ON THE HESSIAN OF A FUNCTION AND THE
CURVATURES OF ITS GRAPH

Robert C. Reilly

INTRODUCTION

In a well-known paper [3], S. S. Chern constructs certain complicated inte-
grands, denoted by B,,,_}, (see [3, p. 84]), on a nonparametric hypersurface
Xme] = £(X1, **, X)) in R™MYL . The purpose of this note is to interpret these
forms in two ways. First, we show that they are closely related to the elementary

f
a l

in [3] and by H. Flanders in [4]. For our second interpretation, valid in the cases

when h is even, we require a concept of a Ricci tensor of order q in the theory of
q-sectional curvature of J. A. Thorpe [10].

invariants of the Hessian matrix ( ) . This is proved in two cases by Chern

Several other results are scattered through the note. For example, we give a
formula for the kth mean curvature function of a nonparametric hypersurface; it
generalizes the well-known formula

m m 2 1/2
moi = 5 (2 /(145 (2)) ).
i=1 0Xj\ 0X; k=1 00X

1. THE INVARIANTS OF A SYMMETRIC TRANSFORMATION

In this section, we review some elementary facts. Let us consider a symmetric
linear transformation A: V — V, where V is an m-dimensional inner-product

space. We denote the eigenvalues of A by Ay, A5, ***, A, .
1.1 Definition. If 0 < q < m, then the q-th invariant S4(A) of A is the qth
elementary symmetric function of the numbers X, ---, A,,, . That is,
Sq(8) = 2 AN

i .
1<i) <o <ig<m | a4
Furthermore, the qii Newton trvansformation Tq(A) associated with A is
Ty(A) = Sq(A)I - 8q.1(A) - A + -+ (-1)TAT,

For the sake of convenience, we gather the principal facts concerning S (A) and
T (A) into a single propos1t10n
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374 ROBERT C. REILLY

Notation. For 1<q<m and 1<1i}, -, iq, 31, ", ig £ m, the Kronecker
i, e i
1

q
symbol 6( ) has the value +1 (respectively, -1):if i, *, iy are distinct
jl .]q . e

and (j;, *, jg) is an even permutation (respectively, an ddél"‘f)ermutation) of
(i, *,ig). Otherwise, it has the value 0.

1.2 PROPOSITION. Suppose that, velative to some basis of V, the transforma-
tion A has matvix (A“i'). Then

fo e . .
1 1 q I J
(a) S4(A) = ar 2 5( )Ail Aig,
jl T jq

i ...i 1 3 3
i1 177" 1q I Jq |
(b) T(A); = 27 5(j . -)Ail Ay

(c) Trace (Tq(A) “A) = (q+ 1)Sq+1(A),
(@ ToA) = SA)T- Ty_(A) - A,
(e) Trace Tq(A) = (m - q) Sq(A) .

Proof. First observe that both sides of the equation transform similarly under
a change of basis in (a) and (b). Thus (a) and (b) follow easily if we choose an ortho-
normal basis of eigenvectors of A. Now (c) follows from (a) and (b), the relation (d)
is trivial, and (e) follows from (¢) and (d). =

1.3 Remark. We shall encounter “mixed invariants” and “mixed Newton ten-
sors?” once or twice in this note. We get these objects by partially polarizing the
homogeneous polynomials Sq(A) and Tq(A). Precisely, if 0 <r <q<m and A and
B are symmetric transformations of V, we set

ip =i j Jp Jr+l j
-1 L 4 L ooaTp g
Sqr(8, B) = o Z)ﬁ(_ . )A,-L1 Aj B .
) iy g
and

i) eerig i\ -

i_ 1 1 q J1 Jr _Jr+l q

T, (A, B)J-—-q—!EG(. . .)Ail AL B; Biq.
TR P

Clearly, we can extend Proposition 1.2 (¢) to the foliowing result.

