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Abstract

The empirical mode decomposition (EMD) is reviewed and some questions related to its effective performance are

discussed. Its interpretation in terms of AM/FM modulation is done. Solutions for its drawbacks are proposed. Numerical

simulations are carried out to empirically evaluate the proposed modified EMD.
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1. Introduction

The empirical mode decomposition (EMD) [1] is a technique to decompose a given signal into a set of
elemental signals called ‘‘intrinsic mode functions’’ (IMFs). The EMD is the base of the so-called
‘‘Hilbert–Huang transform (HHT)’’ [1] that comprises the EMD and the Hilbert spectral analysis that
performs a spectral analysis using the Hilbert transform (HT) followed by an instantaneous frequency
computation.

The algorithm is simple and gives good results in situations where other methods fail. However, it has some
drawbacks, tied with some of the assumptions needed to implement the algorithm, leading to unexpected
results. There have been several attempts to solve such problems. For example, Rilling et al. [2,3] made some
algorithmic variations and proposed a new stopping criterion. Besides, they gave an interpretation in terms of
filter banks. They also studied the influence of sampling [4]. On the other hand, Junsheng et al. [5] studied the
behaviour of the decomposition algorithm and proposed an energy difference tracking method to define a
coherent stopping criterion. In another attempt [6] they use the Teager–Kaiser [7] energy operator to extract
the amplitude and instantaneous frequency of a multi-component amplitude-modulated and frequency-
modulated (AM/FM) signals. The problem of envelope estimation is considered by Qin and Zhong who
proposed the segment power function method [8].

In this paper, we make a global appreciation of the different aspects of the algorithm, considering its
drawbacks and suggesting modifications to alleviate such problems. The most important is the extrema
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determination by using a parabolic approximation and the instantaneous amplitude and frequency
computation that we propose to be done through an amplitude demodulation and first-order autoregressive
(AR) approximation [9,10].

The paper outline is as follows. In Section 2 we describe the EMD algorithm as proposed in [1] and look
inside it to understand the main difficulties and ways of avoiding them. In Section 3 we present the proposed
solutions to such problems. In Section 4, we present some examples to illustrate the behaviour of the algorithm
and to understand its features. Finally, we present some conclusions.

2. The EMD

2.1. Outline of the EMD algorithm

The EMD as proposed by Huang et al. [1] is a signal decomposition algorithm based on a successive
removal of elemental signals: the IMFs. Given any signal, xðtÞ, the IMFs are found by an iterative procedure
called sifting algorithm, which is composed of the following steps:

(a) Find all the local maxima, Mi; i ¼ 1; 2; . . . ; and minima, mk, k ¼ 1, 2; . . . ; in xðtÞ.
(b) Compute the corresponding interpolating signals MðtÞ:¼f MðMi; tÞ, and mðtÞ:¼f mðmk; tÞ. These signals are

the upper and lower envelopes of the signal.
(c) Let eðtÞ:¼ðMðtÞ þmðtÞÞ=2.
(d) Subtract eðtÞ from the signal: xðtÞ:¼xðtÞ � eðtÞ.
(e) Return to step (a)—stop when xðtÞ remains nearly unchanged.
(f) Once we obtain an IMF, jðtÞ, remove it from the signal xðtÞ:¼xðtÞ � jðtÞ and return to (a) if xðtÞ has more

than one extremum (neither a constant nor a trend).

The interpolating function is a cubic spline. By construction, the number of extrema should decrease when
going from one IMF to the next, and the whole decomposition is expected to be completed with a finite
number of IMFs (see [2]). We must remark that, at least conceptually, the algorithm:

� is simple;
� appears naturally;
� does not assume anything about the signal, mainly stationarity;
� can be applied to a wide class of signals.

2.2. The EMD as an AM/FM decomposition

Consider the sifting process. The first step finds two sets of points that constitute samples of two discrete-
time signals. The interpolated signals give estimates of the upper and lower envelopes. If the envelopes were
symmetric we would say that xðtÞ is an AM signal [11]. The sifting procedure is an iterative way of removing
the dissymmetry between the upper and lower envelopes in order to transform the original signal into an AM
signal. At least conceptually, this goal would be achieved in a few steps if:

� The extrema were correctly determined.
� We had no problems with the interpolation at the extremities.
� We had no computational errors.

