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ON THE HEIGHTS OF POWER DIGRAPHS MODULO n

Uzma Ahmad, Husnine Syed, Lahore

(Received March 19, 2011)

Abstract. A power digraph, denoted by G(n, k), is a directed graph with Zn = {0, 1, . . . ,

n − 1} as the set of vertices and E = {(a, b) : ak ≡ b (mod n)} as the edge set. In this
paper we extend the work done by Lawrence Somer and Michal Křížek: On a connection
of number theory with graph theory, Czech. Math. J. 54 (2004), 465–485, and Lawrence
Somer and Michal Křížek: Structure of digraphs associated with quadratic congruences with
composite moduli, Discrete Math. 306 (2006), 2174–2185. The heights of the vertices and
the components of G(n, k) for n > 1 and k > 2 are determined. We also find an expression
for the number of vertices at a specific height. Finally, we obtain necessary and sufficient
conditions on n such that each vertex of indegree 0 of a certain subdigraph of G(n, k) is at
height q > 1.

Keywords: iteration digraph, height, Carmichael lambda function, fixed point, regular
digraph

MSC 2010 : 11A07, 11A15, 20K01, 05C20

1. Introduction

Power digraphs play an important role in connecting three disciplines of Math-

ematics, that is, graph theory, number theory and group theory. With the help

of power digraphs, we indeed are able to use graph theoretic properties of power

digraphs to infer many number theoretic and group theoretic properties of the con-

gruences ak ≡ b (mod n).

The digraphs G(n, k) for arbitrary values of n and k have been studied in [14],

[9], [8], [12], [13] and [7]. Many fascinating properties of G(n, k) have been explored

like cycle structure, indegree of any vertex in [14], [13], regularity and semi-regularity

in [12] and symmetry ofG(n, k) in [8], [13] and [7]. The complete structure of G(p, k),

The research of the first author is partially supported by the Higher Education Commis-
sion, Pakistan.
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p a prime, is discussed in [9]. Yet there are some properties which have been estab-

lished for G(n, 2) but not for general values of k. The height of the vertices and com-

ponents as well as some of related properties for G(n, 2) have been studied in [10],

[11], [2]. Similar investigations for G(p, k) have been done in [9]. In this paper we

attempt to resolve this problem for G(n, k) where n > 1 and k > 2. The paper is

organized as follows.

In Section 2, we discuss the basic concepts about power digraphs modulo n in

order to make this paper self contained. Section 3 includes some previous results.

In Section 4, we study the heights of the vertices and components in G1(n, k) and

G2(n, k). We also establish the expression for the number of vertices at a specific

height. Finally we find some necessary and sufficient conditions on n such that every

vertex of indegree 0 of G1(n, pα) and G1(n, p) is at height q > 1. The figures are

created with the help of computational mathematical package MATLAB [15] and

displayed by using the Graphviz visualization tool [6].

For notation and definitions, we follow mostly [1], [4], [12] and [5].

2. Preliminaries

Let g : Zn → Zn be any function where Zn = {0, 1, . . . , n − 1} and n > 1. An

iteration digraph defined by g is a directed graph whose vertices are the elements

from Zn, such that there exists exactly one edge from x to y if and only if g(x) ≡ y

(mod n). In this paper, we consider g(x) ≡ xk (mod n). For the fixed values of n and

k the iteration digraph is represented by G(n, k), where k > 2, and is called power

digraph modulo n. Each x ∈ G(n, k) corresponds uniquely to a residue modulo n.

A component of G(n, k) is a subdigraph which is the largest connected subgraph

of the associated nondirected graph. The indegree of x, denoted by indegn(x) is the

number of directed edges coming into a vertex x, and the number of edges coming

out of x is referred to as the outdegree of x denoted by outdegn(x). Note that every

vertex in G(n, k) has an outdegree 1.

A digraph G(n, k) is said to be regular if every vertex of G(n, k) has the same

indegree. We note that a regular digraph does not contain any vertex of indegree 0.

We can see that a digraph G(n, k) is regular if and only if each component of G(n, k)

is a cycle and for each vertex x, indegn(x) = outdegn(x) = 1. A digraph G(n, k) is

said to be semi-regular of degree j if every vertex of G(n, k) has indegree j or 0.