1.2 PROPOSITION (c'). Trace(Tq (A, B) - A) = (q + 1)Sy41 41 (A, B) and
Trace (Tqr(A, B) - B) = (q + 1) Sq+1,(A, B).

2. THE HESSIAN MATRIX
Notation. Throughout the rest of this paper, f will denote a real-valued function

of class C3 defined on the closure QT_of a domain @ C R™. We assume that @ is
compact and that the boundary 992 =@ ~ % is a smooth closed hypersurface
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2
embedded in IR™ . We denote the partial derivatives ——, 0" i =+, by
0X;’ 9Xj Xy’
f;, 5, **. We treat the Hessian matrix H(f) = ({; 1) asa field of symmetric linear

transformatlons in R™ but we write S (f) and Tq(f) instead of the more proper
Sq(H()) and Tq(H()). Finally, we set W= V' 1+ 27, 1]

Remarks. (a) Observe that, by (a) and (b) of Proposition 1.2, Sy(f) and T(f)
are Cl on @.

(b) From now on our index notation will not always agree with classical tensor
notation. However, repeated indices will normally still be summed.

Let us consider a pair of smooth functions f and g on @ . The mixed Newton
tensors Tqr(f, g) (= Tqr(H(f), H(g))) enjoy a pleasant differentiation property.

2.1 PROPOSITION. For all r and q (0 <r <q < m), div (Tqr(f, g)) =0. That
. d ; .
is, Ei a_xl (Tqr(f, g)ﬁ) =0 (=1, -, m).

Proof. We have the relations

o--i i
5 q
Zl> ox. (Tar(l 8); ) E ax q! T 6( - ) by " g Bl i Biglq
v

g
i ...i i
1 1 q
B EEEG(. )
Jp gl

R PR S e . A (q-o)f L e f g .
1 1rJr1g1r+lJr+l gquq 113 O LS

vl ).

alq

Now f. . . and giqjqi are symmetric in i_i and i_i, respectively, while the

i Jr q
Kronecker symbols are skew-symmetric in those indices. Thus the sums over 1.1
and iqi vanish. H

2.2 COROLLARY. Suppose that f and g ave smoolth functions on D such that
grad f = grad g on the boundary 99 . Then

‘S‘ Sq_H(f)Xm s dxm = S Sq_l_l(g)dxl e de.
D 9

Proof. Consider the vector field Y = (Y, -, Y,,) on 9, where
m g

=2 2 T (L, g)}(fj-gj)-

j=1 r=0

Then Proposition 2.1 and Proposition 1.1(c') imply that

. 0 i
divy = E %, Y; = E 27 T, g)j(fij - 855)
ij r

21 ((@+ DSqyy 1 8) - (@ +1)Sqy; (@)

T
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= (q +1) Sq+1,q+l(f, g) - (q +1) Sq+l,0(f: g) = (q + 1) Sq+l(f) - (q +1) Sq+1(g) .

Now apply Stokes’ theorem to S (@ +1)Sg41(8) - (g +1)Sqy,(g)) dx; “**dx,,, and
1

m

use the hypothesisthat Y=0on 02 . =

2.3 Remarks. (a) By setting g = 0 in the proof of Corollary 2.2, we get the
general formula

§@ (q+1)Sg4 1) dx) - dxpy, = 5;@ ?J Tq(®); (E5t;) dA,

where t = (t; -+ t,,) is the outward unit normal to 92 and dA is the volume ele-
ment for the hypersurface 09 .

(b) By breaking up grad (f - g)|5g into its components normal to 92 and tan-
gent to 99, we see that the hypothesis grad (f - g)l 3@ = 0 in Corollary 2.2 means

(f - g)| 3@ = constant and g—n (f-g) =0 on 02 (where % denotes the outward

normal derivative). Thus S Sy(f) dx; - dx,,, depends only on the values of
9D

flog and g—fl along 02 . We can easily make this dependence explicit. Indeed, let

us set z = f| og and z,, = g% along 99 . It is a simple task to express the quanti-
ties fij and f; appearing in the boundary integral in Remark (a) in terms of the
components z, 4, Zy, ¢, and z, gg of the covariant derivatives of z and z,, (rela-
tive to 09) and the components Agp of the second fundamental form of 9% in R™.
All these components are computed relative to an orthonormal frame field tangent to
09 . The indices a, B, -*- run from 1 to m - 1. For the sake of completeness, we
state the formula.

