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Abstract—This paper presents a measurement-based
analysis of the Received Signal Strength (RSS) of Bluetooth
Low Energy (BLE) signals,under Line-of-Sight (LOS) and Non-
Line-of-Sight (NLOS) scenarios, performed in tandem at two
universities in Tampere, Finland, and Bucharest, Romania.
We adopted the same hardware and methodology for mea-
surements in both places, and paid particular attention to
the impact of RSS on various environmental factors, such
as LOS and NLOS scenarios and interference in 2.4 GHz
band. In addition, we considered the receiver orientation
and the different frequencies of BLE advertising channels.
We show that snapshot RSS measurements typically have
high variability, not easily explainable by classical path-loss
models. A snapshot recording is defined here as one continuous recording at fixed device locations in a static setup.
Our observations also show that aggregated RSS data (i.e., considering several snapshot measurements together) is
more informative from a statistical point of view and more in agreement with current theoretical path-loss models than
snapshot measurements. However, in BLE applications such as contact tracing and proximity detection, the receivers
typically have access only to snapshot measurements (e.g., taken over a short duration of 10–20 minutes or less), so the
accuracy of contact-tracing and proximity detection can be highly affected by RSS instabilities. In addition to presenting
the measurement-based BLE RSS analysis in a comprehensive and well-documented format, our paper also emphasizes
open challenges when BLE RSS is used for contact tracing, ranging, and positioning applications.

Index Terms— Indoor navigation, indoor radio communication, received signal strength indicator (RSSI), Bluetooth,
fluctuations.
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I. INTRODUCTION AND MOTIVATION

PROXIMITY-BASED applications have become increas-
ingly popular in recent years. Estimating the distance

between two devices can be used to find lost objects, to share
files between nearby devices, to enable smart homes to react
to owners’ location, or to fight against a pandemic. In the
past year, digital contact-tracing applications (shortly called
apps) have received increasing attention to prevent the spread
of COVID-19 and many countries have developed such digital
apps. Detailed overviews of existing contact-tracing apps can
be found in our previous works [1], [2] and in other recent
works [3]–[7].

The most popular technologies that enable proximity-based
applications are Wi-Fi, Bluetooth Low-Energy (BLE), Ultra-
Wideband, and Global Navigation Satellite Systems (GNSS).
BLE is the most promising candidate of them since it offers
the lowest power consumption and is supported by most
mobile devices and operating systems [8]. While BLE-based
positioning can reach meter-level accuracy when both angle-
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of-arrival (AOA) and received signal strength (RSS) informa-
tion are combined [9], most consumer devices such as mobile
phones and wearables are not equipped with direction-finding
capabilities and they rely only on RSS measurements for
proximity detection. RSS measurements from any wireless
signal (BLE, Wi-Fi, cellular, etc.) are known to fluctuate
due to the presence and movement of people in the signal’s
path [10], the presence of multipath [11], the switches between
carrier frequencies of sub-channels used in the transmitted
signal [11], the antenna polarization [12], the orientation of
the transmitter (TX) and receiver (RX) [13], and the chipset
model [14].

While there are currently many studies about the RSS
variability in Wi-Fi signals, e.g., [15]–[19], most such studies
focus only on one source of fluctuations or investigate the
aggregated effect of multiple error sources. In contrast, this
paper documents the (in)stability of the BLE RSS over time,
over space (with different multipath characteristics), with dif-
ferent hardware, on different advertising channels, at different
distances, with different device orientations, and with different
type of obstructions between device pairs. We isolated these
factors and evaluated their impact individually. In addition,
we documented a new error source, namely the influence on
Wi-Fi–BLE combo chipsets on the RSS. Based on an extensive
measurement campaign, we provide recommendations that can
partly mitigate BLE fluctuations caused by these factors.

We also provide open-access data that accompanies this
study in order to aid future research. During the COVID-
19 pandemic, open-access BLE RSS data sets have proven
essential for the research community. However, most such data
sets, e.g., [20]–[22], have limited documentation or do not ana-
lyze the behavior of the BLE RSS with all the aforementioned
instability sources. Therefore, a more thorough investigation
on BLE RSS instabilities documented by open-source data is
still needed.

This paper offers a comprehensive analysis of BLE RSS
instabilities, fluctuations, and challenges in BLE-based prox-
imity detection and contact tracing. We based the analysis
on two extensive measurement campaigns performed in par-
allel at Tampere University (TAU) in Tampere, Finland and
at University Politehnica of Bucharest (UPB) in Bucharest,
Romania between January–March 2021. The tandem measure-
ments were conducted with exactly the same type of devices
to eliminate the possible fluctuations coming from different
hardware models as well as possible calibration issues. Our
measurements will be available, upon the paper publication,
in open-access at the A-WEAR research community on Zen-
odo.1

The main contributions and findings of this paper are:
• Offering an extensive measurement-based analysis of

BLE RSS fluctuations and showing that current
single-slope path-loss models from the literature do not
capture these effects.