A cycle is a directed path from a vertex a to a, and a cycle is a z-cycle if it contains

precisely z vertices. A cycle of length one is called a fixed point. It is clear that 0

and 1 are fixed points of G(n, k). Since each vertex has outdegree one, it follows that

each component contains a unique cycle.
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The Carmichael lambda-function λ(n) is defined as the smallest positive integer

such that xλ(n) ≡ 1 (mod n) for all x relatively prime to n. The values of the

Carmichael lambda-function λ(n) are

λ(1) = 1,

λ(2) = 1,

λ(4) = 2,

λ(2k) = 2k−2 for k > 3,

λ(pk) = (p − 1)pk−1,

for any odd prime p and k > 1 and

λ(pe1

1 pe2

2 . . . per

r ) = lcm(λ(pe1

1 ), λ(pe2

2 ), . . . , λ(per

r )),

where p1, p2, . . . , pr are distinct primes and ei > 1 for all i.

The subdigraph of G(n, k), containing all vertices relatively prime to n, is denoted

by G1(n, k) and the subdigraph containing all vertices not relatively prime to n is

denoted by G2(n, k). It is obvious that G1(n, k) and G2(n, k) are disjoint and there

is no edge between G1(n, k) and G2(n, k) and G(n, k) = G1(n, k) ∪ G2(n, k).

Let n = ml, where gcd(m, l) = 1. We can easily see with the help of Chinese

Remainder Theorem that corresponding to each vertex x ∈ G(n, k), there is an

ordered pair (x1, x2), where 0 6 x1 < m and 0 6 x2 < l and xk corresponds

to (xk
1 , xk

2). The product of digraphs, G(m, k) and G(l, k) is defined as follows:

a vertex x ∈ G(m, k)×G(l, k) is an ordered pair (x1, x2) such that x1 ∈ G(m, k) and

x2 ∈ G(l, k). Also there is an edge from (x1, x2) to (y1, y2) if and only if there is an

edge from x1 to y1 in G(m, k) and there is an edge from x2 to y2 in G(l, k). This

implies that (x1, x2) has an edge leading to (xk
1 , xk

2). We then see that G(n, k) ∼=

G(m, k)×G(l, k). We can further assert that if ω(n) denotes the number of distinct

prime divisors of n and

(2.1) n = pe1

1 pe2

2 . . . per

r , where p1 < p2 < . . . < pr and ei > 0, i.e. r = ω(n),

then

(2.2) G(n, k) ∼= G(pe1

1 , k) × G(pe2

2 , k) × . . . × G(per

r , k).

LetN(n, k, b) denote the number of incongruent solutions of the congruence xk ≡ b

(mod n). Then N(n, k, b) = indegn(b) and by Chinese Remainder Theorem, we have

(2.3) N(n, k, b) = indegn(b) =

r
∏

i=1

N(pei,k,b
i ).
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Let Comp(a) be a component containing a vertex a ∈ G(n, k) and d(a, b) denote

the length of the shortest directed path from a to b. Then height of a vertex a ∈ C,

denoted by height a, is defined as

height(a) = min{d(a, ci) : ci are cycle vertices of Comp(a)}.

The height of any component C ⊆ G(n, k) is defined as

height(C) = max
a∈C

height(a).

We also define the height of G(n, k) as

height(G(n, k)) = max
C⊆G(n,k)

height(C).

A vertex x ∈ G(n, k) is said to be at level j > 1 if there exists a directed path of

least length j which ends at x and does not contain any directed edge from a cycle.

A vertex is at level 0 if there does not exist such a path. A component C ⊆ G(n, k)

is said to have s levels if the highest level of a vertex in C is s − 1. It is obvious

that the vertex at height 0 and level s− 1 is a cycle vertex and the vertex at level 0

is a vertex having indegree 0. We can also see that for any component C of G(n, k)

having s levels, s = height(C) + 1.

3. Some previous results

Theorem 3.1 (Carmichael). Let a, n ∈ N. Then

aλ(n) ≡ 1 (mod n)

if and only if gcd (a, n) = 1. Moreover, there exists an integer g such that

ordn a = λ(n),

where ordn g denotes the multiplicative order of g modulo n.

