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Let n be a positive integer. We consider the Sylvester resultant
of f and g, where f is a generic polynomial of degree 2 or 3 and
g is a generic polynomial of degree n. If f is a quadratic polyno-
mial, we find the resultant’s height. If f is a cubic polynomial,
we find tight asymptotics for the resultant’s height.

1. INTRODUCTION

Let m and n be positive integers, f and g be generic
univariate polynomials of degrees m and n, respectively:

f(x) := f0 + f1x + · · · + fmxm,
g(x) := g0 + g1x + · · · + gnxn.

(1–1)

Here, fi, gj are new variables. The Sylvester resultant of
f and g is the determinant of the following square matrix
of order m + n :

Res(f, g) :=

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 g0

f1 f0 g1
. . .

...
...

. . .
...

. . . g0

fm fm−1 f0 gn−1 g1

fm
. . .

... gn
. . .

...
. . . fm−1

. . . gn−1

fm gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1–2)

where the first n columns contain coefficients of f and
the last m contain coefficients of g.

From the definition, it is very easy to see that Res(f, g)
is a homogeneous polynomial in the variables fi and gj .

Further Res(f, g) is homogeneous in each group of vari-
ables, having degree n in the fi, and m in the gj . It is
not hard to see that the resultant is ω-homogeneous of
“degree” mn, where ω = (0, 1, · · · , n, 0, 1, · · · ,m). This
means that if a monomial fα0

0 · · · fαm
m gβ0

0 · · · gβn
n appears

with nonzero coefficient in the expansion of Res(f, g),
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then
∑m

i=1 iαi +
∑n

j=1 jβj = mn (see [Sturmfels 94, The-
orem 6.1]).

Resultants are widely used as a tool for polynomial
equation solving; this has sparked a lot of interest in
their computation (see, e.g., [Cox et al. 96, Cox et al. 98,
Gelfand et al. 94]). The absolute height of a polynomial
g =

∑
α cαUα ∈ C[U1, · · · , Up] is defined as H(g) :=

max{|cα|, α ∈ N
p}. In this paper we will be concerned

with the computation of the height of Res(f, g).
The sharpest upper bound for the height was given

in [Sombra 04, Theorem 1.1], where it is shown that
H (Res(f, g)) ≤ (m+1)n (n+1)m. Previous upper bounds
were given in [Bost et al. 94, Krick et al. 01, Philippon
95, Rojas 00, Sombra 02], for more general resultants
which include R(f, g).

However, up to now there have been no known exact
expressions for H(Res(f, g)), for any nontrivial cases. We
only know the exact value of the coefficients of the resul-
tant for extremal monomials with respect to a generic
weight, and they are equal to ±1 (see [Sturmfels 94,
Corollary 3.1]).

The purpose of this paper is to give nontrivial esti-
mates on the height of the resultant for polynomials f of
low degree.

1.1 Quadratic Polynomials

In the case m = 2, we get an exact solution for the height
of Res(f, g) in terms of an integer number An. To define
An, first consider pn(z) := (n − 2z + 1)(n − 2z + 2) −
z(n − z). It is easy to see that if n ≥ 3, then pn(0) > 0
and pn

(
n
2

)
< 0. As pn(z) is a quadratic polynomial in z,

we define, for n ≥ 3, rn as the unique root of pn(z) lying
in

[
0, n

2

]
. Set An := �rn�, the floor of rn. In Table 1, we

have listed some values of An.

Theorem 1.1. Let n ≥ 3. The coefficient of highest ab-
solute value in the expansion of Res(f0 + f1x + f2x

2, g)
is the coefficient corresponding to g0gnfAn

0 fn−2An
1 fAn

2 .

Moreover,

H
(
Res(f0 + f1x + f2x

2, g)
)

= H
(
Res(f0 + f1x + f2x

2, g0 + gnxn)
)

= n
(n − An − 1)!
(n − 2An)!An!

.

Remark 1.2. As An < n
2 , it turns out that (n−2An) ≥ 0.

Before we give the next result, we must introduce some
notation.

An n An n An n

1 3,4 10 34,35,36,37 19 67,68,69,70
2 5,6,7,8 11 38,39,40,41 20 71,72,73
3 9,10,11,12 12 42,43,44 21 74,75,76,77
4 13,14,15 13 45,46,47,48 22 78,79,80,81
5 16,17,18,19 14 49,50,51,52 23 82,83,84
6 20,21,22,23 15 53,54,55 24 85,86,87,88
7 24,25,26 16 56,57,58,59 25 89,90,91
8 27,28,29,30 17 60,61,62 26 92,93,94,95
9 31,32,33 18 63,64,65,66 27 96,97,98,99

TABLE 1. Values of An (Theorem 1.1).