• Comparing snapshot (or single recording) measurements
with aggregated recordings and showing that, when

1https://doi.org/10.5281/zenodo.4643668

Fig. 1. An illustration of the contact-tracing chain with users A and B
exchanging BLE signals at a distance of at most 2 m and interacting with
the cloud server to receive the anonymized reports for crossing paths
with infected users.

enough RSS data is aggregated, the statistics converge
to stable models;

• Analyzing the effect of BLE advertising channels on
RSS fluctuations and showing that the aggregated RSS
from all BLE advertising channels has significantly higher
fluctuations than on individual BLE channels. This is
an important challenge in current BLE-based proximity
apps, where channel information is usually not available;

• Analyzing the effect of non-line-of-sight (NLOS) propa-
gation on the BLE RSS;

• Analyzing the effect of relative orientations between the
transmitter and the receiver on the RSS;

• Analyzing the same-chip Wi-Fi interference with BLE.

Based on our state-of-the-art review (Section II), we believe
that these high BLE RSS fluctuations have not yet been
reported and documented to their full extent in the current liter-
ature and that there are still several challenges to be overcome
when dealing with snapshot BLE RSS measurements, as those
used in contact-tracing and proximity detection applications.
Therefore, this paper documents BLE RSS fluctuations and
raises several research questions about the applicability of
classical path-loss models in the line-of-sight (LOS) and
NLOS propagation of BLE signals.

II. STATE-OF-THE-ART OVERVIEW

In Section II-A we provide an overview of the state-of-
the-art in digital contact tracing and proximity detection apps
based on BLE signals, which are increasingly relevant in our
times. In Section II-B we discuss the main factors that cause
BLE RSS variability and the most important studies that have
investigated them. In Section II-C we summarize the findings
and state the key points that differentiate our work from past
research.

A. BLE-Based Contact Tracing and Proximity Detection
Principles

Digital contact tracing is a particular case of proximity
detection, used as an identification and follow-up solution
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aiming to break the transmission chains of airborne infections
within communities.

In a digital contact-tracing chain such as in Fig. 1, smart-
phones and wearables are commonly assigned with perma-
nent and temporary identifiers generated by each device for
privacy-preserving purposes. The server owns the complete list
of the users reporting their confirmed cases of infection, which
includes both permanent and ephemeral IDs. Periodically,
the user devices receive anonymized data with user reports
of confirmed test results from the server, such as the case of
the user A in Fig. 1, and then locally estimate the risk of
having been exposed to the infection.

A device equipped with a BLE chipset starts to log the
ephemeral IDs and timestamps of other users when these are
nearby (within a distance d) for a certain time window (e.g.,
typical thresholds used in many apps nowadays are 15 min
time widow and d = 2 m distance, which is currently deemed
a safe distance). The infection risk is computed based on the
time spent in proximity with a confirmed case.

By nature, BLE signals are susceptible to the environment
and therefore require calibration and averaging. When the
range is estimated with a certain error, there is a higher risk
of generating false positives, when a user appears to be closer
than in reality, or false negatives, when the actual distance is
less than the estimated one. These errors could also appear
if a wall or a door blocks the space between the devices,
leading to NLOS propagation, when in fact the infection risk
is low. Therefore, it is crucial to accurately estimate the range
between two users. When the estimation fully relies on BLE
RSS measurements, it is therefore important to understand the
various causes of BLE RSS fluctuations.

B. Related Studies on BLE RSS Variability
BLE was primarily designed for communication purposes

and its use as a ranging technology has appeared only
recently. As any wireless signal, BLE signals are susceptible
to environment dynamics such as multipath, signal scattering,
shadowing, refraction, or attenuation. In addition, the difficulty
of evaluating the exact distance between two persons might
be exacerbated by noisy measurements, faulty BLE chipsets,
low transmit power, low received signal strength, or infrequent
scanning intervals [2].

One of the key challenges of digital contact tracing, which
is the scope of on-going research, is the high false pos-
itive rate. This occurred, for example, when experts from
The Alan Turing Institute used the GAEN system to build
the National Health Service (NHS) COVID-19 app [23]. The
authors reported a problem of high false positive rates in
detecting distances between users staying apart from 2 to
4 m; in other words, 2 m distance proved to be a reliable
threshold both for epidemiological safety measures and for
BLE performance specifications. Another critical goal for
contact tracing is accurate LOS and NLOS detection, yet many
factors are still unknown regarding BLE signal propagation.
In the following, we outline some of the most important
challenges in proximity detection based on BLE RSS and the
state-of-the-art concerning them.

Fig. 2. An illustration of the 2.4GHz ISM band channels. Advertising
channels 37, 38, and 39 are scattered deliberately to avoid interference
with Wi-Fi.

1) Advertising on Different Carrier Frequencies: BLE uses 40
radio frequency (RF) channels, 2 MHz wide each and assigned
with a unique index illustrated in Fig. 2. BLE channels are
divided into two groups: advertisement channels (indexed 37,
38, and 39) and data channels (indexed from 0 to 36). In BLE,
the three advertisement channels indexed 37, 38, and 39 with
center frequencies at 2.402, 2.426, and 2.48 GHz, respectively,
are scattered over the 2.4 GHz band to avoid interference
with other devices operating in the Industrial, Scientific, and
Medical (ISM) band. Based on the analysis and modeling of
these advertising channels in [24], channel 39 was deemed the
most reliable, since it is further away from the center frequency
of a main Wi-Fi channel, whereas channels 37 and 38 overlap
with one, respectively two Wi-Fi channels.