2.4 PROPOSITION. Let i, 2z, Zy,, Z, gf, Zm,q have lhe same meaning as in
Remark 2.3 (b) above. Set ,

al L aq

~ 1
Sq(z) = ? Z) 6( )(Z’ QIBI - ZmAOZlBl) °te (Z: anq - ZmAOé B )

B1 " Bg

and

~ 1 E 108 aqa
Tol2)ap = q! 6(B1 Bqﬁ)(z’alﬁl ) ZmAOﬁﬁi) (Z’aqﬁq " ZmAap,) -

Then
(q+1)S ,(Ddxy - dx,, = S (z)z,, - 2 T 12Z)gg 2, a2y, g )dA -
S@ gtl 1 Sa@( q B q-I\ap %>« ,B)

2.5 COROLLARY. Suppose that z = f|yq is constant on 9@ . Then
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S@ (@ + 1)Sqs (D) dxy - dry, = (—1)q ) 1) S 23" o _aa,

where Oq is the gth mean curvature function on d% . In particular, if q +1 is even

and 09 is strictly convex, then S SqH(f) dx; --- dx,, > 0, with equality if and only
D

if 2z = 0.

m

Proof of Covollary. If z = constant, then all terms involving the derivatives
z,q and z, gg in Sq and Tgq will vanish. What remains, namely the expression

1 E o e aq
ql 0 (-2, Aalﬁl)( m O’26) “(—ZmAanq)
Bl ees Bq

in Sq(z) multiplied by z,,, yields the formula. As for the inequality, if q + 1 is
even, then z3'! > 0, (-1)9 = -1, and (since 99 is strictly convex) 04 <0. The in-
equality now follows. H

Remark. S. Bernstein [2] proved the corollary in the special case where m = 2,
q+1=2,and 9 is the ball of radius R.

3. THE CURVATURES OF A GRAPH

Suppose that M is the graph x.,,+] = f(xl -+ X,). We denote the natural co-
ordinatization of M by

m
Z; XJAJ +f(X1 re X )A,
j=1

X(x; v x,) = (X1, ", X, £(xy 0 x

where A;=(0, ---, 0, 1, -+, 0) (1 in the jth place) and A =(0, ---, 0, 1). We recall
the standard calculations, without proof, in a single proposition.

3.1 PROPOSITION. (a) The natural frame field on M is X, ***, X, where
oX
X, = —

i3 A; +1. A, and the unit novmal is

i

=2 - A.

L1
=1 W

élu

(b) The matrix of the first fundamental form 1 of the induced melric on M
(velative to the natural frame) is 8ij = (Xl, XJ> = 035 +1ifj.

(c) The volume element on M is

= Ydet gi;dx) A o ANdxy = Wdxp A - Adx,.

-

f

.Il::

(d) The inverse matrix (gil) of (gij) @s gl =

gl\J
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2 f..
(e) The matrix of the second fundamental form Il on M is bi; = X . N =2,
J aXIBXJ W
The matrix of the sl ¢ s bl = 20 i by fudid
(f) The matrix of the shape opevator B is b = K Pjg = W k ——

3.2 Remark. The concepts from Section 1 are quite familiar in the context of
the field B of symmetric linear transformations of the tangent spaces of M. Thus

Sq(B) = (Ié]) 0q, Where 04 is the qth mean curvature function for M. Similarly,

the Newton tensors Tq(B) have also been studied, for example in [6], [8], and [9].
We shall generally write Sq(M) and T4(M), or, if no confusion can arise, simply Sq
and Tgq, in place of Sq(B) and Tq(B).

In [6] we proved that divyTq(B) = 0. Because our proof in [6] was quite awk-
ward, we reprove the result here.

3.3 PROPOSITION. If divyg denotes the divergence opevator in the induced

metric on M, then divyTq(M) = 0; that is, 275 T(llj,i = 0 (wheve the comma denotes
covariant differentiation).

Proof. Use a proof of the same style as that in Proposition 2.1, with the Codazzi
equations bg = bf( ; replacing the symmetry f;;, = f;;;.

