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Abstract

In this paper, we establish a new Hermite–Hadamard inequality involving left-sided
and right-sided ψ -Riemann–Liouville fractional integrals via convex functions. We
also show two basic ψ -Riemann–Liouville fractional integral identities including the
first order derivative of a given convex function, and these will be used to derive
estimates for some fractional Hermite–Hadamard inequalities. Finally, we give some
applications to special means of real numbers.
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1 Introduction and preliminaries

It is well known that Hermite established the following Hermite–Hadamard integral in-

equality:

f

(

a + b

2

)

≤
1

b – a

∫ b

a

f (s)ds≤
f (a) + f (b)

2
, (1)

where f : [a,b]⊂ R → R is a convex function (see [6]). This inequality provides a lower and

an upper estimate for the integral average of any convex function defined on a compact

interval. For generalizations of the classical Hermite–Hadamard inequality, see [1–4, 6–8,

10–12] and the references therein.

In the last decade, fractional calculus [5] has played an important role in various scien-

tific fields since it is a good tool to describe long-memory processes. In [7], the authors

established Hermite–Hadamard’s inequalities for Riemann–Liouville fractional integrals

and some Hermite–Hadamard type integral inequalities for fractional integrals; in [8],

the authors obtained some new inequalities of Ostrowski type involving fractional inte-

grals; and in [9], the authors presented some properties and results on fractional calculus

using the ψ-Hilfer fractional derivative. Fractional Hermite–Hadamard inequalities for

Riemann–Liouville and Hadamard fractional integrals have been studied extensively in

the literature, but there are only a few results concerning Hermite–Hadamard inequali-

ties forψ-Riemann–Liouville fractional integrals via convex functions. In [10–12], the au-

thors extended the classical Hermite–Hadamard type inequalities to Riemann–Liouville
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andHadamard fractional integral cases, which can be used to find lower and upper bounds

for fractional integral for some given convex functions.

Definition 1.1 (see [5] or [9, Definition 4]) Let (a,b) (–∞ ≤ a < b ≤ ∞) be a finite or

infinite interval of the real line R and α > 0. Also let ψ(x) be an increasing and positive

monotone function on (a,b], having a continuous derivative ψ ′(x) on (a,b). The left- and

right-sided ψ-Riemann–Liouville fractional integrals of a function f with respect to an-

other function ψ on [a,b] are defined by

I
α:ψ
a+ f (x) =

1

Γ (α)

∫ x

a

ψ ′(t)
(

ψ(x) –ψ(t)
)α–1

f (t)dt,

I
α:ψ
b– f (x) =

1

Γ (α)

∫ b

x

ψ ′(t)
(

ψ(t) –ψ(x)
)α–1

f (t)dt,

respectively; here Γ (·) is the gamma function.

The aim of this paper is to establish Hermite–Hadamard’s inequality for fractional in-

tegrals I
α:ψ
a+ f (x) and I

α:ψ
b– f (x) and derive some related integral inequalities by using new

identities for ψ-fractional integrals.

2 Hermite–Hadamard inequality forψ -Riemann–Liouville fractional integrals

Theorem 2.1 Let 0 ≤ c < d, g : [c,d] → R be a positive function and g ∈ L1[c,d]. Also

suppose that g is a convex function on [c,d], ψ(x) is an increasing and positive monotone

function on (c,d], having a continuous derivative ψ ′(x) on (a,b) and α ∈ (0, 1). Then the

following fractional integral inequalities hold:

g

(

c + d

2

)

≤
Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

≤
g(c) + g(d)

2
. (2)

Proof Let x, y ∈ [c,d]. Since g : [c,d] → R is a convex function, from (1) we have

g

(

x + y

2

)

≤
g(x) + g(y)

2
. (3)

Let x = tc + (1 – t)d, y = (1 – t)c + td, and put x, y into (3), so we have

2g

(

c + d

2

)

≤ g
(

tc + (1 – t)d
)

+ g
(

(1 – t)c + td
)

. (4)