The impact of advertising channels on the RSS is twofold.
First, according to path-loss models, the RSS is inversely
proportional to the squared carrier frequency. Second, embed-
ded antennas usually do not have a flat response over the
entire bandwidth, resulting in different gains depending on the
frequency [25]. The difference between RSS values acquired
at the same location on different channels was found to be
as high as 15 dB in [11] or almost 6 dB in [25], therefore
decreasing the RSS-based ranging accuracy.

Knowing the channel on which a beacon was transmitted
can improve distance estimates [11], [26], but this information
is often obfuscated by the driver at the receiver, unless the
transmitter explicitly includes this information in the beacon’s
payload (which is rarely done). As a result, most receivers
cannot recover the advertising channel index on which a
beacon was transmitted. Smartphones usually switch between
all three advertising channels, resulting in RSS fluctuations.
In [11], the authors proposed a method for identifying the
advertising channel at the receiver by exploiting the pattern
with which some smartphone models switch between the
advertising channels.

2) Multipath Propagation: Multipath propagation causes
radio signals to arrive at the receiving antenna via multiple
paths due to reflection, refraction, or scattering [37]. Sig-
nal components arriving through different paths can add up
constructively or destructively, the latter resulting in multi-
path fading. The channel-dependent multipath fading of BLE
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TABLE I
OVERVIEW OF STATE-OF-THE-ART: MEASUREMENT-BASED BLE RSS STUDIES AND DATASETS
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signals was studied in [25]. Channels experience deep fades at
different locations due to their different center frequencies. The
effect of multipath fading was eliminated in a training phase
by averaging the RSS in a window. In that case, window sizes
of 0.5 s to 2 s mitigate fading effects for walking speed at a
BLE packet reception rate of 25 Hz. However, in practice, such
a high advertising rate is uncommon as it increases the energy
consumption, so observation windows need to be longer to
mitigate multipath fading.

The authors in [28] noticed RSS fluctuations on the order of
6 dB at the same TX–RX distance due to the presence of multi-
path and Wi-Fi interference. The authors in [29] also noticed
fluctuations as large as 25 dBm over short periods of time,
in particular for channels 38 and 39 due to channel-dependent
fast fading.

In [34], the authors studied RSS fluctuations at various
TX–RX locations and noticed that the average RSS is not
always decreasing with distance, as predicted by path-loss
models [27], but they observed that the average RSS at 2.5 m
was consistently higher than the average RSS at 2 m, also
when measurements were done with different BLE transmit-
ters. They also observed signal fluctuations as high as 20 dB
at constant TX–RX locations, due to human movement around
the BLE transmitters.

3) Orientation: The way people are holding their mobile
devices (e.g., inside front of back pockets, in hand, inside
a bag, etc.) influences the relative orientation between trans-
mitter and receiver antennas. These orientation changes can,
in turn, cause RSS fluctuations. Fluctuations of up to 30 dB
between maximum and minimum RSS at constant TX-RX
distances were observed in [31] when RSS data acquired with
different device orientations was aggregated.

The authors in [13] found that different device orientations
can affect the RSS with differences of up to 3 dB at exactly
the same TX-RX distance, and that an RSS at 3 m TX-RX
distance can be higher (with few dBs) than the RSS at 1 m
TX-RX distance, if different receiver orientations are used.

4) Transmit Power: The RSS also depends on the trans-
mission power, the RF front-end characteristics, and the
antenna gain. Because these factors depend on the hardware or
implemented firmware, the observed RSS from devices from
different manufacturers can vary even when the environmental
conditions are identical. This behavior was documented in [38]
where, even though transmitters from different vendors had
different TX powers, the RSS was within the same range.
In [39] it was shown that the transmission power influences
the localization accuracy and the authors proposed machine
learning models to identify the individual TX power of the
deployed beacons that maximize the localization accuracy.

One way to solve this issue is to compute RSS correction
factors at the transmitter and the receiver [40]. The calibrated
TX power can be measured for a particular model of transmit-
ter at a known distance (e.g., 1 m for the iBeacon standard and
0 m for EddyStone) and sent in the payload of the advertising
beacon. For instance, if a transmitter has a calibrated TX power
of −45 dBm at 1 m, an RSS of −55 dBm will indicate that the
receiver is at more than 1 m away from the transmitter, whereas
for another device model −55 dB might be the calibrated

TX power. Similarly, each receiver should have a correction
coefficient that reflects the receiver efficiency, or with how
much its RSS deviates from a reference value. Ideally, there
should be a database with RSS correction factors for each
mobile device. However, such a task is intractable because of
the sheer number of mobile devices on the market. A 2015
report counted more than 24, 000 Android devices made by
almost 1300 companies [41]. Moreover, as we will show in
Section IV-C, this does not account for RSS variations between
devices from the same model. To the best of the authors’
knowledge, the RSS variability within devices from the same
vendor has not been documented in the literature.

5) Non-Line-of-Sight Between the Devices: RF signals prop-
agate at a different speed through the air than through obsta-
cles such as walls, furniture, or the human body. Therefore,
obstructions between the transmitter and the receiver will
typically cause fluctuations in the RSS. There are several
research works [26], [42], [43] that investigated the effect of
shadowing on the BLE RSS with applications in proximity
detection or localization. [26] proposed artificial neural net-
work (ANN) models for detecting human-body shadowing and
compensating RSS values to improve distance measurements
or localization based on the BLE RSS. In the best case,
the ANN can correctly detect the obstacle more than 87%
of the time. The method leverages measurements acquired on
individual channels, so knowledge of the advertising channel
is also required, as well as a training phase for the ANN.