These difficulties will be considered later.
The above procedure allows us to conclude that each IMF is an AM signal. Moreover, as the instantaneous

frequency can change from instant to instant, we can say that each IMF is an amplitude/frequency
modulated (AM/FM) signal. So, the EMD is nothing else than a decomposition into a set of AM/FM
modulated signals. As it is not hard to understand, the envelopes cannot vary as fast as the signal, xðtÞ.
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In spectral terms, we can say that the bandwidth of the envelopes must be a fraction of the central frequency of
xðtÞ (normally called carrier). This means that when performing the sifting we are removing the low frequency
components. So, we are leaving a high frequency signal. This explains why the IMFs appear in a high to low
frequency order and why the EMD is essentially a time-frequency decomposition. This also explains why the
EMD behaves like a bank of filters [3]. This also explains an interesting phenomenon: if we add two IMFs with
non-intercepting bands, they will be decomposed without great distortion, but if the bands intercept, they will
be decomposed into a set of several IMFs. We will show this later.

2.3. On the IMF

For the continuous case, an abstract IMF is defined as a signal that satisfies two conditions [1]:

� In the whole signal segment, the number of extrema and the number of zero crossings must be either equal
or differ at most by one.
� At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the

local minima is zero.

This is the original definition of IMF presented in [1]. However, the first condition is redundant unless the
function at hand is discontinuous. In fact, if a function verifies the second condition, it verifies the first also,
because between a peak and a valley there is always a zero, since the envelopes are symmetric.

It is not difficult to see that sinusoidal signals sinð2pftÞ or cosð2pftÞ for any real f and t are IMFs. It is not
difficult to recognize that if FðtÞ is a continuous function, the same happens with sin½FðtÞ� and cos½FðtÞ�.
These are well-known functions in telecommunications where they are studied under the name of ‘‘angle
modulation’’ [11]. The instantaneous frequency is, aside a constant, the derivative of FðtÞ. Now, let us
consider a function gðtÞ ¼ AðtÞ sin½FðtÞ�. This is what is called ‘‘double side band’’ modulated sinusoid. In
general, it is not an IMF, even if AðtÞ is also a sinusoid. But, if AðtÞ changes slowly when compared
with the changes in sin½jðtÞ�, we have really an IMF. So, we can say that a function of the type AðtÞ sin½FðtÞ�
represents an IMF, provided that AðtÞ is a slowly varying function. This is the so-called envelope. But we must
remark that the above definition of envelope may not be a true envelope. A simple example shows this. The
function xðtÞ ¼ e�jtj sinð2pftÞ has e�jtj as envelope, but almost all the extrema points of xðtÞ do not belong to
e�jtj. In some signals this fact has as consequence that the function may have segments above (below) the
envelope defined by the maxima (minima). As a conjecture, we can say that the extrema envelope coincides
with the ‘‘true’’ envelope when this has extrema locations equal to those of the signal. However, there is no
simple way of defining the ‘‘true’’ envelope and the extrema defining envelope seems to be suitable to our
objectives.

We can conclude that the definition of IMF is tied with the definition of envelope that depends also on the
interpolating function used to estimate it. So, the Huang et al. [1] IMFs correspond to the cubic spline
interpolator. With other interpolator we may obtain a different set of IMFs. In our simulations we also used
the Akima interpolator.2 The results were very similar.

2.4. Main drawbacks of the EMD

Let us take a look into the above described algorithm and consider the most important steps:

� extrema locations;
� extrema interpolation;
� end effects;
� sifting stopping criterion;
� IMF removal.
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As we have seen in the earlier last sections, the algorithm has some implicit difficulties and the procedures used
in previous papers [1–3] for the above steps create several drawbacks that originate ‘‘strange’’ decompositions.
For example, when trying to decompose a sinusoidal segment, it is expected to obtain only one IMF and no
residual. This may not happen with the available algorithm implementations [1–3].