Multiply both sides of (4) by tα–1 and then integrate, so we have

∫ 1

0

tα–1g
(

tc + (1 – t)d
)

dt +

∫ 1

0

tα–1g
(

(1 – t)c + td
)

dt ≥
2

α
g

(

c + d

2

)

. (5)

Next,

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)+
(g ◦ ψ)

(

ψ–1(c)
)]
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=
Γ (α + 1)

2(d – c)α
1

Γ (α)

[∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

d –ψ(v)
)α–1

(g ◦ ψ)(v)dv

+

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

ψ(v) – c
)α–1

(g ◦ ψ)(v)dv

]

=
α

2

[∫ ψ–1(d)

ψ–1(c)

(

d –ψ(v)

d – c

)α–1

g
(

ψ(v)
)ψ ′(v)

d – c
dv

+

∫ ψ–1(d)

ψ–1(c)

(

ψ(v) – c

d – c

)α–1

g
(

ψ(v)
)ψ ′(v)

d – c
dv

]

=
α

2

[∫ 1

0

tα–1g
(

tc + (1 – t)d
)

dt +

∫ 1

0

sα–1g
(

(1 – s)c + sd
)

ds

]

(

let t =
ψ(v)d

c – d
, s =

ψ(v) – c

d – c

)

=
α

2

[∫ 1

0

tα–1g
(

tc + (1 – t)d
)

dt +

∫ 1

0

tα–1g
(

(1 – t)c + td
)

dt

]

≥ g

(

c + d

2

)

,

where (5) is used, so the left-hand side inequality in (2) is proved.

To prove the right-hand side inequality in (2), since g is a convex function, then for

t ∈ [0, 1], we have

g
(

tc + (1 – t)d
)

≤ tg(c) + (1 – t)g(d)

and

g
(

(1 – t)c + td
)

≤ (1 – t)g(c) + tg(d).

Now

g
(

tc + (1 – t)d
)

+ g
(

(1 – t)c + td
)

≤ tg(c) + (1 – t)g(d) + (1 – t)g(c) + tg(d),

i.e.,

g
(

tc + (1 – t)d
)

+ g
(

(1 – t)c + td
)

≤ g(c) + g(d). (6)

Multiply both sides of (6) by tα–1 and then integrate, so we obtain

∫ 1

0

tα–1g
(

tc + (1 – t)d
)

dt +

∫ 1

0

tα–1g
(

(1 – t)c + td
)

dt ≤
g(c) + g(d)

α
,

i.e.,

Γ (α)

(d – c)α

[

I
α:ψ

ψ–1(c)+
(f ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)+
(f ◦ ψ)

(

ψ–1(c)
)]

≤
g(c) + g(d)

α
.

The proof is complete. �
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3 Hermite–Hadamard type inequalities forψ -Riemann–Liouville fractional

integrals

Lemma 3.1 Let c < d and g : [c,d] → R be a differentiable mapping on (c,d). Also suppose

that g ′ ∈ L[c,d], ψ(x) is an increasing and positive monotone function on (c,d], having a

continuous derivative ψ ′(x) on (c,d) and α ∈ (0, 1). Then the following equality for frac-

tional integrals holds:

g(c) + g(d)

2
–

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

=
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[(

ψ(v) – c
)α

–
(

d –ψ(v)
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv.

Proof Let I1 =
Γ (α+1)
2(d–c)α

I
α:ψ

ψ–1(c)+
(g ◦ ψ)(ψ–1(d)) and I2 =

Γ (α+1)
2(d–c)α

I
α:ψ

ψ–1(d)–
(g ◦ ψ)(ψ–1(c)). Then

I1 =
α

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

d –ψ(v)
)α–1

(g ◦ ψ)(v)dv

= –
1

2(d – c)α

∫ ψ–1(c)

ψ–1(d)

(g ◦ ψ)(v)d
(

d –ψ(v)
)α

=
1

2(d – c)α
[(d – c)αg(c) +

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

d –ψ(v)
)α(

g ′ ◦ ψ
)

(v)dv,

and

I2 =
α

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

ψ(v) – c
)α–1

(g ◦ ψ)(v)dv

=
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

(g ◦ ψ)(v)d
(

ψ(v) – c
)α

=
1

2(d – c)α

[

(d – c)αg(d) –

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

ψ(v) – c
)α(

g ′ ◦ ψ
)

(v)dv

]

.