Notation. 1.3. Let α(n) be a positive sequence. We say
that a sequence β(n) is equal to O(α(n)) if there exist
positive constants c1, c2, and N such that for all n > N

we have c1α(n) ≤ β(n) ≤ c2α(n).

Based on Theorem 1.1 we get

Corollary 1.4. Let α ≈ 1.6180 be the positive root of
x2−x−1 and β ≈ 2.3644 be the positive root of 4x4−125.

Then

H
(
Res(f0 + f1x + f2x

2, g)
)

=
β√
nπ

αn −O
(

αn

n
√

n

)
.

1.2 Cubic Polynomials

In the case m = 3, we get a tight bound for the height.
In particular, we get the following:

Theorem 1.5. Let β ≈ 8.13488 be the real root of x3 −
18x2 + 110x − 242, and α ≈ 1.83928 be the real root of
x3 − x2 − x − 1. Let g be a generic polynomial of degree
n. Then

H
(
Res(f0 + f1x + f2x

2 + f3x
3, g)

)
=

β

πn
αn−O

(
αn

n2

)
.

(1–3)

1.3 Organization of Paper

Section 2 gives a proof of Theorem 1.1 and Corollary 1.4.
A proof of Theorem 1.5 is given in Section 3. Section 4
gives some conclusions and conjectures, and lists some
open questions.

2. QUADRATIC POLYNOMIALS

Proof of Theorem 1.1: The proof will be made by induc-
tion on n. For this section, denote with H(n) the height
of the resultant of a degree-2 generic polynomial f and a
generic polynomial g of degree n.

For n = 3, an explicit computation shows that
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• A3 = 1,

• H(3) = 3, and this is the coefficient of g0g3f0f1f2.

Suppose now n > 3. As the degree of Res(f, g) in the
gj is 2, we will first consider two special cases:

• if we pick a term in the expansion of Res(f, g) which
is not a multiple of g0, this term will appear in the
expansion of

Res(f, gnxn + · · · + g1x) =

± f0Res(f, gnxn−1 + · · · + g1),

and by the inductive hypothesis, all the coefficients
of this expansion are bounded by H(n − 1).

• if we pick a term in the expansion of Res(f, g) which
is not a multiple of gn, this term will appear in the
expansion of

Res(f, g) = ±f2Res(f, gn−1x
n−1 + · · · + g0),

and reasoning as in the previous case, all the coeffi-
cients in this case will be bounded by H(n − 1).

In order to conclude, we have to bound all the coefficients
corresponding to monomials of the form g0gnfa

0 f b
1fc

2 for
some a, b, and c, and compare this bound with H(n−1).

Without loss of generality we compute Res(f2x
2 +

f1x + f0, gnxn + g0). Moreover, we can also set gn :=
f2 := 1. Let f(x) = (x − x1)(x − x2). Then,

Res(f, g) = ±(x1
n + g0)(x2

n + g0)
= ± (

(x1x2)
n + (x1

n + x2
n)g0 + g2

0

)
.

(2–1)
In order to write the right-hand side of (2–1) in terms
of f1, f0, we apply the classical Girard formulas (see, for
instance, [Gelfand et al. 94, Chapter 4 F]):

x1
n + x2

n =

(−1)nn
∑

i1+2i0=n

(−1)2i1+i0
(i1 + i0 − 1)!

i1!i0!
f1

i1f0
i0 . (2–2)

So, we have to maximize (i1+i0−1)!
i1!i0!

subject to the condi-
tion i1 + 2i0 = n. Set z := i0, then i1 = n − 2z, and we
have to study the behaviour of the function

P (z) :=
(n − z − 1)!
(n − 2z)!z!

, for z = 0, 1, . . . ,
⌊n

2

⌋
.

As

P (z) − P (z − 1) =
(n − z − 1)!

(n − 2z + 2)!z!
pn(z),

and due to the fact that pn(z) is a quadratic equation
having rn as the unique root in the interval [0, n

2 ], we
have

• P is increasing for z = 0, 1, . . . , An.

• P decreases for z = An, An + 1, . . . ,
⌊

n
2

⌋
.

Hence, the maximum of P is attained when z = An, and
H(n) = nP (An) because of (2–1) and (2–2).

In order to conclude, we only have to prove that
H(n) > H(n − 1). Since

H(n − 1) = (n − 1)
(n − An−1 − 2)!

(n − 1 − 2An−1)!An−1!
,

and

H(n) ≥ n
(n − An−1 − 1)!

(n − 2An−1)!An−1!
, (2–3)

it is easy to check that the right-hand-side of (2–3) is
bigger than H(n − 1) if and only if n ≥ 3.

From here, we can prove Corollary 1.4:

Proof of Corollary 1.4: By noticing that

rn =
6 + 5n −√

5n2 − 4
10

,

we get

lim
n→∞

An

n
=

5 −√
5

10
.