We are going to look into each step and see why it creates difficulties. We begin by the
extrema computation. This does not have an obvious solution. Although most data are originated by
continuous-time processes, in practice, the algorithm operates on quantized discrete-time signals. When
working with this kind of signals, some special attention is necessary because the extrema may not be correctly
identified. Most, if not all, of the continuous waveform actual extrema will fall in between sampling instants
and will not be correctly localized. To avoid this difficulty, Rilling et al. [2] proposed the use of a fair amount
of oversampling.

We have considered before the interpolation problem and the interpolation function choice. However, even
if we made a reasonable choice, the effectiveness of the approximation is highly dependent on the extrema
computation and may lead to some undesirable results. One of them is the ‘‘overshoots’’: the signal crosses the
envelope. This affects the IMF estimation.

The end effects appear when we have to decide what to do with the first and last samples. The solution will
affect the final decomposition:

� To consider them as maxima and minima simultaneously (this forces all the IMFs to be zero at those
points).
� To consider them as maxima or minima according to the nearest extremum in order to guarantee the

alternation between maxima and minima.
� To leave them free [1].

The stopping criterion is another source of problems due to its degree of arbitrariness, since it may not
guarantee a total signal removal to obtain a ‘‘true’’ IMF.

According to the above description, the final step is the removal of the IMF from the signal. However,
if the IMF is not well computed, we may be ‘‘adding’’ to the remaining signal a component that will
appear in the following IMF. This explains partially why we do not obtain only one IMF in the case of a
pure sinusoid.

3. Some attempts to obtain a better algorithm

3.1. A framework for modifying the algorithm

The EMD does not have an analytical formulation: it is based on a computational algorithm. So it performs
according to its implementation details. When the same signal is fed into different EMD implementations,
different results are obtained, as we will see in Section 5.1. This is confusing and inadequate. To achieve
consistency and to be able to compare results, different implementations should be equivalent. Our goal is to
establish a framework for EMD implementation to avoid the referred drawbacks (Section 2.4).

Based on this rationale, we state the following guiding principles to be followed in the design,
implementation and checking of EMD programs:

� The IMF set obtained by multiplying a constant value to all the samples in the signal should be the IMF set
of the original signal multiplied by the same constant.
� Changing the mean of the signal, it should only change the trend related IMF (the last one), leaving all the

others unchanged.
� The EMD of an IMF should be the IMF itself.
� The IMF set obtained from a time reversed signal should be the time reversed IMF set of the original

signal.3
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These rules suggest us to:

� Remove the mean.
� Normalize the signal to a unit power.

This last procedure is important when dealing with signals with very low amplitudes as in the case of
biomedical signals.

3.2. The proposed solutions

3.2.1. The extrema locations

In practice, the algorithm operates on discrete-time signals. This deserves some special attention because the
extrema definition cannot be based on a continuous neighbourhood, as in calculus. It is necessary to define a
classificatory function to assert whether a given sample is, or is not, an extremum. The classification of a
sample as an extremum must be based on the relation of the actual sample and its left and right neighbours.
Except for the first and last samples, all samples vicinity will have just those two values. Larger vicinities, with
more than two values, will distress the algorithm’s local feature. So, the classificatory function must receive as
input just these three values. According to principle (d), commuting the preceding sample with the subsequent
sample should not change a sample classification. A classification based solely on ‘‘4’’ and ‘‘X’’ type relations
will adhere naturally to principles (b) and (c) seen in the previous section. For a given sample, x½n�, the used
classificatory function is

If ððx½n�4x½n� 1�Þ AND ðx½n�Xx½nþ 1�ÞÞ
OR ððx½n�Xx½n� 1�Þ AND ðx½n�4x½nþ 1�ÞÞ Then Return (‘‘Is a Maximum’’)

Else if ððx½n�ox½n� 1�Þ AND ðx½n�px½nþ 1�ÞÞ
OR ððx½n�px½n� 1�Þ AND ðx½n�ox½nþ 1�ÞÞ Then Return (‘‘Is a Minimum’’)

Else Return (‘‘Not an extrema’’);

However, the envelope fitting depends on the extrema accuracy (position and value). As referred above,
dealing with a discrete-time signal produces an error in the location of an extremum that can be equal to half
the sampling interval. To alleviate this problem, we interpolate the signal in the interval defined by the two
neighbours to obtain a better extremum location and individualization [4]. Classic interpolation for band
limited signals relies on the computationally demanding sinc function as the interpolation kernel. This has the
disadvantage of needing a lot of samples on the right and on the left.