It follows that

g(c) + g(d)

2
– I1 – I2

=
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[(

ψ(v) – c
)α

–
(

d –ψ(v)
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv.

The proof is complete. �

Lemma 3.2 Let c < d and g : [c,d] → R be a differentiable mapping on (c,d). Also suppose

that g ′ ∈ L[c,d], ψ(x) is a positive monotone function increasing on (c,d], having a con-

tinuous derivative ψ ′(x) on (c,d) and α ∈ (0, 1). Then the following equality for fractional

integrals holds:

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

– g

(

c + d

2

)
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=

∫ ψ–1(d)

ψ–1(c)

k
(

g ′ ◦ ψ
)

(v)ψ ′(v)dv

+
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[

(
(

d –ψ(v)
)α

–
(

ψ(v) – c
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv, (7)

where

k =

⎧

⎨

⎩

1
2
, ψ–1( c+d

2
) ≤ v ≤ ψ–1(d),

– 1
2
, ψ–1(c) < v < ψ–1( c+d

2
).

(8)

Proof Let

J1 =

∫ ψ–1( c+d2 )

ψ–1(c)

–
1

2

(

g ′ ◦ ψ
)

(v)ψ ′(v)dv = –
1

2
g

(

c + d

2

)

+
1

2
g(c),

J2 =

∫ ψ–1(d)

ψ–1( c+d2 )

1

2

(

g ′ ◦ ψ
)

(v)ψ ′(v)dv =
1

2
g(d) –

1

2
g

(

c + d

2

)

,

J3 =
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

d –ψ(v)
)α(

g ′ ◦ ψ
)

(v)dv

= –
1

2
g(c) +

1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

αψ ′(v)
(

d –ψ(v)
)α–1

(g ◦ ψ)(v)dv

= –
1

2
g(c) +

αΓ (α)

2(d – c)α
I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

,

and

J4 = –
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

ψ ′(v)
(

ψ(v) – c
)α(

g ′ ◦ ψ
)

(v)dv

= –
1

2
g(d) +

1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

αψ ′(v)
(

ψ(v) – c
)α–1

(g ◦ ψ)(v)dv

= –
1

2
g(d) +

αΓ (α)

2(d – c)α
I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)

.

Note that

J1 + J2 + J3 + J4

=
Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

– g

(

c + d

2

)

.

The proof is complete. �

Example 3.3 Let a = 1, b = 2, α = 1
2
, f (x) = x2, ψ(x) = x. Then all the assumptions in The-

orem 2.1 are satisfied. Clearly, f ( a+b
2
) = 9

4
and

Γ (α + 1)

2(b – a)α

[

I
α:ψ

ψ–1(a)+
(f ◦ ψ)

(

ψ–1(b)
)

+ I
α:ψ

ψ–1(b)–
(f ◦ ψ)

(

ψ–1(a)
)]
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=
Γ ( 3

2
)

2

[

1

Γ ( 1
2
)

∫ 2

1

(2 – t)–
1
2 t2 dt +

1

Γ ( 1
2
)

∫ 2

1

(t – 1)–
1
2 t2 dt

]

=
71

30
,

and then the left-hand side term of (7) ⇐⇒ 71
30

– 9
4
= 7

60
.

On the other hand,

∫ ψ–1(b)

ψ–1(a)

k
(

f ′ ◦ ψ
)

(v)ψ ′(v)dv =

∫ 2

1

k2vdv =
1

4

and k is defined in (8). Next,

1

2(b – a)α

∫ ψ–1(b)

ψ–1(a)

[(

b –ψ(v)
)α

–
(

ψ(v) – a
)α](

f ′ ◦ ψ
)

(v)ψ ′(v)dv

= –
1

2

∫ 2

1

(
√
v – 1 –

√
2 – v)2vdv

= –
4

5
–
2

3
= –

2

15
,

and then the right-hand side term of (7) ⇐⇒ 1
4
– 2

15
= 7

60
.