Thus for large n we get

n
(n − An − 1)!
(n − 2An)!An!

= n
Γ(n − An)

Γ(n − 2An + 1)Γ(An + 1)

=
nΓ(n − An)

(n − 2An)AnΓ(n − 2An)Γ(An)

=
n2

(n − 2An)An
× Γ(n − An)

nΓ(n − 2An)Γ(An)
.

From the comment above, we see that the first fraction
will approach 5(1+

√
5)

2 . This then gives us

≈ 5(1 +
√

5)
2

Γ(n/2 + n
√

5/10)
nΓ(n

√
5/5)Γ(n/2 − n

√
5/10)

=
β√
πn

αn −O
(

αn

n3/2

)
,

which gives the desired result. The last line of this in-
equality was derived with the help of Maple.

Here we ignored a number of problems that occur with
respect to errors in approximation. These are done in
the same way that they will be done in the proof of
Theorem 3.7.
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3. CUBIC POLYNOMIALS

In this section, we will denote with H(n) the height of
a generic degree-3 polynomial f and a generic degree-n
polynomial g. By an argument similar to Theorem 1.1,
if H(n) > H(n − 1), then both gn and g0 must divide
the terms which gives rise to H(n). We will see that this
holds for n � 0. We have then that three gi must divide
each of the terms of Res(f, g) and two of them are known
if H(n) > H(n − 1) (gn and g0). This gives rise to the
following definitions

Definition 3.1. Define Hl(m, k, k′,m′) to be the coeffi-
cient of fm

0 fk
1 fk′

2 fm′
3 g0glgn in Res(f, g).

Definition 3.2. Define

Hl(n) = max
m+k+k′+m′=n

|Hl(m, k, k′,m′)| .

The main results of the paper will be derived by being
able to write Hl(m, k, k′,m′) in terms of some auxiliary
functions F (m, k, k′,m′) which are defined as follows:

Definition 3.3. Define F (m, k, k′,m′) to be the number
of occurrences of fm

0 fk
1 fk′

2 fm′
3 in the determinant of the

matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 f1 f0

f3 f2 f1 f0

f3 f2 f1 f0

. . . . . . . . . . . .
f3 f2 f1 f0

f3 f2 f1

f3 f2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

of dimension m+k+k′+m′ ≥ 1. For m+k+k′+m′ = 1
or 2 the determinant would be of the matrices

[f2] and
[

f2 f1

f3 f2

]
,

respectively.
For convenience we define F (0, 0, 0, 0) = 1.

For example, for m + k + k′ + m′ = 3, we have

det

⎡
⎣ f2 f1 f0

f3 f2 f1

0 f3 f2

⎤
⎦ = f3

2 − 2f1f2f3 + f0f
2
3 .

Thus we see that F (1, 0, 0, 2) = 1, F (0, 1, 1, 1) = −2 and
F (0, 0, 3, 0) = 1.

Lemma 3.4. F (m, k, k′,m′) satisfies the recurrence rela-
tion

F (m, k, k′,m′) = F (m, k, k′ − 1,m′)

− F (m, k − 1, k′,m′ − 1)

+ F (m − 1, k, k′,m′ − 2)

with F (0, 0, 0, 0) = 1 and F (m, k, k′,m′) = 0 if any of
m, k, k′ or m′ < 0.

Proof: The recurrence follows by considering the three
possibilities from the first row.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 f1 f0

f3 f2 f1 f0

f3 f2 f1 f0

. . . . . . . . . . . .

f3 f2 f1 f0

f3 f2 f1

f3 f2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 f1 f0

f3 f2 f1 f0

f3 f2 f1 f0

. . . . . . . . . . . .

f3 f2 f1 f0

f3 f2 f1

f3 f2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 f1 f0

f3 f2 f1 f0

f3 f2 f1 f0

f3 f2 f1 f0

. . . . . . . . . . . .

f3 f2 f1 f0

f3 f2 f1

f3 f2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By induction we will prove the following lemma, whose
statement was first discovered experimentally via [Sloane
98].
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Lemma 3.5. If m′ = 2m + k, then:

F (m, k, k′, k + 2m) = (−1)k

(
m + k

k

)(
k′ + k + m

k + m

)

(3–1)

If m′ 	= 2m + k, then F (m, k, k′,m′) = 0.

Proof: By examining the recurrence relation, we see that
F (m, k, k′,m′) = 0 if m′ 	= 2m + k.

