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ON THE HIERARCHY OF PETRI WET LANGUAGES (*)

by Matthias JANTZEN (X)

Communicated by W. BRAUER

Abstract. — We prove Jtn {D[*) £ M (£>!*), where I>î* is the one-sided Dyck language, and discuss
some old and new resuits concerning Pétri net languages. The above resuit shows that Pétri nets without
X-labeled transitions are less powerful thon gênerai nets as regards their firing séquences since the class
S£\ of gênerai Pétri net languages {Hack [13]) is identical with Aî^D'?), and the class ^Sf^ of
computation séquence sets (Peterson [21]) equals ^ n ( D j * ) .

INTRODUCTION

The reader is supposée to be familiar with the notion of Pétri nets and with
formai language theory. For exact définitions of Pétri net languages, see
Hack [13] and Peterson [21]. AFL theory, see Ginsburg [8], is used extensively.

For readers who like to read this note without going too much into details
some informai explanation of abbreviations follows:

if o dénotes the family of languages each of which is a set of firing séquences
leading some arbitrary labeled Pétri net from a start marking to a final marking;

if o dénotes the family of languages each of which is a set of fîring séquences
leading some arbitrary but À,-free labeled Pétri net from a start marking to a
different final marking;

^SfSf is defmed like JS?O but without the restriction that the final marking is
different from the start marking;

S£x dénotes the family of languages each of which is a set of firing séquences
leading some arbitrary labeled Pétri net from a start marking to some other
marking;

5£ is defmed like if1 without using ^-labels.

(*) Received March 1978.
(*) Fachbereich Informatik, Universitât Hamburg, Hamburg.
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20 M. JANTZEN

<fz dénotes the family of Szilard languages (Salomaa [24]) which are also
known as dérivation languages of context-free grammars (Penttonen [22]) or
associate languages (Moriya [19]).

Note: Szilard languages do not contain the empty word X ! M{5£) [Â(£P)t

% (JSP), é (if) resp.] dénotes the least trio (least full trio, least semi-AFL, least full
semi-AFL resp.) containing if.

For (9 being M {M, %, é resp.) (9n(£?) dénotes the least intersection-closed
family containing ^£ and closed under the opérations which define (9.

M (resp. 0tê) dénotes the family of regular (resp. recursively enumerable) sets.
The shuffle opération on languages Lt and L2 is defîned by:

Shuf (Llt L2): = { Î U = X 1 J ; 1 . . .xnyn\x1x2. . .x n e L1,yly2...-.yneL2}.

The opération perm (L) dénotes the commutative closure of the language L.

For families of languages iflf ££2
 w e u s e the following notations

gx v i ? 2 : = {L\L = LX u L 2 for some L^^^ L2sS£2 },

«S?! A JS?2: = {L\L = Lxr\L2 for some Z i e i f 1 ; L2e<£2 } ,

Aif : = {L|there exists n ^ 1, Llt. . ., L

such that L = Lx

{ | (
for some nonerasing homomorphism h and some L'

for some arbitrary homomorphism h and some L'

: — { L\L — h~l (L') for some homomorphism h and some L'e if }.

perm {5£)\ = {L|L = perm (Lf) for some L'e£?.}.

SOME SIMPLE FACTS ON PETRI NETS

A number of proofs have been published to exhibit several closure properties
for Pétri net languages. The proofs can be found in Höpner [14], Hack [13] and
Peterson [21]. We summarize the results in proposition 1:

PROPOSITION 1: (êSf £f and $g\ are closed with respect to union, concaténation,
intersection, shuffle, substitution by X-free regular sets, inverse homomorphism and

R.A.I.R.O. Informatique théorique/Theoretical Informaties



HIERARCHY OF PETRI NET LANGUAGES 21

limited erasing. <€!¥$f and S£\ contain all the regular sets, whereas ££§ contains
only the X-free regular sets.

Of course these opérations are not independent from each other.