In agreement with our comments in Section 2.3, we are expecting that the IMFs have some degree of
smoothness, mainly near the extrema. In particular, they may also have a null derivative at the extrema. This
means that, near the extrema, it can be approximated by a parabola. So, parabolic interpolation comes into
sight as a practical compromise between no interpolations at all and sinc based interpolations, for better
location of the extrema values. Using parabolic interpolation, each extremum is estimated from only the above
defined three samples. A new interpolated extremum sample is obtained, usually with no integer abscissa, and
this new sample is fed into the EMD algorithm, replacing the integer abscissa extremum sample as an envelope
defining point. To see what happens, assume the situation where we have an extremum near time t ¼ n, and let
yð1Þ ¼ x½n� 1�, yð2Þ ¼ x½n�, and yð3Þ ¼ x½nþ 1�. The interpolating parabola is defined by yðkÞ ¼ a � k2

þ b �

k þ c ðk ¼ 1; 2; 3Þ. We have
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The sign of ‘‘a’’ will allow us to decide which kind of extremum we have: a40, it is a minimum; ao0, it is a
maximum. If a ¼ 0 it is not an extremum. From simple geometric considerations, the coordinates (tp, xp) for
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the extremum obtained from the interpolating parabola will be

tp ¼ �
b

2a
; yp ¼ �

b

2
tp þ c. (2)

If 1:5otpo2:5, we will have an extremum with a true location point at t ¼ n� 2þ tp; otherwise, there will not
be an extremum.

As simple reasoning shows, this procedure gets round the use of the above classificatory function. In fact,
we can run the interpolation algorithm just described for all the triplets x½n� 1�, x½n�, and x½nþ 1� formed with
the samples of the signal. The first and last samples were not considered, leaving them as not extrema. This
option was taken according to the procedure described in the next section.

3.2.2. The end effects

In Section 2.4 we referred the end effects. These appear due to the fact that a given interpolator may not be a
good extrapolator (see Fig. 1). In fact, unless we consider the initial and final points as maximum and
minimum simultaneously, we have at least one extremum in each side that must be free. This means that the
envelope near that point will be obtained by extrapolation. This extrapolation is poorer according to the
distance to the first (last) extremum. To be more concrete, let us assume that the first extremum calculated as
described in the previous section is a maximum. Then, the first point must be a minimum. So, we are not
constraining the upper envelope estimator near the first point to be an extrapolator. This gives a poor result.
To avoid this problem, several attempts were made such as repetition or reflection of the signal. The results
were not encouraging, because we were really extrapolating the signal. Instead we decided to extrapolate the
maxima and the minima. This has an important effect: the envelope estimator always behaves as an
interpolator. As we will see later the end effects are almost invisible. Let us consider the beginning of the signal
that we assume to be at time t ¼ 0. The extrapolation of the extrema as done using the following procedure:

(a) Find the first maximum, M1, and minimum, m1, and their time locations, T1 and t1. Assume, for example,
that T14t1.

(b) Insert a new maximum, M0 ¼M1, located at T0 ¼ �t1, and a new minimum, m0 ¼ m1, located a
t0 ¼ �T1.

To the end of the signal the extrapolation is similar. This procedure is correct in the face of our comments in
Section 2.3: the envelope is a low pass signal in face of the original signal.