For the proof of Theorem 3.1, see [3].

Theorem 3.2. Let n be an integer having factorization as given in (2.1) and a be

a vertex of G1(n, k). Then

indegn(a) = N(n, k, a) =

r
∏

i=1

N(pei

i , k, a) =

r
∏

i=1

εi gcd(λ(pei

i ), k), or N(n, k, a) = 0,

where εi = 2 if 2 | k and 8 | pei

i , and εi = 1 otherwise.
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Theorem 3.3. There exists a t-cycle in G1(n, k) if and only if t = ordd k for

some factor d of u, where λ(n) = uv and u is the highest factor of λ(n) relatively

prime to k.

Theorem 3.4. If n is a positive integer defined as in (2.1) then there are
r
∏

i=1

gcd(u, pei

i ) cycle vertices in G1(n, k) where u is the largest factor of λ(n) which

is relatively prime to k.

Theorem 3.5. Let c1 and c2 be any two cycle vertices in G1(n, k) and T (c1) and

T (c2) be the trees attached to c1 and c2, respectively. Then T (c1) ∼= T (c2).

Corollary 3.6. Let t > 1 be a fixed integer. Then any two components inG1(n, k)

containing t-cycles are isomorphic.

Theorems 3.2, 3.3, 3.4, 3.5 and Corollary 3.6 are proved in [14].

Theorem 3.7. Let n > 1 and k > 2 be integers. Then

(1) G1(n, k) is regular if and only if gcd(λ(n), k) = 1;

(2) G2(n, k) is regular if and only if either n is square free and gcd(λ(n), k) = 1 or

n = p, where p is a prime;

(3) G(n, k) is regular if and only if n is square free and gcd(λ(n), k) = 1.

For the proof of Theorem 3.7, see [12].

Lemma 3.8. Let p be a prime and α > 1, k > 2 be integers. Then N(pα, k, 0) =

pα−⌈α/k⌉.

Theorem 3.9. Let n = n1n2 where gcd(n1, n2) = 1 and a = (a1, a2) be a vertex

in G(n, k) ∼= G(n1, k)×G(n2, k). Then a is a cycle vertex if and only if a1 is a cycle

vertex in G(n1, k) and a2 is a cycle vertex in G(n2, k).

Lemma 3.8 and Theorem 3.9 are proved in [13].
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4. Heights in power digraphs

We note that the digraphs G(n, 1), G(1, k) and G(2, k) where n > 1 and k > 1 con-

tain components which are isolated fixed points. Thus each vertex in these digraphs

is at height 0. Thus for the rest of the paper we take n > 2 and k > 2.

Consider a digraph G(n, k), where n has factorization as given in (2.1) and k has

factorization

(4.1) k = qδ1

1 qδ2

2 . . . qδs

s ,

with q1 < q2 < . . . < qs and δi > 0 i.e. s = ω(k). Suppose λ(n) = uv where u is the

the largest divisor of λ(n) relatively prime to k. Then we can write

(4.2) λ(n) = uqγ1

1 qγ2

2 . . . qγs
s ,

where γi > 0 for all 1 6 i 6 s. Every x ∈ G(n, k) can be written as

(4.3) x = ypc1

1 pc2

2 . . . pcr
r ,

where gcd(y, n) = 1 and ci > 0 for all 1 6 i 6 r. Now we define di and n1 as

di =











0, if ci = 0,

ei, if 1 6 ci < ei,

ci, if ci > ei,

(4.4)

n1 =
∏

16i6r

p
ei−min{ei,di}
i ,(4.5)

so that gcd(x, n1) = 1. Since ordn1
x | λ(n), ordn1

x can be written as

(4.6) ordn1
x = u1q

β1

1 qβ2

2 . . . qβs

s ,

where 1 6 βi 6 γi for all 1 6 i 6 s and u1 | u.

Theorem 4.1. Let n = ml, where gcd(m, l) = 1 and x = (x1, x2) be a vertex

in G(n, k) ∼= G(m, k) × G(l, k) Then height(x) = max{height(x1), height(x2)}.