Equation (3–1) is true for m + k + k′ = 1 by some
simple calculations. So we have that

F (m, k, k′, k + 2m)

= F (m, k, k′ − 1, k + 2m) − F (m, k − 1, k′, k + 2m − 1)

+ F (m − 1, k, k′, k + 2m − 2)

= (−1)k

(
m + k

k

)(
k′ − 1 + k + m

k + m

)

− (−1)k−1

(
m + k − 1

k − 1

)(
k′ + k − 1 + m

k + m − 1

)

+ (−1)k

(
m + k − 1

k

)(
k′ + k + m − 1

k + m − 1

)

= (−1)k

((
m + k

k

)(
k′ − 1 + k + m

k + m

)

+
(

k′ + k − 1 + m

k + m − 1

) ((
m + k − 1

k − 1

)

+
(

m + k − 1
k

)))

= (−1)k

((
m + k

k

) ((
k′ − 1 + k + m

k + m

)

+
(

k′ + k − 1 + m

k + m − 1

)))

= (−1)k

(
m + k

k

)(
k′ + k + m

k + m

)

and the result follows by induction.

Theorem 3.6. Let F be as in Definition 3.3. Then

H0(m, k, k′,m′)

= F (m − 1, k, k′,m′ − 2) − F (m, k, k′ − 1,m′)

= +2F (m, k, k′,m′)

= (−1)k(3m + 2k + k′)
(m + k + k′ − 1)!

k!m!k′!
.

The value of Hl(m, k, k′,m′) is given in Table 3 for
l from 0 to 5. We will provide only the proof for
H0(m, k, k′,m′) here. The other cases listed in Table 3
are similar. Code which automates this process is avail-
able upon request.

For all l, we can also write Hl(m, k, k′,m′) as a sum
of various F . Instead of three cases, we tend to get six,
depending on which column the g0, the gl, and the gn

are taken from. In each of these cases we get a finite
number of ways to account for the terms above the gl

term, and below the gn term. The terms between the gl

and the gn can be accounted for with F functions. So
each of these finite number of ways will account for some
F (m−?, k−?, k′−?,m′−?) which will then be taken into
the final sum.

Proof of Theorem 3.6: The second statement of the the-
orem follows directly from Lemma 3.5, so it suffices to
prove the first statement.

We notice that there are three different ways in which
we can get g0g0gn as a factor. We will do each case
separately.

Case 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1 g0

f3 f2 f1
. . .

...
...

...

f3 f2
. . . f0

...
...

...

f3
. . . f1 f0

...
...

...
. . . f2 f1 gn gn−1 gn−2

f3 f2 gn gn−1

f3 gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

So we get that this case contributes F (m, k, k′,m′).
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Case 2.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1 g0

f3 f2 f1 f0 g3 g2 g1

f3 f2 f1
. . .

...
...

...

f3 f2
. . . f0

...
...

...

f3
. . . f1 f0

...
...

...
. . . f2 f1 gn gn−1 gn−2

f3 f2 gn gn−1

f3 gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

First notice that this must have a factor of f3 from
the last row. We see that there are two possibilities for
the first column. Either it is f1 or f3. If it is f1, then
the remainder of the expression is given by F (m, k −
1, k′,m′ − 1). If it is f3, then we see that the second
column must contain f0. After this, the remainder of the
expression is given by −F (m− 1, k, k′,m′ − 2). Thus we
see that this case will contribute

−1 × (F (m, k − 1, k′,m′ − 1) − F (m − 1, k, k′,m′ − 2)).

Here the −1 in front comes from the sign of the matrix
of the g2

0gn.

Case 3.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1 g0

f3 f2 f1 f0 g3 g2 g1

f3 f2 f1
. . .

...
...

...

f3 f2
. . . f0

...
...

...

f3
. . . f1 f0

...
...

...
. . . f2 f1 gn gn−1 gn−2

f3 f2 gn gn−1

f3 gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With a little work we see that this will contribute

F (m − 1, k, k′,m′ − 2).

This combines together to give that

H0(m, k, k′,m′) = F (m, k, k′,m′)

− F (m, k − 1, k′,m′ − 1)

+ 2F (m − 1, k, k′,m′ − 2).

By noticing that

F (m, k, k′,m′) = F (m − 1, k, k′,m′ − 2)

− F (m, k − 1, k′,m′ − 1)

+ F (m, k, k′ − 1,m′)

we get

H0(m, k, k′,m′) = 2F (m, k, k′,m′)

+ F (m − 1, k, k′,m′ − 2)

− F (m, k, k′ − 1,m′),

which is the desired result.

From here we can prove one of the main results which
will help us prove Theorem 1.5.

Theorem 3.7. Let β ≈ 8.13488 be the real root of x3 −
18x2 + 110x − 242, and α ≈ 1.83928 be the real root of
x3 − x2 − x − 1. Then

H0(n) =
β

nπ
αn −O

(
αn

n2

)
.