The characterization £f%=3tf(,9>z/\ ë%) is more or less folklore because of the
obvious connections between Petri net languages and dérivation ianguages of
matrix grammars. See Nash [20], van Leeuwen [18], Crespi-Reghizzi and
Mandrioli [4, 6], Höpner [14], Salomaa [24], and many others cited there.

The equality ^0=^{9ZAM) has been proven by Crespi-Reghizzi and
Mandrioli [6] though it is not explicitly stated there.

Using the équations above, proposition 1 and AFL theory we can characterize
the Petri net languages in the following way:

PROPOSITION 2:

zv {{A.}}).

77ns characterization, as we whall see, is not optimal, since thefamïly Sf^Ewhich
générâtes if0, S£\ and ̂ 9*9> via a-transductions can be replaced by a smaller
family.

It is easy to see that each Szilard language Le $fz is a fmite intersection of one-
counter languages. A first hint in this direction has been given by Brauer [3], and
in [6] it has been shown that certain Petri net languages can be written as finite
intersections of deterministic context-free languages. We state this as:

PROPOSITION 3: IfLe9z> then there exist n ^ l and deterministic one-conter
languages Klt . . ., Kne.yM{D^) such that L = K1n. . .nKn holds.

Proof: The proof is obvious: each Kx is a ianguage accepted by an automaton
which counts the number of occurences of the nonterminal At in the sentential
form of the dérivation in progress.

If the context-free grammar has m nonterminals then at most m one-counter
languages are needed. Moreover, if the number of occurences of the nonterminal
At within each sentential form of a terminating dérivation is bounded by some
constant, then the corresponding language Kt is a regular set. This shows that the
integer n in proposition 3 can be chosen equal to the number of unbounded
nonterminals of the grammar generating L.

Note: This does not mean that n equals the number of simultaneously
unbounded nonterminals of that grammar There are examples where no
nonterminal is bounded but only one at a time may occur arbitrarily often.

vol. 13, n° 1. 1979



22 M. JANTZEN

THE HIERARCHY

To obtain a simple and obvious characterization for Petri net languages we
define a special kind of/c-counter language which is the /c-fold shuffle of the one-
counter Dyck language.

DÉFINITION: Let C\ dénote the semi-Dyck language over the pair of brackets
{ahât}.

Then Ck is recursively defmed by:

Ck:=Shuf(Ck.lt Cï).

Using AFL theory we easily show:

THEOREM 1:

Proof: Since &l= ${<«&&) = ${^0) {see proposition 2 and the définitions)
we only have to show

The equality Jln(D [*) = <&„&[*) [resp. ^n(2>i*) = #n(Di*)] follows irom
proposition 1 and AFL theory.

Since
Jtn {Jt (D[ *)) = J( (A M {D[ *)) = M (A Ji {Dl*))

{see Ginsburg [8], prop. 3.6.1) and ̂ Z Ç A M{D'f) (by prop. 3) we get

M {¥z) Ç Jt ( A Jd (Dl*)) = Jtv {Jt (Di*)) = M (Dl*)

thus by proposition 2:

i ? 0 < = - ^ n W ) and

Since ̂ ^9" contains the language Df {see [13, 17]) and is closedwith respect to
A--free a-transductions (see prop. 1 and 2) we get:

To verify Jt{{Ci\i^l})=Jtn{Dl*) we first observe that for each /c^l the
language Ck is a member of Jt'n (Di*) since this family contains Cx = D'^ and is
closed with respect to shuffle.

R.A.I.R.O. Informatique théorique/Theoretical Informaties



HIERARCHY OF PETRI NET LANGUAGES 23

Note: A trio is intersection-closed if and only if it is closed with respect to

shuffle (exercice 5 .5 .6 in [8] or corollary 3 in [7]).

Thus we have Jt({Ci\i^l})çJ(n(D[*).
Now suppose

LeJ(n{D'*)=J((AJl(Df
x*))l

then by définition of A ̂  there exists k ̂  1 such that

LeJ4{.JÉ{C\)A . . . AUT(CÎ)).