In [43], the authors proposed a NLOS detection method
based on the variance of the BLE RSS. The algorithm is able to
detect when a concrete wall is blocking the direct path between
the transmitter and the receiver with an accuracy of 76.25%
based on a fixed threshold of the RSS variance, below which
the signal is classified as being acquired in NLOS. The same
method could not be applied on NLOS with plasterboards,
since the standard deviation was inconsistent. The effect of
several obstacles (wooden door, iron door, window, hand,
paper) on the BLE RSS was studied in [38]. The mean
RSS values obtained with these obstructions varied between
−50 dBm to −90 dBm at a TX–RX distance of 2 m. The
strongest attenuation was caused when a hand covered the
transmitter and when the LOS was blocked by an iron door.
These results show that different NLOS obstacles can have a
different impact on the RSS and that the topic should be further
explored.

In [34], a NLOS case was analyzed with two types of walls
between the TX and RX: a stud partition and a blockwork
wall. No differences between LOS and NLOS scenarios were
observed for the stud partition, while the blockwork wall
introduced attenuations of up to 20 dB in the received signal
strength compared to LOS case. The main conclusions in [34]
are similar to the ones in our measurement-based analysis,
that BLE signals have high fluctuations and their RSS does not
necessarily follow classical path-loss models. Therefore, devel-
oping accurate BLE RSS-based proximity-detection methods
remains a challenging topic.

Changes caused by the human body in wireless signal
propagation in the 2.4 GHz band have also been documented
in [44]–[46].
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6) Interference in ISM Band at 2.4 GHz: As the ISM band
is heavily used by many wireless systems, fluctuations in the
BLE RSS are also caused by RF interference, especially com-
ing from shared antennas between Wi-Fi and BLE modules
coexisting on the same chipset (as it is the case with most
mobile phones). The authors in [28] noticed RSS fluctuations
on the order of 6 dB at the same TX-RX distance due to
multipath fading and interferences from Wi-Fi.

The authors in [38] performed an experiment in which a
BLE TX was placed directly under a Wi-Fi access point (AP)
and the RSS was recorded, in turns, when the AP was on and
off. When the Wi-Fi AP was on, the reception rate dropped
to 75% and the RSS decreased with 10 dB in 50% of the
measurements compared to the case in which the AP was
turned off. We further explore this topic in Section IV-G.

C. State-of-the-Art Summary
The work in [34] can be seen as the closest to our work

from the BLE RSS literature (as summarized also in Table I).
However, our work focuses only on indoor scenarios in a more
systematic approach, by duplicating BLE RSS measurements
in two different locations (Tampere and Bucharest), by per-
forming extensive and repetitive tests at distances relevant to
contact-tracing apps (i.e., 1 to 3 m), and by investigating the
effects of Wi-Fi interference and the three BLE advertising
channels.

The main reason we focused on indoor scenarios is that out-
door proximity detection can be achieved with high-accuracy
GNSS receivers. For indoor proximity detection, however,
there are more viable candidates, out of which BLE is the
most promising but also perhaps the most challenging one.
In addition, in digital contact tracing apps, infectiousness
levels are lower outdoors than indoors [47], [48].

Our paper offers a comprehensive survey of various causes
of BLE RSS variability as well as of the related works in the
literature. The state-of-the-art main studies on BLE RSS are
summarized in Table I and the last row shows the contributions
of this article at a glance.

Other works in similar spirit but for Wi-Fi, found variations
across channels, time scales, interfaces used for 5GHz Wi-Fi
[49], and across direction, device manufacturer, sampling
period, presence of humans and of other radio devices [50].

For IEEE 802.15.4, that also uses 2.4GHz ISM band, but
lower power, [51] finds that the main variability sources when
measuring RSS are antenna orientation, hardware sample, and
link asymmetry.

III. MEASUREMENT-BASED BLE DATA COLLECTION

In all our experiments, we used Raspberry Pi 4 Model B
devices, as illustrated in Fig. 3. The internal 2.4 GHz antenna
is located in the left upper corner, next to the Cypress
CYW43455 combo Wi-Fi and BLE module. The devices have
a 1.5 GHz 64-bit Quad-Core Cortex-A72 CPU in the middle
of the Raspberry Pi. The Gigabit Ethernet, two USB 3.0 and
two USB 2.0 ports are located on the right, which might cause
signal degradation in some TX–RX orientations (which will
be discussed in Section IV-F). One advantage of using this

Fig. 3. Raspberry Pi 4 Model B devices are used in our experiments as
TX and RX.

hardware is that we can configure the advertising channel
and payload, an option that not many open-source smartphone
applications offer.

We acquired a database of BLE RSS measurements between
devices placed at 1, 2, and 3 m in several LOS and NLOS
scenarios with obstructions caused by walls (with and with-
out a whiteboard on it), human body, plexiglass panels,
and doors, shown in Fig. 4. We conducted two measure-
ment campaigns in parallel at UPB and TAU. The different
locations enabled us to compare and validate measurements
acquired with the same hardware models but in different
settings.