In order to prove Theorem 3.7, we will find an asymp-
totic for H0(n) by maximizing H0(m, k, k′,m′) over the
real numbers, and then accounting for the error intro-
duced.

Proof of Theorem 3.7: Let us find where
|H0(m, k, k′,m′)| is maximized. (Notice that m′ is
completely determined by k and m, and further that
n = 3m + 2k + k′.) By writing the factorials as Γ
functions, and ignoring the (−1)k we are maximizing

Ĥ(m, k, k′) = (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)

subject to the condition

G(m, k, k′) = 3m + 2k + k′ = n.

Thus, to solve for the maximums, we use Lagrange
multipliers to solve the equations:

∇Ĥ = λ∇G and G(m, k, k′) = n.

Recall that Ψ(x) denotes the digamma function of x, i.e.,
Ψ(x) = Γ′(x)

Γ(x) . The latter gives rise to the following four
equations:
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n Maximum at Hl n Maximum at Hl n Maximum at Hl

1 H0 8 H0 15 H3

2 H1 9 H3 16 H3

3 H0 10 H3 17 H3

4 H1 11 H0 18 H0

5 H1 and H2 12 H0 19 H0

6 H3 13 H3

...
...

7 H3 14 H3 72 H0

TABLE 2. Maximal Hl value.

H0(m, k, k′,m′) = F (m − 1, k, k′,m′ − 2) − F (m, k, k′ − 1,m′) + 2F (m, k, k′,m′)

H1(m, k, k′,m′) = 2F (m− 1, k, k′− 1,m′− 1)−F (m, k− 1, k′− 1,m′)+2F (m, k− 1, k′,m′)− 3F (m−
1, k, k′,m′ − 1)

H2(m, k, k′,m′) = 2F (m−1, k, k′−2,m′)−4F (m−1, k, k′−1,m′)−F (m−2, k−1, k′,m′−3)−3F (m−
2, k, k′,m′−2)+F (m−1, k−2, k′,m′−2)−F (m, k−2, k′−1,m′)+2F (m, k−2, k′,m′)

H3(m, k, k′,m′) = −2F (m− 2, k, k′ − 2,m′ − 1) + 3F (m− 1, k − 1, k′ − 2,m′)− 6F (m− 1, k − 1, k′ −
1,m′) + F (m− 3, k, k′,m′ − 3) + 5F (m− 2, k, k′,m′ − 1)− 2F (m− 2, k− 1, k′,m′ −
2)−F (m−2, k−2, k′,m′−3)+F (m−1, k−3, k′,m′−2)−F (m, k−3, k′−1,m′)+
2F (m, k − 3, k′,m′)

H4(m, k, k′,m′) = −2F (m − 5, k, k′,m′ − 6) − F (m − 4, k, k′,m′ − 4) + 3F (m − 3, k − 1, k′ − 1,m′ −
3) − 9F (m − 2, k − 2, k′ − 1,m′ − 2) + F (m − 2, k − 3, k′,m′ − 3) − 7F (m − 2, k −
2, k′,m′ − 2) + 13F (m− 3, k− 1, k′,m′ − 3) + 6F (m− 3, k, k′ − 2,m′ − 2) + 2F (m−
2, k, k′ − 3,m′) + F (m − 1, k − 4, k′,m′ − 2) − F (m, k − 4, k′ − 1,m′) + 2F (m, k −
4, k′,m′) + 4F (m − 1, k − 2, k′ − 2,m′) − 8F (m − 1, k − 2, k′ − 1,m′)

H5(m, k, k′,m′) = 2F (m − 3, k, k′ − 3,m′ − 1) + 18F (m − 3, k − 1, k′ − 2,m′ − 2) − 7F (m − 3, k, k′ −
2,m′− 1)+12F (m− 4, k− 1, k′− 1,m′− 4)− 13F (m− 4, k, k′− 1,m′− 3)−F (m−
5, k−1, k′,m′−6)−3F (m−5, k, k′,m′−5)+5F (m−2, k−1, k′−2,m′)+2F (m−
1, k−5, k′,m′−2)+F (m, k−5, k′,m′)−F (m, k−6, k′,m′−1)+5F (m−1, k−4, k′−
1,m′ − 1) − 5F (m − 1, k − 3, k′ − 1,m′) − 15F (m − 2, k − 4, k′,m′ − 3) − 25F (m −
2, k− 3, k′,m′− 2)+10F (m− 3, k− 2, k′− 1,m′− 3)+15F (m− 4, k− 2, k′,m′− 5)

TABLE 3. A table of Hl(m, k, k′, m′) values, (Theorem 3.6).