3.4 Remark. If q is even, then Sq(M) and Ty(M) actually depend only on the
induced metric on M. In fact, if we use the Gauss curvature equations
R%}: = biii bﬁ - b]jnbli‘ together with the skew-symmetries of the Kronecker symbols,
we can easily verify that

s = (-3 2ol sl
Jl eee ]q
and

- /2 11 g\ dydp  Jqyd
T (M)} = (_l) 1> 5( )R o pAttd

q‘**j 2 . .. ) i ig-1iq ”
TR q-l'q

In particular, -T, is the classical Einstein tensor, and if q is even, then up to a
constant factor T (M) is the qth generalized Einstein tensor of D. Lovelock [5].

Now we relate Sq(f) to Sq(M) and Tq_;(M). Let AT denote the vector field on
M obtained by projecting the unit vector 2& = (0, 0, ---, 0, 1) orthogonally onto M.
For later use, we state the following result.

3.5 PROPOSITION. (a) AT = Ejthj, where \J = fJ-/Wz,
(b) divp(To (M) AT)) = (q+1)Sq1(M) - (A, N) = (q+1)Sq (M) - (1/W).

Proof. (a) Clearly, fy = <A, Xk> = <AT , Xk> = EJ- AJd €31 - Thus

A

kj 2
?1_:/ £, gk = Zk) £1(035 = 1185/ W?)

£ - ( %{3 ff{) fJ./W2 = £5(1 - (W2 - 1)/W?) = £;/W>.
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(b) Use Proposition 3.3 (see [6]).
3.6 THEOREM. Sq(f) = WS (M) +W? (T
Proof. We know that

o-1(M) - B)(AT), AT }).

S4(t)

"iq 1 g
Z)o )iy g = W Z)a bijj; " bigig
J]_ '.]q

g\ Kk
1 q 1
wd '—,Eﬁ b; - biqgkj Bk
q: jl e 1 q 1/1
q

alq
...i k k
= Z)a Vo, Lo, (6y  +1, £.) - (5 1 +1 f.
i ey )0 1q( kyjy P B Oy kq Jq)
17 q
i, i . .
1 1 9\ x i ]
- wd .wd . L . . b2 ... pd
= Wis (M) +q - W q!Ea(jlmj )lollfkaIb12 by
q

w (Sq(M) + 27 Tq_l(M); bffkfj) :

By the proof of Proposition 3.5 (a), we can write fy = E!Z Aﬁgﬂk, while f; = W)
(AT =27 N . Thus, Sy(f) = W3 (s,(M) + {(T,_, (M) - B)(AT), AT)) n
3.7T Remavks.

(a) It is easy to verify that the form By, introduced by Chern on
p. 84 of [3], can be identified with

(—l)qq!(m—q)!Wq+l(Sq( ) - W~ +<(Tq1 )'B)(AT), AT>)dV

(-0)%q! (m - @)1 WS (M) + W2 (T, (M) - B)(AT), AT ) )dx) A - Adx,
(since dV = Wdx; A -+ A dx,)

m)- Thus, by Theorem 3.6,

= (-1)9q! (m - q)! Sq(f)dx) N - Adx,

(b) We can now see that bounds on the curvatures of the nonparametric hyper-
surface M imply bounds on the invariants of the Hessian. Suppose, for example, that
there exists a positive constant C such that no eigenvalue of Tq I(M) B is less
than C. Then

1
Sq(M) = 2 Trace (T, (M) - B) > —r(;—‘c
and
((r,_,mB)AT), AT) > C|AT|?.
Thus, using Theorem 3.6, we see that

84 (8) 5
ez 2 G C(AN)PrC|AT]® > e((A, N )2+ [AT])
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(since <A, N> = 1/W and |A| = 1). Similarly, if no eigenvalue of Ty-1(M) - B is
greater than -C, we see that Sq(f)/WqJr2 < -C.