We define a measurement as the process of collecting
data in a specific manner. Measurements can be grouped in
recordings (or snapshot measurements), when data is collected
continuously from a start time to an end time, in a static setup
and without modifying the devices in any way, and in scenar-
ios (or aggregated measurements), which are collections of
recordings according to a pre-defined criterion. For instance,
a scenario can be a collection of recordings acquired in LOS,
with a TX–RX distance of 1 m, on channel 37.

We configured the transmitter to send non-connectable un-
directed advertisements (ADV_NONCONN_IND) with a period
of 100 ms, which satisfies the broadcasting interval recom-
mendation of 200 ms to 270 ms of the Bluetooth protocol
for contact tracing developed by Apple and Google [52].
The same specification suggests a scanning period (at the
receiver) of at least 5 min, although this is likely to vary
depending on the application. For instance, in the GAEN
API the scanning period was found to be between 2.5 and
4 min [53]. Since a higher scanning rate provides more RSS
samples and the devices are not energy-constrained, we chose
a scanning frequency of 1 Hz.

The recording time ranged from 3 minutes to 3 days.
In some cases, we were interested in the stability of RSS
measurements over a longer period of time, case in which
the recording time spanned several days, whereas in other
cases we were interested in the variability of RSS mea-
surements at different locations with constant TX-RX dis-
tances, case in which shorter recording times of several
minutes were more convenient. Fig. 4 shows examples of
LOS and NLOS scenarios in which data was acquired at
TAU and UPB.
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Fig. 4. The pictures of the receiver and transmitter in LOS and NLOS
with wall acquired at UPB and TAU (Fig. 4a to 4d). Fig. 4e to 4h show
NLOS scenarios with a plexiglass panel, human body, a door, and a wall
with a whiteboard at UPB.

IV. MEASUREMENT-BASED BLE RSS
CHARACTERIZATION

This section provides an overview of the results acquired
during our experiments and describes the challenges discussed
in Section II-B.

In order to compare in a comprehensive manner the RSS
distributions in different scenarios, throughout this section we
represent the data using standardized box plots such as the
one in Fig. 5, as they give information at-a-glance about the
mean, median and spread of the RSS. The box shows where
most of the RSS values are found, namely the data from the
first quartile (Q1 or the 25th percentile) to the third quartile
(Q3 or the 75th percentile), also known as the interquartile
range (IQR). The lines extending from the box are called
whiskers and cover the range from a � Q1−1.5∗(Q3−Q1) to
b � Q3 + 1.5 ∗ (Q3 − Q1) (corresponding to Tukey’s original
definition of box plots). The red vertical line inside the box
plot denotes the median. In some plots, we also added via a
diamond marker, the mean of the data. The circle markers
to the right (can also appear to the left) of the whiskers
are outliers. Occasionally, the outliers or the mean value are
omitted in our plots to preserve a good readability of the plot.
In some cases, the RSS is stable enough that the IQR contains
only the median value and therefore the box is not shown.

A. The (In)stability of BLE RSS Measurements Over
Time

We first investigate the stability of BLE RSS measurements
in a particular setting over time. Fig. 6 shows the boxplots

Fig. 5. Box plot used to describe and compare the RSS distribution.

Fig. 6. The effect of the time evolution on the RSS distribution in LOS
on a single channel (37), recorded at UPB.

of the BLE RSS distribution in windows of 2 min up to
10 h acquired in LOS, on channel 37, at a distance of 1 m
between the transmitter and the receiver. The measurements
were acquired in a locked room during the weekend, so there
was no human activity around the devices during the recording.
Although the median RSS changes with up to 3 dB over the
course of the recording, the mean RSS varies with less than
1 dB with different window lengths.

It can be seen from Fig. 6 that, if we are interested only
in the mean RSS, then a recording time of 2 min is sufficient
to obtain the mean RSS that best captures the characteristics
of the particular setting in which measurements are acquired.
If we are also interested in the shape of the distribution,
a longer recording time of at least 30 min is necessary.
In general, the RSS during each snapshot recording was stable
over time with the exception of some random fluctuations that
sometimes appeared at the beginning of a recording and which
will be discussed in Section IV-G.

B. The (In)stability of BLE RSS Measurements Over
Space or Test–Retest Reliability Studies

Next, we study the stability of the BLE RSS under LOS
scenarios, at a fixed distance of 1 m between the same TX–RX
pair, and using only the advertising channel 37 in order
to eliminate frequency-dependent fluctuations. We acquired
measurements at TAU and UPB, in different rooms or with
the TX and RX placed in different spots in the same room,
while maintaining a distance between the two devices of 1 m.
Fig. 7 compares the RSS distribution in 15 recordings when
taking a fixed number of 326 random measurements from
each recording (the fixed number was selected based on the
minimum length among all 15 recordings).

We expected to get similar RSS measurements in different
snapshot recordings, given that the multipath fading is mit-
igated by averaging samples over several minutes. However,
even after multiple test-retest measurements performed at UPB
and TAU, results (see Fig. 7) indicate fluctuations of the
median RSS of up to 40 dB between snapshot recordings
even though the TX–RX distance was constant. Moreover,
the median RSS can vary even in the same location between
two recordings taken in different days, even though results
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Fig. 7. Boxplots showing the RSS distribution in 15 recordings acquired between the same device pair in LOS, at 1 m, at UPB and TAU, using only
channel 37.