P r o o f. Let height(x1) = j and height(x2) = w. Then there exist cycle ver-

tices c1 and c2 in Comp(x1) ⊆ G(m, k) and Comp(x2) ⊆ G(l, k), respectively such

that

(4.7) xkj

1 ≡ c1 (mod m), and xkw

2 ≡ c2 (mod l).
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Now suppose s = max{j, w}. It follows that

(xks

1 , xks

2 ) ≡ (c′1, c
′
2) (mod n),

xks

≡ c′ (mod n),

where c′1 and c′2 are cycle vertices in Comp(x1) and Comp(x2), respectively. More-

over, c′ is a cycle vertex in Comp(x) due to Theorem 3.9. Hence,

(4.8) height(x) 6 s = max{height(x1), height(x2)}.

Conversely, let r = height(x). Then there exists a cycle vertex b = (b1, b2) in

Comp(a) such that

xkr

≡ b (mod n),

where xkr

= (xkr

1 , xkr

2 ), and b = (b1, b2). This implies

(4.9) xkr

1 ≡ b1 (mod m) and xkr

2 ≡ b2 (mod l).

Now b1, b2 are cycle vertices due to Theorem 3.9. This along with the fact that j,

w are least positive integers satisfying (4.7) lead to

(4.10) j 6 r and w 6 r.

This completes the proof. �

Lemma 4.2. Let n and k be positive integers defined as in (2.1) and (4.1), re-

spectively. Suppose x is a vertex of a component C of G1(n, k). Then

height(x) = max
16i6s

⌈βi

δi

⌉

= max
16i6s

⌈νqi
(ordn x)

νqi(k)

⌉

,

where βi and δi are defined in (4.6) and (4.1), respectively and νqi
(x) denotes the

highest power of qi in x.

P r o o f. Suppose w = height(x). Then there exists a cycle vertex b ∈ C such

that

xkw

≡ b (mod n).

Since gcd(x, n) = 1, we have,

ordn b = ordn xkw

=
ordn x

gcd(kw, ordn x)
.
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Now from (4.6), we obtain

ordn b = ordn xkw

=
u1q

β1

1 qβ2

2 . . . qβs
s

q
min(β1,δ1w)
1 q

min(β2,δ2w)
2 . . . q

min(βs,δsw)
s

.

It is easy to see that a vertex a ∈ G1(n, k) is a cycle vertex if and only if

gcd(k, ordn a) = 1 by the proof of Theorem 3.3. Hence, to make sure that b is

a cycle vertex, we must have

δiw > βi, for 1 6 i 6 s

w > max
16i6s

⌈βi

δi

⌉

= max
16i6s

⌈νqi
(ordn a)

νqi
(k)

⌉

.

Since we are considering the least distance,

w = max
16i6s

⌈βi

δi

⌉

= max
16i6s

⌈νqi
(ordn a)

νqi
(k)

⌉

.

�

Lemma 4.3. If x is a cycle vertex of G2(n, k), where n is defined as in (2.1),

then pei

i | x whenever pi | x.

P r o o f. Suppose x ∈ G2(n, k) is a cycle vertex. Then there exists m > 1, such

that

xkm

≡ x (mod n),

x(xkm−1 − 1) ≡ 0 (mod n).

The Lemma holds due to the fact that gcd(xkm−1 − 1, x) = 1. �

Theorem 4.4. Let n and k be positive integers defined as in (2.1) and (4.1),

respectively. If x is a vertex of a component C of G(n, k), then the height of x is

height(x) = max
{

max
16i6r

⌈

logk

di

ci

⌉

, max
16i6s

⌈βi

δi

⌉}

= max
{

max
16i6r

⌈

logk

di

ci

⌉

, max
16i6s

⌈νqi
(ordn1

a)

νqi
(k)

⌉}

,

where ci, di, n1 and βi are defined as in (4.3), (4.4), (4.5) and (4.6), respectively and

di/ci = 1 if di = ci = 0.
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P r o o f. Let x and n1 be defined as in (4.3) and (4.5), n2 = n/n1 and

height(x) = l. Suppose,

(4.11) x ≡ x1 (mod n1) and x ≡ x2 (mod n2).