(¢) Suppose now that @ is a disc of radius R. In Theorem 4 of [3], Chern
proves that a bound on the eigenvalues of T;(M) - B (as in Remark (b)) determines
an upper bound for R. Similarly, in [4] Flanders proves that a condition of the form
Sa(f)
W2+8
the result of Flanders implies Chern’s result. More importantly, an extension of

Sqlf
(+)2 > C > 0 would automati-
warel =

> C > 0 places an upper bound on R. Thus, by our remark (b), we see that

Flanders’ analytical result to inequalities such as

cally extend Chern’s geometric theorem.

(d) By Proposition 1.2 (d) and Remark 3.4, we see that if q is even, then
Tq-1(M) - B depends only on the induced metric on M. It is easy to see that T B
is simply the Ricci tensor on M. (Later, we shall see that in general Tq-1 B can
be interpreted as a kind of Ricci tensor, if q is even.) Thus we can rephrase
Chern’s Theorem 4 [3] in a more striking form: if no eigenvalue of the Ricci tensor
of M is greater than -C, and in addition the domain is a disc of radius R, then
R < K/VC, where K is independent of C. In this formulation, Chern’s Theorem is
highly relevant to the following question: is it true that there is no complete hyper-
surface in R™*t1 such that all the eigenvalues of the Ricci tensor are negative and
remain uniformly bounded away from 0? The celebrated Hilbert-Efimov theorem
provides an affirmative answer to this question in the case m = 2.

We now interpret the tensor Tq_1(M) - B (q even) in terms of the higher-order
sectional curvatures (see [10]).

3.8 Definition. Let M be a Riemannian manifold of dimension m > 2. Let ¢
be an even integer (2 <q < m). If L is a q-dimensional subspace of the tangent
space My at x € M, and if (e}, *, em) is an orthonormal frame at x with
ey, -, €q € L, then we define the g-sectional curvaiure y(L) of M at L by

q iy +-- i .. . .
1 q\ _JiJ2 Jg-1J
WL) = Cq + 2 5( )R N
1

. . i1i; 19-11q
]1 sew ]q

q/2
where Cq = (—%) . % Notice that this expression is actually independent of
the choice of frame, as long as e;, *, eq lie in L. We further define the Ricci ten-
sor of degree q, denoted by Rq, to be the symmetric tensor of type (1, 1) such that
if v is a unit tangent vector at x ¢ M and (e; , *, e,,) is an orthonormal basis at x

such that v = e,,, then

<Rq(v), v> = 2z -y(eil N Nes 9 AV).
1<iy <+ <ig ) <{m-1) 4

The independence of Ry from the choice of frame will become evident. Our con-
struction generalizes the usual one for the classical Ricci tensor R .

It is easy to relate these generalized Ricci tensors to the generalized Einstein
tensors of Lovelock. Indeed, let (e, -, e,,) be as above, with e, =v. Then
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"i m PR . .
q J1J2 Jg-1lq |
(T, v) = Togm = Cq Z)ﬁ( )Ri R
112 q-1iq
1p =01 jliz jgq-1J
_ q Ja-1)q
= Cq ?5(' )Riliz Rig_1iq

]l cee ]q

iy bt e g g
- 21 Cyo R ;- R
1

. . i)i 2 11
11 7" )q a-

f
Here 27 means “sum over values of the indices such that m e {ij - iq}”. Now

the first sum of the right-hand side clearly gives us Sq(M). The 2o -sum can be
decomposed conveniently into summands as follows. For each q-tuple

kp <k, <- <kq.; <kq=m, gather all the terms in the 22 '-sum such that

{i; =--iq} = {k1 - kq}. These terms add up to 'y(ek1 JANKEE /\ekq_l/\v). Now sum
over all such g-tuples k; <k, <:-- < kq= m. The total sum is <Rq(v), v> . Thus
we have proved the following result.

3.9 PROPOSITION. If M is an m-dimensional Riemanvian manifold and q is
even (2 < q < m), then Tq(M) = Sq(M)I - Rq(M).

3.10 COROLLARY. Suppose that M is an Einstein manifold of degree q in the
sense that Rq =Al. Then Sq is constant if q < m.