Fig. 8. The impact of the number of snapshot recordings from a particular scenario on the RSS distribution. A total of 15 recordings were acquired
in the same scenario (LOS at 1 m on channel 37). This figure presents the RSS distribution when an equal number of samples (326, corresponding
to approximately 5 min) are taken from 1 to 15 recordings selected at random. The median, mean, and inter-quartile range (IQR) converge for more
than 12–13 recordings.

in Section IV-A suggested that RSS measurements are very
stable over time. For instance, recordings with indices 3, 4, and
5 were acquired at the exact same locations over multiple days
but the mean RSS of recording number 4 is higher with 15 dB
than the other two recordings. Such a large variability might be
caused by the chipset warm-up after a reboot, interference in
the ISM band, or other environmental factors such as the room
temperature. Although we used the same model of devices
for the measurements, the TAU data set from Fig. 7b had a
smaller (but still significant) spread than the UPB data set from
Fig. 7a, of 20 dB compared to 40 dB, respectively.

When aggregating data from multiple recordings, how-
ever, for at least 4 recordings the mean RSS converges to
approximately −49 dBm and −55 dBm for UPB and TAU,
respectively, as shown in Fig. 8. It is important to note that,
although a relatively small number of recordings is necessary
to capture the variability of the mean RSS between two devices
across different locations, the shape of the distribution (and
hence its spread) stabilizes only after 12–13 recordings.

C. The Impact of Hardware on the BLE RSS
We evaluated the impact of the hardware choice on the RSS

when the same device model (Raspberry Pi 4 Model B) was
used on both the transmitter and the receiver side. The devices
were placed at the exact same location, with a fixed distance
between them of 2 m, and the transmitter sent advertising

beacons only on channel 37. We used in total four different
Raspberry Pi boards, from exactly the same manufacturer and
same model type, labeled RPi1 to RPi4 which integrate a
Cypress CYW43455 BLE and Wi-Fi chipset.

Fig. 9 shows the RSS distribution of each pair of devices.
Pair 1 consisted of the TX–RX pair RPi1–RPi2, pair 2 of
RPi1–RPi3, pair 3 of RPi1–RPi4, pair 4 of RPi2–RPi4,
and pair 5 of RPi3–RPi4. In other words, device pairs 1,
2, and 3 share the same transmitter, while device pairs 3, 4,
and 5 share the same receiver. The median RSS varies with
up to 5 dB even between devices from the same model. This
experiment shows the difficulty of building a database that
documents the transmitter and receiver efficiency of different
brands of devices, since even devices that use the same
hardware have RSS variations of several dB.

D. The Impact of the Advertising Channel Index on the
BLE RSS

As mentioned earlier, BLE devices transmit beacons on
channels 37, 38, and 39 which correspond to frequencies of
2.402, 2.426, and 2.48 GHz, respectively. Fig. 10 illustrates
the impact of three advertising channels on the RSS, compared
with a recording where all 3 advertising channels were used.
The data was collected at the same location with the devices
2 m apart and on the same day within a short time interval.
The same type of measurements were done in parallel at UPB
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Fig. 9. The impact of hardware choice on the RSS in recordings acquired
with different device pairs placed at a distance of 2 m at exactly the same
location. The median RSS varies with 5 dB, even though the devices have
the same model.

Fig. 10. The channel impact on RSS values in a LOS scenario at
2 m distance, based on measurements acquired at UPB and TAU. This
plot illustrates the RSS distributions (with an equal number of samples:
95 per snapshot) when receiving beacons on all three channels and on
individual channels.

and TAU. By default, beacons are transmitted on all three
advertising channels. Therefore, a receiver cannot determine
the channel of the transmitted packets, resulting in a larger
variance of the samples and inaccurate distance estimates.
At both UPB and TAU we noticed variations of at least 5 dB
between measurements acquired on different channels. Other
sources measured differences between BLE channels as high
as 15 dB (Figure 2 in [54]).

E. The Impact of Transmitter-Receiver Distance on the
BLE RSS

Under the LOS assumption (i.e., no obstacle between the
a BLE transmitter and a receiver), one can start from the
well-known free-space path-loss (FSL) model:

PR = PT − 20log10d − 20log10
(4π fc

c

) + η, (1)

where PR is the received signal strength in dB scale, PT is
the apparent transmit power of the BLE transmitter computed
at 1m away from the transmitter, d is the distance between
the transmitter and the receiver (i.e., between the two persons
under consideration in the digital contact-tracing app), fc

is the carrier frequency of the transmitted BLE signal (i.e.,
the carrier frequency on the used advertising channel or an
average carrier frequency when several advertising channels
are used), c is the speed of light (i.e., about 3 ∗ 108 m/s),

and η is a noise factor encompassing the shadowing effects in
the wireless channel, interference, and possible other noise
sources. By virtue of the central-limit theorem, η can be
assumed to be Gaussian distributed of variance σ 2. We also
assume that η is a zero-mean noise under LOS scenarios.

