1. For fixed m, and $g(x)=g_{0}+\cdots+g_{n} x^{n}$, for sufficiently large n (dependent on m),

$$
\begin{aligned}
& H\left(\operatorname{Res}\left(f_{0}+\cdots+f_{m} x^{m}, g\right)\right)= \\
& \quad H\left(\operatorname{Res}\left(f_{0}+\cdots+f_{m} x^{m}, g_{0}+g_{n} x^{n}\right)\right)
\end{aligned}
$$

There is some computational evidence to support this conjecture.

ACKNOWLEDGMENTS

We are grateful to Martín Sombra for providing us updated references concerning the state of the art of the computation of heights of resultants. We are also grateful to Teresa Krick for helpful comments on a preliminary version of this paper. The research of C. D'Andrea was supported by the Miller Institute for Basic Research in Science, University of California, Berkeley. The research of K. G. Hare was supported in part by NSERC of Canada

REFERENCES

[Bost et al. 94] J. -B. Bost, H. Gillet, and C. Soulé. "Heights of Projective Varieties and Positive Green Forms." J. Amer. Math. Soc. 7:4 (1994), 903-1027.
[Cox et al. 96] David Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms. An Introduction to

Computational Algebraic Geometry and Commutative Algebra, Second edition. Undergraduate Texts in Mathematics. New York: Springer-Verlag, 1996.
[Cox et al. 98] David Cox, John Little, and Donal O'Shea. Using Algebraic Geometry. Graduate Texts in Mathematics, 185. New York: Springer-Verlag, 1998.
[Geddes et al. 96] K. O. Geddes, G. Labahn, M. B. Monagan, and S. Vorketter. The Maple Programming Guide. New York: Springer-Verlag, 1996.
[Gelfand et al. 94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory \& Applications. Boston: Birkhäuser Boston, Inc., 1994.
[Krick et al. 01] Teresa Krick, Luis Miguel Pardo, and Martín Sombra. "Sharp Estimates for the Arithmetic Nullstellensatz." Duke Math. J. 109:3 (2001), 521-598.
[Philippon 95] Patrice Philippon. "Sur des hauteurs alternatives. III." J. Math. Pures Appl. (9) 74:4 (1995), 345-365.
[Rojas 00] Maurice J. Rojas. "Algebraic Geometry over Four Rings and the Frontier to Tractability." In Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry, pp. 275-321, Contemp. Math. 270. Providence, RI: Amer. Math. Soc., 2000.
[Sloane 98] Neil J. A. Sloane. "Sloane's On-Line Encyclopedia of Integer Sequences." Available from World Wide Web (http://akpublic.research.att.com/~njas /sequences/index.html), 1998.
[Sombra 04] Martín Sombra. "The Height of the Mixed Sparse Resultant." To appear in Amer. J. Math., 2004.
[Sombra 02] Martín Sombra. "Minima successifs de variétés toriques projectives." Manuscript, 2002. math.NT/ 0209195.
[Sturmfels 94] Bernd Sturmfels. "On the Newton Polytope of the Resultant." J. Algebraic Combin. 3:2 (1994), 207236.

Carlos D'Andrea, Department of Mathematics, University of California, Berkeley, 970 Evans Hall, Berkeley CA 94720-3840 (cdandrea@math.berkeley.edu)

Kevin G. Hare, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (kghare@math.uwaterloo.ca)

Received October 21, 2003; accepted in revised form May 6, 2004.