Theorem 3.4 Let c < d and g : [c,d] → R be a differentiable mapping on (c,d). Also sup-

pose that |g ′| is convex on [c,d], ψ(x) is a positive monotone function increasing on (c,d],

having a continuous derivative ψ ′(x) on (c,d) and α ∈ (0, 1). Then the following inequality

for fractional integrals holds:

∣

∣

∣

∣

g(c) + g(d)

2
–

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

∣

∣

∣

∣

≤
d – c

2(α + 1)

(

1 –
1

2α

)

[
∣

∣g ′(c)
∣

∣ +
∣

∣g ′(d)
∣

∣

]

.

Proof For every v ∈ (ψ–1(c),ψ–1(d)), we have c < ψ(v) < d. Let t = d–ψ(v)
d–c

, and then ψ(v) =

ct + (1 – t)d. Using Lemma 3.1 and the convexity of |g ′|, we obtain

∣

∣

∣

∣

g(c) + g(d)

2
–

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

∣

∣

∣

∣

≤
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

∣

∣

(

ψ(v) – c
)α

–
(

d –ψ(v)
)α∣

∣

∣

∣

(

g ′ ◦ ψ
)

(v)
∣

∣dψ(v)

=
d – c

2

∫ 1

0

∣

∣(1 – t)α – tα
∣

∣

∣

∣g ′(tc + (1 – t)d
)
∣

∣dt

≤
d – c

2

∫ 1

0

∣

∣(1 – t)α – tα
∣

∣

[

t
∣

∣g ′(c)
∣

∣ + (1 – t)
∣

∣g ′(d)
∣

∣

]

dt

:=
d – c

2
(T1 + T2),
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where

T1 :=

∫ 1
2

0

[

(1 – t)α – tα
][

t
∣

∣g ′(c)
∣

∣ + (1 – t)
∣

∣g ′(d)
∣

∣

]

dt,

T2 :=

∫ 1

1
2

[

tα – (1 – t)α
][

t
∣

∣g ′(c)
∣

∣ + (1 – t)
∣

∣g ′(d)
∣

∣

]

dt.

Note

T1 =
∣

∣g ′(c)
∣

∣

[∫ 1
2

0

t(1 – t)α dt –

∫ 1
2

0

tα+1 dt

]

+
∣

∣g ′(d)
∣

∣

[∫ 1
2

0

(1 – t)α+1 dt –

∫ 1
2

0

(1 – t)tα dt

]

=
∣

∣g ′(c)
∣

∣

[

1

(α + 1)(α + 2)
–
( 1
2
)α+1

α + 1

]

+
∣

∣g ′(d)
∣

∣

[

1

(α + 2)
–
( 1
2
)α+1

α + 1

]

,

and

T2 =
∣

∣g ′(c)
∣

∣

[∫ 1

1
2

tα+1 dt –

∫ 1

1
2

t(1 – t)α dt

]

+
∣

∣g ′(d)
∣

∣

[∫ 1

1
2

(1 – t)tα dt –

∫ 1

1
2

(1 – t)α+1 dt

]

=
∣

∣g ′(c)
∣

∣

[

1

(α + 2)
–
( 1
2
)α+1

α + 1

]

+
∣

∣g ′(d)
∣

∣

[

1

(α + 1)(α + 2)
–
( 1
2
)α+1

α + 1

]

.

The proof is complete. �

Theorem 3.5 Let g : [c,d] → R be a differentiable mapping on (c,d) with c < d. Also sup-

pose that |g ′| is convex on [c,d], ψ(x) is an increasing and positive monotone function on

(c,d], having a continuous derivative ψ ′(x) on (c,d) and α ∈ (0, 1). Then the following in-

equality for fractional integrals holds:

∣

∣

∣

∣

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(c)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

– g

(

c + d

2

)
∣

∣

∣

∣

≤
|g(d) – g(c)|

2
+

d – c

2(α + 1)

(

1 –
1

2α

)

[
∣

∣g ′(c)
∣

∣ +
∣

∣g ′(d)
∣

∣

]

. (9)