Then from Theorem 4.1,

(4.12) l = max{height(x1), height(x2)} = max{g, h}.

Thus to find l, we have to find height(x1) in G(n1, k) and height(x2) in G(n2, k).

Since gcd(x1, n1) = 1 and ordn1
x = ordn1

x1 by (4.11), Lemma 4.2 yields,

(4.13) height(x1) = g = max
16i6s

⌈βi

δi

⌉

= max
16i6s

⌈νqi
(ordn1

x)

νqi
(k)

⌉

.

Now to determine the height of a2, we have to find the least positive integer h and

a cycle vertex b ∈ G2(n2, k) satisfying

xkh

≡ xkh

2 ≡ b (mod n2).

By using (4.3) we can write,

b ≡ xkh

≡ ykh

pc1kh

1 pc2kh

2 . . . pcrkh

r (mod n2).

For b ∈ G2(n2, k) to be a cycle vertex, we must have due to Lemma 4.3, pei

i | b

whenever pi | x2. Thus for all such i

(4.14) cik
h

> ei.

If ci = 0, pei

i ∤ b and if ci > ei, (4.14) is satisfied for h = 0. However if ci 6 ei, then

from (4.14), h > ⌈logk ei/ci⌉. Thus we can write,

(4.15) h > max
16i6r

⌈

logk

di

ci

⌉

,

where di are defined as in (4.4). The result follows from (4.12), (4.13) and (4.15)

and the fact that we need the least h. �

Theorem 4.5. Let n and k be positive integers defined as in (2.1) and (4.1),

respectively. Then the height of any component C of G1(n, k) is

height(C) = max
6i6s

⌈γi

δi

⌉

= max
16i6s

⌈νqi
(λ(n))

νqi
(k)

⌉

,

where γi are defined as in (4.2).
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P r o o f. Let x ∈ C be any vertex in G1(n, k), by Lemma 4.2, height(x) is given

as

height(x) = max
16i6s

⌈νqi
(ordn x)

νqi
(k)

⌉

.

Since ordn x | λ(n), we have

(4.16) height(C) 6 max
16i6s

⌈νqi
(λ(n))

νqi
(k)

⌉

.

Since C is arbitrary, (4.16) holds for all components C of G1(n, k). Now we will

show that the equality in (4.16) holds.

By Theorem 3.1, we can find a vertex g ∈ G1(n, k) having order λ(n). Thus

from (4.16), the height of the component C′ containing g is

max
16i6s

⌈νqi
(λ(n))

νqi
(k)

⌉

.

By Theorem 3.5, any two cycle vertices of G1(n, k) have same associated trees. Thus

if there is a vertex at height h in C′ then there must exist a vertex at height h in C.

This implies height(C) = height(C′) which completes the proof. �

The following corollaries are immediate consequences of Theorem 4.5 and the

definition of level.

Corollary 4.6. Each component ofG1(n, k) has exactly max
16i6s

⌈νqi
(λ(n))/νqi

(k)⌉+

1 levels, where n and k are defined in (2.1) and (4.1), respectively.

Corollary 4.7. The height and level of any component C of G1(n, p) from its

cycle is νp(λ(n)) and νp(λ(n)) + 1, respectively, where n > 1 and p is any prime.

The Corollary 4.7 has been proved in [10] for p = 2.

Lemma 4.8. The height of Comp(0) in G(n, k) is max
16i6r

⌈logk ei⌉.

P r o o f. For any vertex a ∈ Comp(0), we have pi | a if and only if pi | n.

Now the expressions for a and n1 given in (4.3) and (4.5), respectively imply that

ci > 1 where 1 6 i 6 r and n1 = 1 for all vertices in Comp(0). By Theorem 4.4,

height(Comp(0)) = max{ max
16i6r

⌈logk ei/ci⌉, 1} = max
16i6r

⌈logk ei/ci⌉. Since ci > 1,

height(Comp(0)) 6 max
16i6r

⌈logk ei⌉. The existence of the vertex p1p2 . . . pr completes

the proof. �
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Theorem 4.9. Let n and k be positive integers defined as in (2.1) and (4.1),

respectively. Then the height of G2(n, k) is

max
{

max
16i6r

⌈logk ei⌉, max
n1|n,gcd(n/n1,n1)=1

max
16i6s

⌈νqi
(λ(n1))

νqi
(k)

⌉}

.