3λ = (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)

× Ψ(k′ + k + m)

− (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)

× Ψ(m + 1)

+ 3
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)

2λ = (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)
× Ψ(k′ + k + m)

− (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)
× Ψ(k + 1)

+ 2
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)

λ = (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)
× Ψ(k′ + k + m)

− (3m + 2k + k′)
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)
× Ψ(k′ + 1)

+
Γ(m + k + k′)

Γ(k + 1)Γ(m + 1)Γ(k′ + 1)
n = 3m + 2k + k′.
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Upon some simplification, this becomes

3λ = F (m, k, k′)(Ψ(k′ + k + m) − Ψ(m + 1) + 3/n)

2λ = F (m, k, k′)(Ψ(k′ + k + m) − Ψ(k + 1) + 2/n)

λ = F (m, k, k′)(Ψ(k′ + k + m) − Ψ(k′ + 1) + 1/n)

n = 3m + 2k + k′.

By redefining λ, we get

3λ = Ψ(k′ + k + m) − Ψ(m + 1) + 3/n

2λ = Ψ(k′ + k + m) − Ψ(k + 1) + 2/n

λ = Ψ(k′ + k + m) − Ψ(k′ + 1) + 1/n

n = 3m + 2k + k′.

If we solve for λ − 1/n in these equations, and equate
them, we get the following three equations:

Ψ(k′ + k + m) − Ψ(k′ + 1) =
Ψ(k′ + k + m) − Ψ(m + 1)

3
Ψ(k′ + k + m) − Ψ(k + 1)

2
= Ψ(k′ + k + m) − Ψ(k′ + 1)

n = 3m + 2k + k′.

By noticing that Ψ(n) = ln(n) + O(1/n), we can
rewrite this as

2
3

ln(k′ + k + m) − ln(k′ + 1) +
1
3

ln(m + 1) = O
(

1
n

)

(3–2)

1
2

ln(k′ + k + m) − ln(k + 1) +
1
2

ln(k′ + 1) = O
(

1
n

)

(3–3)

3m + 2k + k′ = n. (3–4)

Here we use the fact that O(k) = O(m) = O(k′) = O(n).
Now, the question is, what sort of error do we get in

the solution of these equations? For large k′, k, and m,
the right-hand side is approximately 0, so we can find
the solution for 0, and then figure out how far off we are.
Thus we need to find a bound for how quickly the left-
hand side can change (i.e., derivative), and then figure
out how skewed the solution is.

The gradients of the left-hand sides are[
2

3(k′ + k + m)
,

2
3(k′ + k + m)

− 1
k′ + 1

,

2
3(k′ + k + m)

+
1

3(m + 1)

]
[

1
2(k′ + k + m)

− 1
2(k + 1)

,

1
2(k′ + k + m)

+
1

2(k′ + 1)
,

1
2(k′ + k + m)

]
.

So we notice that the maximal directional derivatives
are O(1/n). This means that the maximal deviation from
the actual solution is O(1).

By solving Equations (3–2), (3–3), and (3–4), where
the right-hand size is 0 (via Maple [Geddes et al. 96])
and accounting for the O(1) term, we can write

m = m̂n + ∆m

k = k̂n + ∆k

k′ = k̂′n + ∆k′,

where ∆m, ∆k, and ∆k′ are all O(1), and such that m, k,
and k′ are integers, and further that

m̂ = − 1
66

3
√

1331 + 231
√

33 − 1/3
1

3
√

1331 + 231
√

33

+1/3

k̂ =
1
66

3
√

3267 + 627
√

33 − 2
1

3
√

3267 + 627
√

33

k̂′ =
1
66

3
√

3267 + 561
√

33 +
1

3
√

3267 + 561
√

33
.

We notice that, asymptotically

Ĥ(m̂n + ∆m, k̂n + ∆k, k̂′n + ∆k′)

= n
Γ((m̂ + k̂ + k̂′)n + ∆m + ∆k + ∆k′)

Γ(m̂n + 1 + ∆m)Γ(k̂n + 1 + ∆k)Γ(k̂′n + 1 + ∆k′)

≈ n
((m̂ + k̂ + k̂′)n)∆m+∆k+∆k′

(m̂n + 1)∆mΓ(m̂n + 1)(k̂n + 1)∆kΓ(k̂n + 1)

× Γ((m̂ + k̂ + k̂′)n)

k̂′n + 1)∆k′Γ(k̂′n + 1)

≈ (m̂ + k̂ + k̂′)∆m+∆k+∆k′

m̂∆mk̂∆kk̂′∆k′

× n
Γ((m̂ + k̂ + k̂′)n)

Γ(m̂n + 1)Γ(k̂n + 1)Γ(k̂′n + 1)

= O(1)n
Γ((m̂ + k̂ + k̂′)n)

Γ(k̂n + 1)Γ(m̂n + 1)Γ(k̂′n + 1)

= O(1)
(

β

πn
αn −O

(
αn

n2

))
.