Using proposition 5 .1 .1 and theorem 5 .5 .1 (d) in [8] we get

By induction we obtain

A . . . A.Ji{C\)) =

the proof of theorem 1 is fînished.

Theorem 1 gives a similar characterization for ifo a s theorem 5 .6 in [13].
Whereas Hack uses I>i* and the regular sets as basis and the opérations
homomorphism, shuffle and intersection, we use Di* as basis and the following
opérations: homomorphism, inverse homomorphism, intersection with regular
sets and either shuffle or intersection.

Using ideas of Greibach [10] one can show that for each k^ 1 the language

is not a member of the family M (Ck_ x) (see example 4. 5 .2 in [8]).
But obviously Lke.J?{Ck), thus there exists an infinité hierarchy of families of

Pétri net languages

Since J?n(D[*)= U £{Ct) (by the définition of l\5£ and previous results) we

apply theorem 5 .1.2 in Ginsburg [8] which shows that M (Di*) = ̂ SfSf is not a
principal semi-AFL.

vol. 13, n° 1, 1979



24 M. JANTZEN

REMARK: With the method of counting the number of reachable configurations
Peterson [21] proved that PAL: = {wwR\we{0, 1}*} is not a member of

Now if the reachability problem for Pétri nets is decidable as announced by
Tenney and Sacerdote [23]:

(i) PAL is not a member of <£\\
(ii) # 5 ^ is not closed with respect to Kleene star.

Proof: Suppose PALeJ£?o then <£l = 0lS, since Mi is the least intersection-
closed full semi-AFL containing PAL (see [1]).

But this would contradict the resuit of Tenney and Sacerdote.
Suppose (êSfy to be star-closed, then SPQ would be star-closed too and thus a

full AFL. But then again JS?£ = âtê would yield the contradiction since Mi is the
least intersection closed full AFL containing the language {an bn \ n ̂  0} which is
in 2\ (see [1]).

Unfortunately there is no direct proof of (i) or (ii) which does not use the resuit
of Tenney and Sacerdote.

Note: Theorem 9 .8 in [13], stating that the language Qo = (D[*.• {0} )* • £>i* is
not a member of JSPQ* is based on an incorrect proof as observed by Valk [26] !

THE NONCLOSURE OF <ê$T& UNDER ERASING

There are two problems which are to be solved:

PROBLEM 1: Does or does not hold

PROBLEM 2: Does or does not hold

J(Ck)=J(Ck+1)7

Before we solve the first one, let us shortly discuss the second one.
Of course M(C^^ M(C2) since C2 is not context-free and Â(C^) contains

only context-free languages. We will even see that JÉ(C2) contains a language
BIN such that \|/(BIN) is not a semilinear set (\|/ dénotes the usual Parikh
mapping). It can be shown that Â(Ck)= Â(Ck+1) implies JÏn(Cl)= Â(Ck),
thus the family jSf à would be a principal semi-AFL which would be surprising. I
conjecture that ^(C fc)$ Â(Ck+1) holds for each /c^l.

Compare this conjecture with results by Latteux [17] who has shown that
Jl^ (Df) = M ( { On | n ̂  1} ) is not principal. The language On is defined similar to
our language Cn by:

Ox :=perm({fl1â1}*) = DÎ,

R.A.I.R.O. Informatique théorique/Theoretical Informaties



HIERARCHY OF PETRI NET LANGUAGES 25

which is the two-sided Dyck language, and

0n: ^ShufF^-L perm({a„a„}*)).

To solve problem 1 we define the language BIN which will be the
counterexample to show the desired inequality:

BIN: = {wak\we{0, l } * , 0^kS

DÉFINITION:

where n(w) dénotes the integer represented by w as a binary number.
Convention: n(k): = 0.

We ürst prove :

THEOREM 2:

BIN e Jf(C2).