3.2.3. The mean envelope removal

This is an important aspect of the algorithm, since we may be adding a non-existing component that can
distort the actual IMF and will appear in, at least, one of the following IMFs. To attenuate this we modified
step (d) in Section 2.1 by introducing a step size 0oao1 : xðtÞ:¼xðtÞ � a � eðtÞ. This increases the iteration time
duration, but the algorithm becomes more reliable. In principle, the parameter a can be arbitrary, but we
found it better to choose it according to an acceptable criterion: minimize the energy of the resulting signal.
This criterion leads to a equal to the correlation coefficient between xðtÞ and eðtÞ.

3.2.4. The stopping criterion

To state a stopping criterion in the sifting procedure, we will define a resolution factor by the ratio between
the energy of the signal at the beginning of the sifting, xðtÞ, and the energy of average of the envelopes, eðtÞ.

If this ratio grows above the allowed resolution, then the IMF computation must stop. This criterion gives a
scale independent stopping way, as opposed to criteria based on iteration count. Only the practice and the
particular problem can give a good insight into the resolution to be used. In some experiments with filtered
ECG we used 40 dB, but in the analysis of EEG we used a resolution around 50 dB.

A useful property of the resolution factor is that it enables the researcher to set the number of IMFs.
Reducing the resolution factor reduces the number of obtained IMFs. This has important practical
applications, in situations where different signals should be decomposed into the same IMF number in order
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to perform a side by side analysis. There is interdependence between the number of IMFs and resolution.
When conducting signal analysis, if the resolution is fixed, the number of IMFs is allowed to vary from signal
to signal. If the number of IMFs is to be fixed, then the resolution must be adjusted on a per signal basis.

3.2.5. Flowchart of the algorithm

The EMD algorithm proposed here is summarized in the flowchart shown in Fig. 2.
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Fig. 1. The end effects: (a) Rilling algorithm and (b) the algorithm proposed here. The last strip represents the original signal.
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4. On the Hilbert spectral analysis

Spectral estimation is the second step of the HHT. This consists in computing the instantaneous amplitude
and frequency for each IMF by using the HT and the analytic signal concept. This is another drawback of the
HHT, because the HT uses the whole signal (theoretically from �1 to þ1). As we have a finite segment of a
signal, the window effect will distort its spectrum and as a consequence its HT. As we will show later, this can
give poor frequency estimation. Besides, it is not easy to accept a global operator as base for a local
estimation. On the other hand, we do not need to estimate an instantaneous amplitude, because we already
have it, as we will see next.

4.1. Demodulating the IMF

Let jðtÞ be an IMF and yðtÞ the corresponding analytic signal. So,

jðtÞ ¼ RefjyðtÞj ejargðyðtÞÞg ¼ jyðtÞj cos½yðtÞ�, (3)

where yðtÞ ¼ arg½yðtÞ�. So, we obtained an the instantaneous amplitude and an oscillating function that is a
constant AM/FM signal (not necessarily a sinusoid). If jyðtÞj is known, we can perform an amplitude
demodulation and obtain

sðtÞ ¼ cos½yðtÞ�, (4)

such that

jsðtÞjp1. (5)

sðtÞ can be considered as an FM signal. Its demodulation leads us to the instantaneous frequency. This will be
considered in the next section. Now we will consider the amplitude demodulation.

At the end of the sifting procedure leading to the referred IMF, jðtÞ, we also have its envelopes, MðtÞ and
mðtÞ. If these were the ‘‘true’’ envelopes, they would be symmetric and its difference would be the estimate of
the amplitude modulating signal

jðtÞ ¼ AðtÞ � sðtÞ (6)

and

AðtÞ ¼ jyðtÞj ¼MðtÞ �mðtÞ. (7)

As MðtÞ and mðtÞ are not truly symmetric, we must look for a more reliable estimate of AðtÞ. This can be
achieved by the following procedure:

(a) Make gðtÞ ¼ jjðtÞj.
(b) Compute the maxima of gðtÞ and extrapolate them as described in Section 3.2.2.
(c) Interpolate those maxima to obtain an estimate of AðtÞ.

Now, it is enough to divide jðtÞ by AðtÞ to obtain an FM signal, sFMðtÞ.