D’Andrea and Hare: On the Height of the Sylvester Resultant 339

Let us consider this O(1) term more precisely. Notice
that, using the property that 3∆m + 2∆k + ∆k′ = 0, we
have

(m̂ + k̂ + k̂′)∆m+∆k+∆k′

m̂∆mk̂∆kk̂′∆k′

=
(m̂ + k̂ + k̂′)∆m+∆k−3∆m−2∆k

m̂∆mk̂∆kk̂′−3∆m−2∆k

=
(m̂ + k̂ + k̂′)−2∆m−∆k

m̂∆mk̂∆kk̂′−3∆m−2∆k

=
(m̂ + k̂ + k̂′)−2∆m(m̂ + k̂ + k̂′)−∆k

m̂∆mk̂∆kk̂′−3∆mk̂′−2∆k

=
k̂′3∆mk̂′2∆k

m̂∆m(m̂ + k̂ + k̂′)2∆mk̂∆k(m̂ + k̂ + k̂′)∆k

=
k̂′3∆m

m̂∆m(m̂ + k̂ + k̂′)2∆m

k̂′2∆k

k̂∆k(m̂ + k̂ + k̂′)∆k

=

(
k̂′3

m̂(m̂ + k̂ + k̂′)2

)∆m

×
(

k̂′2

k̂(m̂ + k̂ + k̂′)

)∆k

= 1∆m1∆k

= 1,

where this last simplification was done via Maple.
So this becomes

H0(n) =
β

nπ
αn −O

(
αn

n2

)
,

where β is the real root of x3 − 18x2 + 110x − 242, and
α is the real root of x3 − x2 − x − 1.

Theorem 1.5 follows directly from Theorem 3.7 and
the following lemma.

Lemma 3.8. For n sufficiently large, Hl(n) ≤ H0(n).

Proof: From the comments following the statement of
Theorem 3.6 we see that

Hl(m, k, k′,m′) = Hl(m, k, k′ − 1,m′)

− Hl(m, k − 1, k′,m′ − 1) + Hl(m − 1, k, k′,m′ − 2).

From this it follows that

Hl(n) ≤ Hl(n − 1) + Hl(n − 2) + Hl(n − 3).

Notice that
Hl(n) = Hn−l(n) (3–5)

by considering the resultant with the reciprocal polyno-
mial, namely that

Res(f, g) = ±Res(x3f(1/x), xng(1/x)).

So, we can suppose w.l.o.g. that l ≥ n
2 . We write this as

Hl(n) ≤ 1 × Hl(n − 1) + 1 × Hl(n − 2)

+1 × Hl(n − 3)

:= A1Hl(n − 1) + B1Hl(n − 2) + C1Hl(n − 3)

≤ (A1 + B1)Hl(n − 2) + (A1 + C1)Hl(n − 3)

+A1Hl(n − 4)

:= A2Hl(n − 2) + B2Hl(n − 3) + C2Hl(n − 4)
...

≤ An−l−2Hl(l + 2) + Bn−l−2Hl(l + 1)

+Cn−l−2Hl(l)

= An−l−2H2(l + 2) + Bn−l−2H1(l + 1)

+Cn−l−2H0(l),

where the last equality holds because of (3–5). The num-
bers Am, Bm, and Cm satisfy linear recurrence relation-
ships. Namely, we have that Am = Am−1 +Bm−1, Bm =
Am−1 + Cm−1 and Cm = Am−1. This simplifies to
A1 = 1, A2 = 2, A3 = 4, Am = Am−1 + Am−2 + Am−3,
and further that Bm = Am−1 + Am−2 and Cm = Am−1.

Solving this gives Am = cαm + c1α
m
1 + c2α

m
2 , where α

is the real root of x3−x2−x−1, and αi are its conjugates.
Further c is the real root of 44x3 − 44x2 + 12x − 1 and
c1 and c2 are its conjugates.

Numerically,

c ≈ .6184199224

c1 ≈ .1907900391 + .01870058339i

c2 ≈ .1907900391 − .01870058339i.

For m ≥ 3, this gives us by the triangle inequality,
Am ≤ 0.7αm. Similarly, for m ≥ 5 we get that

Bm = Am−1 + Am−2 ≤ αm(0.7/α + 0.7/α2) ≤ 0.6αm

and for m ≥ 4 we get that

Cm = Am−1 ≤ αm(0.7/α) ≤ 0.4αm.

Now, we have already shown that

H0(n) =
β

πn
αn −O

(
αn

n2

)
,

where β = 8.13488 (Theorem 3.7).
Using the same method, we can show that

Hl(n) =
βl

πn
αn −O

(
αn

n2

)
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for l from 0 to 6, where

β0 = 8.13488

β1 = 3.71205

β2 = 0.92093

β3 = 1.01680

β4 = 0.31597

β5 = 0.01923

β6 = 0.05956.