The FSL is rarely used as such in RSS modeling; instead,
most authors prefer the one-slope path-loss model below for
its simplicity [27], [55]–[57]:

PR = PTa − 10nlog10d + η, (2)

where the apparent transmit power PTa factor includes
also the frequency-dependent effects, in such a way that
multi-frequency effects, as those generated by RSS measure-
ments on multiple advertising channels can be lumped into a
single parameter, and n is a positive number modeling the
path-loss parameter. An n value below the FSL path-loss
factor of 2 would signal the presence of some conductivity
effects in the building walls as well as multipath-enhanced
propagation (e.g., multipath adding constructively). The lower
n is, the flatter the RSS curve is with the distance, and the
harder would be to differentiate between close distances (e.g.,
between 1m and 2 m or between 2 m and 3 m). Typically,
in model-driven RSS approaches (as opposed to data-driven
approaches), the purpose is to estimate the best-fit parameters
PTa and n of an underlying path-loss model. This is usually
done via a least-square (LS) fit, where the unknown parameter
vector x � [PTa n] is estimated via x̂ [55]:

x̂ = (AT A)−1AT b, (3)

with A ∈ Nmeas × 2 being a matrix with i -th row equal
to [1 − 10log10di ], i = 1, . . . , Nmeas , and b ∈ Nmeas × 1
being a vector with the i -th element equal to the received
signal strength PRi observed in the i -th measurement at di

distance between TX and RX. Above, Nmeas is the number
of measurements (or observations) used in the LS fitting, and
encompassing various TX-RX distances di . The shadowing
variance σ̂ 2

η is then computed as the error between the mea-
surements and the reconstructed data, namely:

σ̂ 2
η = 1

Nmeas

Nmeas∑
i=1

(
PRi − P̂Ta − 10n̂log10(di )

)2

. (4)

When a NLOS obstacle such as a glass window, a wall,
or the body of another person is present between the transmit-
ter and receiver, we expect the NLOS apparent transmit power
PTa to be smaller than the LOS PTa , as it should incorporate
the additional absorption losses due to obstacles. However,
repeated measurements are both TAU and UPB showed that
this is not always the case.

Table II gives examples of the path-loss parameters esti-
mated from aggregated measurements on all three BLE adver-
tising channel, in four considered scenarios (two LOS and
two NLOS, with two of them from TAU and two from UPB
scenarios). In the NLOS scenarios, the obstruction was caused
by a wall between the TX and the RX. In order to have a fair
comparison also between long recordings, we extracted 326
samples from each available recording (which correspond to a
recording time of around 5 min) and aggregated them. Several
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TABLE II
EXAMPLE OF PATH-LOSS PARAMETERS ESTIMATED FROM

AGGREGATED MEASUREMENTS

Monte Carlo runs showed very similar parameter-fit results
from one run to another. For illustrative purposes, Table II
shows the results based on one random run in each scenario.

The main conclusion is that there is not a one-size-fit-
all model with constant [P̂Ta n̂] vector estimate, but that
there are high fluctuations between the four shown scenarios,
and therefore a model-driven approach for BLE RSS-based
contact tracing will likely suffer from large errors. This is also
reflected in the high shadowing standard deviations σ̂η shown
in Table II (around 6 dB for TAU data and around 9 dB for
UPB data).

Indeed, other literature results have shown that the path-loss
parameters used in different works vary widely. For instance,
although a path-loss exponent between 2.4–2.6 is frequently
recommended [26], in [43] the path-loss exponent was set to
1.8 for LOS scenarios and 2.2 for NLOS ones. In the survey
part of [2], the path-loss exponents extracted from various
research papers varied between 0.63–2.32 and TABLE II
suggests that in some cases (NLOS, UPB) this value might
be even lower.

Instead of model-driven contact tracing, data-driven
approaches such as those based on large training data sets and
machine learning solutions (e.g., in [26]) could be adopted,
but they have high complexity and are impractical at large
scales. Other works [58], [59] propose online path-loss esti-
mation methods based on cooperating nodes in wireless sensor
networks. However, tens of nodes are usually needed for an
accurate estimation. Another solution is to have a gateway
that collects the RSS of surrounding BLE beacons, tracks
the fluctuations, and sends back RSS correction factors to
individual nodes in real time [24]. However, such an approach
is not suitable for a peer-to-peer and privacy-sensitive applica-
tion like contact-tracing. Therefore, the challenges of finding
the right approach (model-driven versus data-driven) and the
right models (e.g., more sophisticated models than the simple
single-slope path-loss model of Eq. (2)) are still important
challenges to be solved by the research community dealing
with BLE RSS-based contact tracing or proximity detection.

F. The Impact of Transmitter and Receiver Orientation on
the BLE RSS

We considered the effect of the relative orientation
between the transmitter and the receiver on the BLE RSS.

Fig. 11. Radiation pattern of Raspberry Pi 3B+ antenna plotted from
anechoic chamber measurement data [60]. It is a PCB antenna designed
by Proant AB present in many IoT devices operating in the 2.4GHz band.

We analyzed four poses depicted in Fig. 12, where the pose of
the transmitter is fixed and the receiver is rotated clock-wise
with 90 ◦, 180 ◦, and 270 ◦ with respect to the “front” ori-
entation from Fig. 12a, resulting in the “left,” “right,” and
“back” poses, respectively. The radiation pattern (Fig. 11) for
the frequency of Bluetooth channel 37 shows a 2.7 dB standard
deviation across all angles, but the maximum differences on
each of the three planes is of 10.1, 13, and 14.1 dB.