4.2. On the instantaneous frequency

Assume that the instantaneous frequency of sFMðtÞ is a slowly time varying signal, so that we may consider it
to be constant over small time intervals. Moreover, sample it to obtain a discrete-time signal that we can
express in the format

sFMðnÞ � cos½2pf ðn0Þ:n� (8)

valid for n0 �Npnpn0 þN. So, we assume that the frequency is constant in a window with length 2N þ 1,
where N is a positive integer. As shown in Appendix A, in this situation the instantaneous frequency can be

ARTICLE IN PRESS
R.T. Rato et al. / Mechanical Systems and Signal Processing 22 (2008) 1374–13941382



Author's personal copy

obtained from

cos½2pf ðn0Þ� ¼

PL�1
2 sFMðnÞ½sFMðn� 1Þ þ sFMðnþ 1Þ�

2
PL�1

2 s2FMðnÞ
, (9)

where L is the number of available samples. In the case of a pure sinusoid this formula gives the correct value,
provided we have at least three samples. For an FM signal we substitute L ¼ 2N þ 1, as referred above. It
defines the window of validity of the approximations. The choice of N depends on the practical application. In
the case of the chirp signal presented in Section 5.2.1, we used N ¼ 10. We have used values from 20 to 40 in
EEG applications.

5. Illustrating results

5.1. EMD

5.1.1. Adding two IMFs

To illustrate the behaviour of the proposed algorithm and compare it with the original, we computed the
corresponding decompositions for a signal that is a sum of two IMFs:

1. x1ðnÞ ¼ sinð2pf 0nÞ,
2. x2ðnÞ ¼ 2j sinð2pf 1nÞj � 1

with n ¼ 0; 1; . . . ; 299, f 1 ¼ 0:23Hz. We made two trials with f 0 ¼ 0:1 and 0.3Hz. For comparison, we also
present the results obtained with Rilling’s routine [12]. In the following two figures, the signals in the upper
two strips are the original signals. In Fig. 3, we present the results corresponding to the case of f 0 ¼ 0:1Hz.
While our algorithm gives two IMFs, Rilling’s gives six.

In Fig. 4 we show the results obtained with the same algorithms, but now with f 0 ¼ 0:3Hz.
Now the results are similar: both decompose into six IMFs.

5.1.2. The chirp case

Another signal naturally fitting the IMF definition is the constant amplitude chirp signal. As the sampling
period is fixed and the chirp frequency is time dependent, there is no way of obtaining a sequence with all the
maxima with the same amplitude. We present the example of the chirp signal: cosð2pn2=4507þ 2pn=213Þ, with
0pnp999. The chirp rests undecomposed under our modified EMD, but under Rilling’s EMD, a set of 10
IMFs is released as illustrated in Fig. 5. This is a non-desirable feature, because a signal already fitting the
IMF definition should not be further decomposable.

5.1.3. A robot movement signal

In the first strip of Fig. 6, we present the Y component of a horizontal movement of a robot and the
corresponding EMD obtained with our and Rilling’s algorithms. Again, the results with our algorithm seem
more plausible.

5.2. Frequency estimation

Each IMF appears as an AM/FM modulated signal. In Huang et al. papers [1,2] a Hilbert spectral
estimation is used to estimate the instantaneous frequency. As said before, we suggest here the use of a local
AR approximation to estimate the frequency through the first reflection coefficient.

5.2.1. Chirp signal

In Fig. 7 we present illustrations of the frequency estimation for one chirp noisy signal.
As it can be seen, the AR method outperforms the HT estimation.
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5.2.2. An ECG signal

In the following we will present the results concerning the analysis of a segment of an ECG signal with five
beats. In Fig. 8 we present the original signal and the corresponding IMFs obtained with the algorithm we
propose here.

For comparison we are going to present the results of the time–frequency analysis, using two algorithms:

� Ours, that consists in the IMF amplitude demodulation followed by a frequency estimation using the AR
modelling.
� Huang’s approach based on the HT.

The energy operator demodulation proposed by Junsheng et al. [6] is not suitable to be used with short
length signals since it cannot assure that the energy operator assumes only non-negative values.