So, Hl(n) ≤ H0(n) if n − 6 ≤ l ≤ n (this is again due to
(3–5)). Suppose now that l ≤ n − 7. Then n − l − 2 ≥ 5
and all the bounds computed above for Am, Bm, Cm hold.
So, we have, for large n,

Hl(n) ≤ An−l−2H2(l + 2) + Bn−l−2H1(l + 1)

+ Cn−l−2H0(l)

≤ 0.7αn−l−2

(
β2

π(l + 2)
αl+2 −O(

αl+2

(l + 2)2
)
)

+ 0.6αn−l−2

(
β1

π(l + 1)
αl+1 −O(

αl+1

(l + 1)2
)
)

+ 0.4αn−l−2

(
β0

πl
αl −O(

αl

(l)2
)
)

(3–6)

≤ 0.7αn−l−2 β2

π(l + 2)
αl+2

+ 0.6αn−l−2 β1

π(l + 1)
αl+1

+ 0.4αn−l−2 β0

πl
αl

= 0.7
β2

π(l + 2)
αn + 0.6

β1

π(l + 1)
αn−1 + 0.4

β0

πl
αn−2.

The last expression of (3–6) is maximal when l is minimal,
i.e., l = n/2. So, for large n, we get that Hl(n) is bounded
above by

Hl(n) ≤ 0.7
β2

π(n/2 + 2)
αn + 0.6

β1

π(n/2 + 1)
αn−1

+ 0.4
β0

πn/2
αn−2

≤ 0.7
β2

π(n/2)
αn + 0.6

β1

π(n/2)
αn−1

+ 0.4
β0

πn/2
αn−2

≤ 2
(

0.7 × β2 + 0.6
β1

α
+ 0.4

β0

α2

)
αn

πn

=
5.6348

πn
αn.

This expression is bounded above by H0(n) = β0
πnαn −

O(αn

n2 ) for large values of n, which gives the desired result.

Now we are ready for the proof of our main result.

Proof of Theorem 1.5: Due to Theorem 3.7, we will be
done if we show that, for n � 0, H(n) = H0(n). As
it was shown in Lemma 3.8, it turns out that H0(n) =
max0≤l≤n Hl(n) if n � 0. As explained at the beginning
of this section, notice that if H(n) > H(n − 1), then
H(n) = maxl Hl(n), so we only have to prove that for
infinite values of N, we have H(N) > H(N − 1).

Suppose this is not the case, then H(N) is bounded
as N → ∞, and this is a contradiction with Theorem 3.7
which says that H(N) ≥ H0(N)N→∞ → +∞.

So pick N such that H(N) > H(N − 1), and suffi-
ciently large such that H(N) = H0(N) ≥ maxl Hl(N)
(Lemma 3.8) and H(N + 1) ≥ H0(N + 1) > H0(N).
Hence by induction for all m ≥ N we have that H(m) >

H(m − 1) and H(m) = H0(m).

It should be pointed out that experimentally, H(n) >

H(n − 1) for all n and H(n) = H0(n) for all n ≥ 18.

4. CONCLUSIONS AND COMMENTS

In this paper we give a precise description for
H(Res(f, g)), where f is a quadratic polynomial, and
tight asymptotics when f is a cubic polynomial. The
methods used in this paper should be extendible to the
case of f being a polynomial of fixed degree m. In par-
ticular, most of Section 3 is done constructively, and can
be extended to arbitrary m. So we can most likely find
bounds such as H(n) ≤ O(αn) for arbitrary fixed m, and
α dependent on m. It would be interesting and worth-
while to do this.

Let g(x) = g0 + · · · + gnxn be a degree-n polynomial.
As a result of Lemma 3.8 we proved that for sufficiently
large n

H(Res(f0 + · · · + f3x
3, g)) =

H
(
Res(f0 + · · · + f3x

3, g0 + gnxn)
)
.

(Experimentally, this appears to be true for n ≥ 18.)
Notice that if deg(f) = 2, for n ≥ 3

H(Res(f0 + f1x + f2x
2, g)) =

H(Res(f0 + f1x + f2x
2, g0 + gnxn)).
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It is trivial to see that in the linear case

H(Res(f0 + f1x, g)) = H(Res(f0 + f1x, g0 + gnxn))

(= 1).

It is reasonable to conjecture the following:

Conjecture 4.1. For fixed m, and g(x) = g0 + · · ·+ gnxn,
for sufficiently large n (dependent on m),

H(Res(f0 + · · · + fmxm, g)) =

H(Res(f0 + · · · + fmxm, g0 + gnxn)).

There is some computational evidence to support this
conjecture.
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