P r o o f. Consider x ∈ C of G2(n, k). Then Theorem 4.4 yields

height(x) = max
{

max
16i6r

⌈

logk

di

ci

⌉

, max
16i6s

⌈νqi
(ordn1

a)

νqi
(k)

⌉}

.

Since di/ci 6 ei for all 1 6 i 6 r, it follows that

(4.17) max
16i6r

⌈

logk

di

ci

⌉

6 max
16i6r

⌈logk ei⌉.

Consider n1 defined as in (4.5). Then Theorem 4.5 gives us

max
16i6s

⌈νqi
(ordn1

a)

δi

⌉

6 max
16i6s

⌈νqi
(λ(n1))

νqi(k)

⌉

(4.18)

6 max
n1|n,gcd(n/n1,n1)=1

max
16i6s

⌈νqi
(λ(n1))

νqi
(k)

⌉

.

Thus from (4.17) and (4.18), we obtain

(4.19) height(x) 6 max
{

max
16i6r

⌈logk ei⌉, max
n1|n,gcd(n/n1,n1)=1

max
16i6s

⌈νqi
(λ(n1))

νqi
(k)

⌉}

.

The proof is completed if there exist vertices in G2(n, k) with heights max
16i6r

⌈logk ei⌉

or max
16i6s

⌈νqi
(λ(n1))/δi⌉ for all n1 | n such that gcd(n/n1, n1) = 1.

The existence of vertex having height max
16i6r

⌈logk ei⌉ is shown by Lemma 4.8. By

Theorem 4.5, for every n1 | n height(G1(n1, k)) = max
16i6s

⌈νqi
(λ(n1))/δi⌉. Thus we

can find a vertex a in G1(n1, k) such that height(a) = height(G1(n1, k)). Now

consider a fixed point b in G2(n/n1, k). Since gcd(n/n1, n1) = 1, by using (2.2)

and Theorem 4.1, we can find a vertex c = (a, b) ∈ G2(n, k) such that height(c) =

max{height(a), height(b)}. Since b is a cycle vertex, height(b) = 0 and height(c) =

height(a) = max
16i6s

⌈νqi
(λ(n1))/δi⌉. The result follows immediately. �

Lemma 4.2, Theorem 4.5, Lemma 4.8 and Theorem 4.9 are illustrated by the

following Example.
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Example 4.10. Let n = 27 = 33 and k = 30. Consider the power digraph

G(n, k) = G(27, 30) = G(33, 2 · 3 · 5).

For 23, 16, 19 ∈ G1(27, 30), ord27 23 = 18 = 32 · 2, ord27 16 = 32 and ord27 19 = 3.

Now from Lemma 4.4, height(23) = max{⌈ 2
1⌉, ⌈

1
1⌉} = 2, height(16) = ⌈ 2

1⌉ = 2

and height(19) = ⌈ 1
1⌉ = 1 and similarly, heights of the other vertices can be deter-

mined. From Theorem 4.5, heightG1(27, 30) = max{⌈ν2(λ(27))/1⌉, ⌈ν3(λ(27))/1⌉,

⌈ν5(λ(27))/1⌉} = 2 and by Lemma 4.8, height(Comp(0)) = max{⌈log30 3⌉} = 1. The

digraph G(27, 30) is given in Figure 1.

19

2 7 11 16 20 25 4 5 13 14 22 23

10 8 17 26

1

0

3 6 9 12 15 18 21 24

Figure 1. G(27, 30)

Theorem 4.11. Let n and k be positive integers defined as in (2.1) and (4.1),

respectively. Then the number of vertices in G1(n, k) at height q is given by

r
∏

i=1

gcd(λ(pei

i ), u)[N(n, kq, b) − N(n, kq−1, b)],

where u is the largest divisor of‘ λ(n) relatively prime to k and b is any cycle vertex

of G1(n, k).