As expected from our considerations in Section 4.1 the amplitudes are not very different (Fig. 9). This does
not happen with the frequency estimates. It is clear that our approach gives more realistic and convincing
results, mainly in the frequency computation (Fig. 10).

5.2.3. The temperature in a dryer

In Fig. 11 we present the time evolution of the temperature inside a dryer and its EMD using ours and
Rilling’s algorithms.

Similar to the last example, we computed the amplitudes and frequencies for both the decompositions. In
Fig. 12 we present the results in a time–frequency plot. It seems clear that our algorithm seems to describe
better the behaviour of the signal.

It is clear that the results stated in Fig. 12a seem more plausible when we look at the signal we are studying.
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5.3. A brief comparison

The above results show that:

� Our algorithm gives a small number of IMFs.
� Even at a glance, they seem to be more plausible as it is clear in the dryer case.

ARTICLE IN PRESS

0 100 200 300 400 500 600 700 800 900 1000

-4

-3

-2

-1

0

1

2

3

4

0 100 200 300 400 500 600 700 800 900 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 7. Estimation of the instantaneous frequency with Hilbert transform (a) and AR methods (b).

0 1 2 3 4 5 6

-2000
0

2000

0 1 2 3 4 5 6

-1000
0

1000

0 1 2 3 4 5 6

-500
0

500

0 1 2 3 4 5 6

-500
0

500

0 1 2 3 4 5 6

-500
0

500

0 1 2 3 4 5 6

-50
0

50

0 1 2 3 4 5 6

-10
0

10

0 1 2 3 4 5 6

0.5

1

1.5

Fig. 8. EMD of a segment of an ECG. The original signal is in the upper strip.

R.T. Rato et al. / Mechanical Systems and Signal Processing 22 (2008) 1374–13941388



Author's personal copy

ARTICLE IN PRESS

0 1 2 3 4 5 6

0

500

1000

0 1 2 3 4 5 6

0

200

400

0 1 2 3 4 5 6

0

500

0 1 2 3 4 5 6

0

200

400

0 1 2 3 4 5 6

0

50

100

0 1 2 3 4 5 6

0

5

10

0 1 2 3 4 5 6

0

500

1000

0 1 2 3 4 5 6

0

200

400

0 1 2 3 4 5 6

-500

0

500

0 1 2 3 4 5 6

-500

0

500

0 1 2 3 4 5 6

0

50

0 1 2 3 4 5 6

2.5

3

3.5

Fig. 9. Estimation of the amplitudes by AR modelling (a) and Hilbert transform (b).

R.T. Rato et al. / Mechanical Systems and Signal Processing 22 (2008) 1374–1394 1389



Author's personal copy

ARTICLE IN PRESS

0 1 2 3 4 5 6

-100

0

100

0 1 2 3 4 5 6

-100

0

100

0 1 2 3 4 5 6

-20

0

20

0 1 2 3 4 5 6

-10

0

10

0 1 2 3 4 5 6

-10

0

10

0 1 2 3 4 5 6

-10

0

10

0 1 2 3 4 5 6

0

20

40

0 1 2 3 4 5 6

0

10

20

0 1 2 3 4 5 6

0

20

40

0 1 2 3 4 5 6

0

50

0 1 2 3 4 5 6

0

2

4

0 1 2 3 4 5 6

0

1

2

Fig. 10. Estimation of the frequencies by AR modelling (a) and Hilbert transform (b).

R.T. Rato et al. / Mechanical Systems and Signal Processing 22 (2008) 1374–13941390



Author's personal copy

� The end effects are clearly less evident in our approach.
� The demodulation approach clearly outperforms Hilbert approach.

6. Conclusions

The empirical mode decomposition as a data driven alternative approach to the analysis of non-stationary
signals was described. We studied it and revealed its features and some drawbacks. Here we proposed
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solutions for such difficulties in order to obtain an algorithm with better performances. We also criticized the
use of the Hilbert transform for spectral estimation, presenting an alternative based on an AR local
approximation. We also presented some simulation results.