Proof. If Rq = Al, then

Trace Rq = Trace(Sql - Tg) = mSy - (m - q)Sy = qSq = m,

so that A =34 Sq Thus Tq = ( -AMI= Sq(l - q/m)I. Now the fact that diviy Tg = 0

implies that gradM(S (1 - q/m) = 0, in other words, that Sy = constant if
q/m# 1. &

3.11 COROLLARY. If M is a nonpavametvic hypersuvface and q is even, then
Tq_l(M) B =Rq

4. MISCELLANEOUS RESULTS

Suppose that M is a nonparametric hypersurface, as before. We shall derive a
formula in the coordinates x;, °--, X, for the qth mean curvature. It will be in
divergence form.

4.1 PROPOSITION. If M is a nonparvametvic hypevsuvface, then

(q+1)Sy, (M) = ?53{—1( T, i) .

Remark. The point of this proposition is that we can express the right-hand
side in terms of f and its derivatives, using Proposition 3.1 (f). Notice that when
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f:
q = 1, we recover the well-known formula mo,; = 22 a—i— (—'V%) . The proof of the

proposition requires the following lemma (see [1, p. 77]).

4.2 LEMMA. Let N | and Ny be smooth manifolds of the same dimension, and
let a: N| — Ny be a diffeomovphism. Suppose that N1 and N2 are equipped with
volume elements Q) and 5, vespectively, and that

a*(QZ) =p- Ql, (a'l)*(gl) = A2,

(so that ) = (poa)‘l). Let Z| and Z, be vector fields on N| and N, respectively,
such that Zp = a (Z1). Also let divy and div, be the divergence opevators asso-
ciated with the volume elements Q and Q2. Then divy(pZ1) = p((divaZ7) o).

In our situation, we have N; = & and N, =M, while @] =dx; N -+ ANdx,, and
Q,=dV. Also, @ =X and p=Vg=W. We set Z,=TyAT) and Z; = («"!) (Z,).
The components of the vector Z, relative to the natural frame X, **, X, on M
are Zj Tq(M)J@fj /W2 (i=1, ---, m) (see Proposition 3.5 (a)). Thus, since

a*(AJ-) = XJ- , the vector field Z,; has the same components. Now, applying the
lemma and Proposition 3.5 (b), we get the equation

Z L (W'(2Ti.f./wz)) =W (@ +1)Sg4 (M) - (A, N)) = (a+1)Sg,, (M)
i j

0X; )7

(since <A, N> =1/W). ®m

4.2 COROLLARY. If grad f =0 on 09, then S Sq(M)dx; -+ dxp, = 0.
D

Proof. Use Proposition 4.1, Stokes’ theorem and the fact that grad f = 0 im-
plies AT=0. =

We end this note by proving a uniqueness theorem.

4.3 THEOREM. Suppose that £y and £, are functions on D with graphs My
and M) . Suppose furiher that

(a) £, =1f; and grad fy = grad f; on 09 ,
(b) £, >£y on 9,

(c) £y and £, are convex functions,
(d) S Sq(MO) dVg = SE Sq(M1)}dV for some q < m.
P 9

Then fo=1tf;, on 9.

Proof. Consider the 1-parameter family of functions f, =tf; + (1 - t)f,
(0 <t <£1). Corresponding to these functions we have the graphs My, curvatures
Sq(t), volume elements dV,, normals N, and so forth. Let

Xt = (Xl o Xm’ ft(Xl cen X'rn))

0X¢
be the corresponding family of immersions. Then & = ot is the deformation vector.
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Hypothesis (a) implies that ¢ and grad ¢ vanish on % . Thus we can use the vari-
ational formulas in [7] and assert that

% S@ Sqt)dv, = -(q + 1) S@ Sqr1(® (& Ny Yav,.

f
0 > 0, by (b), and Sqﬂ(t) never vanishes, by (c). However by

Now <§, Nt> =
(a),

fl—
Wi
Ly |
0=S S (M;)dV 5 S, (Mg) dV =S—S S (t)dv, dt .
qM})dv, 0)dVyp t
0, g ° o At Jg 1

Since we have just seen that the integrand for the t-integral never changes sign, and
that it vanishes only if f; = {,, the result follows. ®
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