P r o o f. From Theorem 3.5 we know that T (c1) ∼= T (c2) for all cycle ver-

tices c1 and c2 of G1(n, k). Thus in order to find the number of vertices at height q

in G1(n, k), we first find the number of vertices at height q from one cycle vertex, say

b. In other words we have to find the number of solutions of the following congruence,

where q is the least non negative integer

(4.20) xkq

≡ b (mod n),
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or equivalently we have to find those vertices which satisfy (4.20) but do not satisfy

the following congruence

(4.21) xkq−1

≡ b (mod n).

Hence, the number of vertices at height q from b in the component containing b is

(4.22) N(n, kq, b) − N(n, kq−1, b).

The result follows from Theorem 3.4 and (4.22). �

Theorem 4.12. Suppose G1(n, pα) is not regular, where p is an odd prime. Then

the height of G1(n, pα) is 1 if and only if n is of one of the following forms

(1) n = 2w0pw1

∏

16i6t

phi

i where w0 > 0, 1 < w1 6 α + 1 and pα+1 ∤ pi − 1 for any i.

(2) n = 2w0pw1

∏

16i6t

phi

i where w0 > 0, w1 ∈ {0, 1}, p | pi − 1 for some i but

pα+1 ∤ pi − 1 for any i.

P r o o f. Suppose every vertex of indegree 0 is at height 1 and

n = 2w0pw1

∏

16i6t

phi

i .

Suppose w1 > 1 but w1 > α + 1 or pα+1 | pi − 1 for some i then pα+1 | λ(n).

This along with Theorem 4.5 yields height (G1(n, k)) > 2. Thus there must exists

some vertex of indegree 0 at height greater than or equal to 2 which contradicts our

assumption. This establishes (1).

Now suppose w1 ∈ {0, 1} and p ∤ pi − 1 for any i. Then p ∤ λ(n) which implies

gcd(λ(n), k) = 1. From Theorem 3.7 it follows that G1(n, k) is regular i.e. having

height 0 which contradicts our assumption. Hence, we may suppose p | pi − 1 but

pα+1 | pi − 1 for some i. Again by the same argument we can show the existence

of a vertex having indegree 0 at height greater than or equal to 2 which provides

a contradiction. Thus (2) is established.

The converse is straightforward due to Theorem 4.5. �

Theorem 4.13. Suppose G1(n, 2α) is not regular. Then the height of G1(n, 2α)

is 1 if and only if n = 2w0

∏

16i6t

phi

i where 0 6 w0 6 α + 1 and 2α+1 ∤ pi − 1 for any i.

P r o o f. If w0 > α + 1 or 2α+1 | pi − 1 for some i then 2α+1 | λ(n). This along

with Theorem 4.5 yields height (G1(n, k)) > 2. Therefore, there must exist a vertex

having indegree 0 at height greater than or equal to 2 which provides a contradiction.

�
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Theorem 4.12 is illustrated by Examples 4.14 and 4.15.

Example 4.14. Let n = 36 = 22 · 32 = 2w0 · pw1 and k = 9 = 32 = pα, so that

w0 = 2, w1 = 2 and α = 2. The power digraph G1(36, 9) satisfies the conditions

given in Theorem 4.12 and height (G1(36, 9)) = 1. We also note that λ(36) = 6 and

gcd(λ(n), pα) = gcd(λ(36), 9) 6= 1 so that G1(n, pα), by Theorem 3.7, is not regular.

See Figure 2 for detailed structure of G(36, 9).

0

6 12 18 24 30 14 20 26 322

8

4 10 16 22 34

28

1

13 25

27

3 15

17

5 29

19

7 31

9

21 33

35

11 23

Figure 2. G(36, 9)

Example 4.15. Let n = 81 = 34 = pw1 and k = 9 = 32 = pα, where w1 = 4

and α = 2. We note that w1 > 3 = α + 1, the digraph G1(81, 9) does not satisfy the

conditions given in Theorem 4.12, height(G1(81, 9)) 6= 1. In fact from Theorem 4.5,

height(G1(81, 9)) = 2.

Theorem 4.16. Suppose G1(n, p) is not regular. Then every vertex of indegree 0

in G1(n, p) is at height q > 1 if and only if n has one of the following forms

(1) n = 2w0pw1

∏

16i6t

phi

i where w0 > 0, 0 6 w1 6 q, p | pi − 1 for some i and

pq ‖ pi − 1 for all such pi’s.