Proof: Let N be the folio wing Petri net (fig.) including the place p5, the dotted
arcs and the transition labeled with the symbol "a".

Let N' be the net N without the dotted lines.

We will verify that Petri net N accepts the language BIN, i.e. each firing
séquence beginning with the start marking (1, 0, 0, 0, 0) spells out a word from
BIN and conversely each element of BIN can be accepted in that way.

Let | pi | dénote the number of tokens at place pt. By induction we first prove a
basic property of the net JV':

FACT: After we{0, 1}* has been accepted by the net N' starting with the
marking (1, 0, 0, 0) then | p 31 + | p41 ̂  n (w) holds true for the raarking which has
been reached.

Basic step: For w e {0} * trivially | p3 | + | p41 = 0 = n (w).

vol. 13, n° 1, 1979



26 M. JANTZEN

For w; e { 0 } * • {1} obviously | p31 + | p41 = 1 = n (w).
Induction step: Assume the fact to be true for ail w e { 0, 1} * of length m and

suppose the net N' has already accepted such a word w. Then either p2 or px has
one token. In order to accept a word wfe{0, 1 }* of length m+1 we have to
reach a situation where px has the token. This can be done using the
^-transitions. Suppose the situation reached so far is described by the marking
(1, 0, x, y). By our assumption x + y^n(w) holds true.

Now two cases are of interest:

Case 1; We use the transition labeled with "0". This means we accept
wr = w0. In this case, not using one of the ^-transitions, we directly reach the
marking (0, 1, x, y). Still leaving the token on p2 we can only reach a marking
(0, 1, x', yf) where

y and x' = 2{y-y') + x.

Now we can shift the token from p2 to px and then we may reach some marking
(1, 0, x", y") where

x" — x' — z and y" = j ' +r

for some O^z^gx'. Thus

x" + y" — x' + y' = 2 y — 2 y' + x + y' = 2 y + x — y' S 2 y + x.

Since x + y^n(w) implies y^n(w) we get 2y + xt^2n(w). Thus fînally

This proves the induction step restricted to case 1.

Case 2: Suppose we use the transition labeled with " 1 " . This means we accept
w' = wl. Then n(w') — 2n{w)-\-l and the same considérations as in case 1 show
that in this case |p 3 | + |p 4 | =x" + y" + l, so that \p3\ + |p 4 | ^n(w'). Therefore
we have proved the fact for ail works we{0, 1 }*.

Now, looking at the net N we can easily verify that the transition labeled
with "a" can be used at most | p41 times, thus at most n(w) times if w has been
accepted and p5 has got the token from px. This shows that each word accepted
by the net N is in BIN.

Conversely, we have to show that each word in BIN can be accepted by the
net. This is easily seen in the following way: First of all each word we{0, 1} * can
be accepted by the net. Moreover, if each ^-transition is used as often as possible
until w has been accepted and p1 has one token, then | p41 = n (w). Of course the
transition labeled with "a" may now be used k times, where 0^k^n(w) is
arbitrary.

R.A.I.R.CX Informatique théorique/Theoretical Informaties



HIERARCHY OF PETRI NET LANGUAGES 27

This shows that the net N accepts exactly the language BIN without using final
markings. Of course we could add some more ^-transitions to clear all places if
we liked.

Since the net has only the two unbounded places p3 and p4 we have the result
BIN e.J{C2).

The language BIN is similar to a language used by Greibach [11] to show that
linear-time is more powerful than real-time récognition by multicounter
machines. We now show BIN $JHn(D'f). The proof uses Dedekind's idea of
distributing more than n pièces into less than n boxes.

THEOREMS: BIN* A , (DP).

Proof: Assume BIN e J(^{D'f), then there exists a net N with k places which
accepts BIN not using ^-transitions. We will dérive a contradition.

Let m be the maximal number of tokens which can be added to the net in firing
one transition. Let m0 be the total number of tokens in the net at the beginning.
Then after n steps, each step being the firing of one transition, there are at most
mo + n-m tokens in the net. Distributing up to that many tokens over the k places
of the net yields at most

k

different markings which are reachable within n steps !