Appendix A

Consider the signal sFMðtÞ introduced in Section 4.1. Assume that its instantaneous frequency f ðtÞ is a slowly
time varying signal, so that we may consider it to be constant in small intervals. We can write

sFMðtÞ � cos½2pf ðt0Þ � t� (A.1)

for t in a small interval around t0. Sampling this signal we can express it in the format

sFMðnÞ � cos½2pf ðn0Þ:n� (A.2)

valid for n0 �Npn0pn0 þN. So, we assume that the frequency is constant in a window with length 2N þ 1.
In practice, we used N ¼ 15. Here, we propose an instantaneous frequency estimator based on a local AR
approximation. It is known that, if xn ¼ cosð2pfnþ jÞ, with f 2 ð0; 1=2� and j 2(-p,p], it verifies an AR
equation. In fact, we have

cos½2pfnþ j� ¼ cos½2pf ðn� 1Þ þ j� cosð2pf Þ � sin½2pf ðn� 1Þ þ j� sinð2pf Þ

and

cos½2pf ðn� 2Þ þ j� ¼ cos½2pf ðn� 1Þ þ j� cosð2pf Þ þ sin½2pf ðn� 1Þ þ j� sinð2pf Þ.

Adding both equations, we obtain

cos½2pfnþ j� þ cos½2pf ðn� 2Þ þ j� ¼ 2 cos½2pf ðn� 1Þ þ j� cosð2pf Þ

and

cos½2pfnþ j� � 2 cos½2pf ðn� 1Þ þ j� cosð2pf Þ þ cos½2pf ðn� 2Þ þ j� ¼ 0

giving

xðnÞ � 2 cosð2pf Þxðn� 1Þ þ xðn� 2Þ ¼ 0 (A.3)
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that leads to an AR model with polynomial

1� 2 cosð2pf Þz�1 þ z�2. (A.4)

This polynomial is obtained using the Levinson recursion (see below) with the reflection coefficients:

C1 ¼ � cosð2pf Þ (A.5)

and

C2 ¼ 1.

So, computing the first reflection coefficient in a window centred in the reference sample, we can obtain an
estimate of the frequency.

Eq. (A.3) is a special case of the AR model

XN0

i¼0

aixðn� iÞ ¼ vðnÞ, (A.6)

where vðnÞ is white noise and ai, i ¼ 0; 1; . . . ;N0, with a0 ¼ 1 are the AR parameters. These can be computed
from a set of reflection coefficients by means of the Levinson recursion (see below).

To compute the reflection coefficient estimates, we use a modified Burg method [10]. We are going to
introduce it in the following steps. Let xðnÞ be a discrete time signal. For N ¼ 1; . . . ;N0.

1. Define the forward and backward prediction errors by

f N
n ¼

XN

i¼0

aN
i xðn� iÞ (A.7)

and

bN
n ¼

XN

i¼0

aN
i xðn�N � 1þ iÞ (A.8)

and the error prediction power by

PN ¼
1

2ðL�NÞ

XL

Nþ1

½ðf N
n Þ

2
þ ðbN

n Þ2�. (A.9)

2. Use the Levinson recursion [10]

aN
i ¼ aN�1

i þ CNaN�1
N�i ; i ¼ 0; . . . ;N (A.10)

to obtain

f N
n ¼ f N�1

n þ CNbN�1
n (A.11)

and

bN
n ¼ bN�1

n�1 þ CNf N�1
n�1 (A.12)

with f 0
n ¼ xðnÞ and b0

n ¼ xðn� 1Þ.
3. With the above recursions, transform PN into a function of a unique variable—the reflection coefficient CN :

PN ¼
1

2ðL�NÞ

XL

Nþ1

½ðf N�1
n þ CN � b

N�1
n�1 Þ

2
þ ðbN�1

n�1 þ CN � f
N�1
n Þ

2
�. (A.13)

4. Derive PN relative to CN and equate to zero to obtain

CN ¼ �

PL
Nþ2½f

N�1
n bN�1

n þ f N�1
n�1 bN�1

n�1 �PL
Nþ2½ðf

N�1
n�1 Þ

2
þ ðbN�1

n Þ
2
�

. (A.14)

For N ¼ 1, we immediately obtain Eq. (9).
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