(2) n = 2w0pq+1
∏

16i6t

phi

i where w0 > 0 and either p ∤ pi − 1 for any i or pq ‖ pi − 1

for all pi such that p | pi − 1.

P r o o f. Let every vertex of indegree 0 in G1(n, p) be at height q > 1 and

n = 2w0pw1

∏

16i6t

phi

i .

Suppose m = 2w0

∏

16i6t

phi

i and l = pw1 . Since gcd(m, l) = 1, by (2.2), G(n, p) ∼=

G(m, p) × G(l, p).

Now suppose 0 6 w1 6 q and there is no i for which p | pi − 1. Then p ∤ λ(m).

Hence, by Theorem 3.7 it follows that G1(m, p) is regular and has height 0. Now
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Theorem 4.5 yields 0 6 height(G1(l, p)) 6 q − 1. We see by Theorem 4.1 that

0 6 height(G1(n, p)) 6 q−1. This implies that the height of every vertex of indegree 0

is less than or equal to q − 1 which contradicts the assumption that every vertex of

indegree 0 in G1(n, p) is at height q > 1. Thus there must exist some i for which

p | pi − 1. Now suppose for one such pj , p
d ‖ pj − 1 where d 6= q Then Theorem 4.5

yields there is a vertex a ∈ G1(p
hj

j , p) such that height(a) = height(G1(p
hj

j , p)) = d,

i.e.

akd

≡ aj (mod p
hj

j ),

for some cycle vertex aj in G1(p
hj

j , p). Now consider the fixed points bi in G1(p
hi

i , p)

for all i 6= j, c0 in G1(2
w0 , p) and c1 in G1(p

w1 , p). Then from (4.1) and Theorem 4.1,

c = (c0, c1, b1, . . . , bj−1, a, . . . bt) ∈ G1(n, p) and

height(c) = max{height(c0), height(c1), height(b1), . . . ,

height(bj−1), height(a), . . . , height(bt)}.

Note that being fixed points, height(c0) = height(c1) = height(bi) = 0, where

i 6= j. Thus height(c) = height(a) = d 6= q. But the vertex c has indegree 0 by (2.3)

and the fact that the vertex a has indegree 0. This implies c is a vertex having

indegree 0 and height d 6= q which contradicts our assumption. Hence, (1) holds.

Now suppose w1 = q + 1 and p | pj − 1 for some 1 6 j 6 t but pd ‖ pj − 1

where d 6= q. Again by the same argument as above, we can prove the existence of

a vertex of indegree 0 which is not at height q which leads to a contradiction. This

establishes (2).

It remains to show that w1 can not exceed q+1. Indeed if w1 > q+1, Theorem 3.2

forces height (G1(p
w1 , p)) > q. Now by Theorem 4.1, height (G1(n, p)) > q which

contradicts the assumption.

The converse is easy to prove using Theorem 4.5. �

The following examples illustrate Theorem 4.16.

Example 4.17. Let n = 57 = 3 · 19 = p · p1 and k = p = 3, where p = 3,

p1 = 19 and w1 = 1. We note that p2 = 9 ‖ p1 − 1 = 18, the digraph G1(57, 3)

satisfies the conditions given in Theorem 4.16. Hence, every vertex of indegree 0 is

at height 2. We also note that gcd(λ(n), p) = gcd(λ(57), 3) = (18, 3) 6= 1. Thus from

Theorem 3.7, G1(57, 3) is not regular.

Example 4.18. Let n = 133 = 7 · 19 = p1 · p2 and k = p = 3, where p1 = 7

and p2 = 19. We can see p2 ‖ p2 − 1 and p | p1 − 1 = 6 but p2 ∤ p1 − 1. Thus

the digraph G1(133, 3) does not satisfy the conditions given in Theorem 4.12. This

implies every vertex of indegree 0 is not at height 2. In fact there are some vertices
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of indegree 0 which are at height 1, for example by Theorem 3.2, N(133, 3, 26) = 0

but by Theorem 4.2, height(26) = 1.
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