Proof Using Lemma 3.2 and the convexity of |g ′|, we obtain
∣

∣

∣

∣

Γ (α + 1)

2(d – c)α

[

I
α:ψ

ψ–1(d)+
(g ◦ ψ)

(

ψ–1(d)
)

+ I
α:ψ

ψ–1(d)–
(g ◦ ψ)

(

ψ–1(c)
)]

– g

(

c + d

2

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ψ–1(d)

ψ–1(c)

k
(

g ′ ◦ ψ
)

(v)ψ ′(v)dv

+
1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[

(
(

d –ψ(v)
)α

–
(

ψ(v) – c
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ψ–1(d)

ψ–1(c)

k
(

g ′ ◦ ψ
)

(v)ψ ′(v)dv

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[

(
(

d –ψ(v)
)α

–
(

ψ(v) – c
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv

∣

∣

∣

∣

:= K1 +K2, (10)
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where

K1 :=

∣

∣

∣

∣

∫ ψ–1(d)

ψ–1(c)

k
(

g ′ ◦ ψ
)

(v)ψ ′(v)dv

∣

∣

∣

∣

,

K2 :=

∣

∣

∣

∣

1

2(d – c)α

∫ ψ–1(d)

ψ–1(c)

[

(
(

d –ψ(v)
)α

–
(

ψ(v) – c
)α](

g ′ ◦ ψ
)

(v)ψ ′(v)dv

∣

∣

∣

∣

,

and k is defined in (8).

From Theorem 3.4,

K2 ≤
d – c

2(α + 1)

(

1 –
1

2α

)

[
∣

∣g ′(c)
∣

∣ +
∣

∣g ′(d)
∣

∣

]

. (11)

Also we easily obtain

K1 =
|g(d) – g(c)|

2
. (12)

Then put (11) and (12) in (10), and we obtain inequality (9). This completes the proof. �

4 Examples

We consider the following special means for arbitrary real numbers α, β , α = β :

H(α,β) =
2

1
α
+ 1

β

, α,β ∈ R \ {0},

A(α,β) =
α + β

2
, α,β ∈ R,

L(α,β) =
β – α

ln |β| – ln |α|
, |α| = |β|,αβ = 0,

Ln(α,β) =

[

βn+1 – αn+1

(n + 1)(β – α)

]
1
n

, n ∈ Z \ {–1, 0},α,β ∈ R,α = β .

Now, using the results in Sect. 3, we have some applications to the special means of real

numbers.

Proposition 4.1 Let a,b ∈ R+, a < b. Then

∣

∣A
(

a2,b2
)

– L22(a,b)
∣

∣ ≤
b2 – a2

4
.

Proof Apply Theorem 3.4 with f (x) = x2, ψ(x) = x, α = 1, and we obtain the result imme-

diately. �

Let f (x) = xn, ψ(x) = x, α = 1, a,b ∈ R+, a < b. Then we have the general result

∣

∣A
(

an,bn
)

– Lnn(a,b)
∣

∣ ≤
b – a

8

(

nan–1 + nbn–1
)

.
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Proposition 4.2

∣

∣A
(

ea, eb
)

– L
(

ea, eb
)
∣

∣ ≤
b – a

8

(

ea + eb
)

.

Proof Apply Theorem 3.4 with f (x) = ex, ψ(x) = x, α = 1, a,b ∈ R+, a < b. Then we obtain

the result immediately. �

Proposition 4.3

∣

∣H–1(a,b) – L–1(a,b)
∣

∣ ≤
b – a

8

(

1

a2
+

1

b2

)

.

Proof Apply Theorem 3.4 with f (x) = 1
x
, ψ(x) = x, α = 1, a,b ∈ R+, a < b. Then we obtain

the result immediately. �

Proposition 4.4

∣

∣L–1(a,b) –A–1(a,b)
∣

∣ ≤
b – a

8

(

4 +
1

a2
+

1

b2

)

.

Proof Apply Theorem 3.5 with f (x) = 1
x
, ψ(x) = x, α = 1, a,b ∈ R+, a < b. Then we obtain

the result immediately. �
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