Note: I j equals the number of different possibilities to distribute
\ k — l )

exactly i indistinguishable objects into k different boxes.
Of course the upper bound obtained above is quite bad, on the other hand it is

good enough for our purpose.
Now, there are 2" different words w e { 0,1 }* of length n. Each word represents

an integer n(w), where 0 ^ n(w) S 2 " - 1 . Let w0, wlt. . ., wr_1 be the ordering
of all words of length n such that n (wt) equals i for i = 0,1, . . ., 2" — 1.

For each word wt there must exist at least one marking Mt of the net which is
reachable while accepting wt and from which it is possible to accept a\ since the
word Witfis in BIN. We shallsee that all these markings Mo , . . ., M^^mustbe
different. But this then is a contradiction, because there are at most (m0 -f n • m)k

different markings reachable within n steps, which for n big enough is strictly less
than 2\

Now suppose for some i =£ƒ we would have Mt = My Then we could reach this
marking accepting the word u ^ ^ , and starting with this marking we could

vol. 13, n° 1, 1979



28 M. JANTZEN

accept the word amax(i;), thus we could accept the word w.miniij) a
max(lJ) which is not

a member of BIN. The contradiction is met and we have shown that no Petri net
without À,-labeled transitions can accept the language BIN.

COROLLARY 1:

Proof: Trivial, using theorem 2, theorem 3 and the propositions.

COROLLARY 2 : ^ ^ ^

Proof: Since BIN is in S£x and the proof of theorem 3 works for nets with or
without final markings.

REMARK: When writing this note, I have been told that Greibach [12] has
shown <€'Sf'5*' = M'n(I>i*) 4 Â?n(Di*) independently.

Vidal Naquet [27] has proved corollary 2 using a different method which was
not applicable for nets with final markings.

Corollary 1 solves the open problem of Hack [13] whether X.-labels can be
eliminated in arbitrary Petri nets.

The well known language LSi: = {anbm\ 1 ̂  n, 1 ^ m ̂  2"}, the Parikh
image of which is not a semi-linear set (Stotzkij [25]) now simply can be shown to
be a member of ,f? (C2) since

where h is the coding defined by h(l): =a and h(a) : =b,

Surprisingly enough it can be shown that this language can be accepted by a
certain net without À,-labeled transitions. We state this as:

PROPOSITION 4:

LSteJi(C3).

The proof can be found in [16].
Careful inspection of the net for this language LSt which in fact is a modified

version of the net for BIN shows that the Parikh image of the set of all reachable
markings is not a semi-linear set.

Using results of van Leeuwen [18] we see that Petri nets with three unbounded
places are strictly more powerful than vector addition Systems of dimension 3.
This follows since van Leeuwen [18], theorem 6.4, has proved that for each
vector addition System of dimension 3 the Parikh image of the set of reachable
points is a semi-linear set.
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HIERARCHY OF PETRI NET LANGUAGES 29

Looking at the proof of theorem 3 one can check that the method used here

doesn't work if the language under considération is bounded, i. e. if

L ^ {iüj }* . . . { wm }* for a fîxed collection of words wlf. . . , wm. In this case

there are at most D (n; 1g (wj), . . . , 1 g {wm)) different words of length n, where the

"denumerant" D{n; a1,..,,an) equals the number of différent points

x : = (Xi,. . . , xm) for which

ax • Xi + a2 • x2 + . . . + am • xm = n holds true.

Using results of Bell [2] it can be shown that for ail n ̂  1

D{n\a1, . . . , am)^c. nm~x for some appropriate constant c depending only

onau . . . , am.

Thus the number of words of a certain length n and the number of different

markings reachable within n steps both are bounded by some polynomial in n.

These suggestions give rise to the following :

Conjecture: Each bounded language Les/#n(Di*) is in fact a member of
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