Fig. 13 presents the RSS distribution in all poses, when
the devices are placed at distances of 1, 2, and 3 m. The
devices were placed on tripods which were kept fixed at the
aforementioned distances, while only the receiver was rotated
around its center axis for each pose. Each recording had a
duration of approximately 10 min and was performed only on
channel 37. First, we notice the same inconsistencies with the
distance discussed in Section IV-E, in which the average RSS
at 1 m distance is lower than the one at 2 and 3 m. Second,
the RSS changes with the pose for a particular distance,
although the receiver was not moved but only rotated around
its axis and the transmitter’s position was the same in all
recordings. There is no orientation which results in a higher
RSS at all distances. However, the “back” pose has a lower
median RSS than the other poses at all distances, most likely
because in this pose, as can be seen from Fig. 12b, the metallic
USB and Ethernet ports of the receiver board are in the LOS
of the signal and attenuate it. While the median RSS in the
“front,” “left,” and “right” poses varies with about 5 dB for
the same distance, the median RSS in the “back” pose can be
with even 20 dB lower than in the other poses.

G. Random Fluctuations Caused by BLE–Wi-Fi Combo
Chipsets

The interference between Bluetooth and Wi-Fi is well
documented in literature, and IEEE has recommendations [61]
for the coexistence of the technologies operating in the ISM
bands. [62] has shown experimentally that Bluetooth and
ZigBee are affected by Wi-Fi, stating agreement with pre-
vious studies. One way to tackle the coexistence is to use
specific algorithmic mitigations in the way each technology
is used [63], but some might require updates to the standards.
When both Wi-Fi and Bluetooth are implemented on the same
chipset, as is the case with most smartphones, [64] determined
through measurements that performance is degraded at the
application layer.

For the purpose of contact tracing however, only RSS mea-
surements and timestamps of the recordings are needed and
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Fig. 12. The four orientations of the receiver (device on the right)
with respect to the transmitter (device on the left) we considered in our
experiment: (a) front, (b) back, (c) left, and (d) right. In the back, left, and
right poses the receiver was rotated clock-wise with, respectively, 180◦,
90◦, and 270◦ with respect to the front orientation.

Fig. 13. The impact of orientation on the BLE RSS. The front, left, right,
and back orientations are shown in Fig. 12.

the question is whether the BLE measurements are influenced
by Wi-Fi activity on the same chipset. We turn the Wi-Fi on
and off simultaneously at both the transmitter and the receiver
every one hour and record the RSS. During the time when the
Wi-Fi is on, synthetic Wi-Fi traffic is generated with 112 kb/s.
Fig. 14 shows that, on average, the mean RSS when the Wi-Fi
is on is 2.5 dB lower than during the time the Wi-Fi is off.
There is also a small difference in the standard deviation: when
the Wi-Fi is on, the standard deviation of the RSS is 1.1 dB
compared to 0.83 dB when the Wi-Fi is off. Although Fig. 14
presents the results for 6 hours only, for better visualization,
the pattern remained consistent over two days, during which
there was no human activity around the devices.

Wi-Fi scanning might occasionally cause even larger dif-
ferences in the BLE RSS than 2.5 dB. We sometimes noticed
spurious measurements occurring only when the Wi-Fi was on,
usually at the beginning of a snapshot recording, as shown
in Fig. 15 around minute 100, when the signal fluctuated
for several minutes between −40, −55, and −90 dB. The
recordings with the settings of Wi-Fi on and off were acquired
during different times of the day; however, the environment
was static with no people moving inside the room. We acquired
results which show the mean RSS values to be with 6.8 dB
higher with Wi-Fi off than with Wi-Fi switched on. Overall,
Fig. 15 illustrates the instabilities in single recordings which

Fig. 14. The impact of Wi-Fi and BLE combo chipsets: the Wi-Fi is
turned on and off every one hour at the indicated markers. On average,
the mean RSS with the Wi-Fi off is with 2.5 dB higher than with the Wi-Fi
off.

Fig. 15. The impact of Wi-Fi switched on and off, in LOS at 1m distance.
When the Wi-Fi is off, the mean RSS is higher with 6.8 dB than when the
Wi-Fi is on. When the Wi-Fi is on, we also notice RSS fluctuations of up
to 30 dB around minute 100.

might be caused by coexistence of different signals within
the 2.4 GHz frequency. A similar pattern was observed also
in [65], where Figures 6 and 7 reveal a 20 dB difference in
BLE readings when Wi-Fi scanning is active with a Samsung
Galaxy S4 smartphone.

H. On the Difficulty of LOS/NLOS Detection
In this section, we investigate the effect of different types

of obstructions on the BLE RSS. At both UPB and TAU
we acquired measurements in LOS and NLOS with wall
shadowing. In addition, at UPB, we tried more types of
obstructions: wall and whiteboard, door, human body, and
plexiglass panel. All the setups are shown in Fig. 4, where
for NLOS measurements we varied only the distance between
the devices, while in LOS we also tried different locations.

We consider a “scenario” a set of snapshot measurements
acquired at the same distance, on the same channel, in the same
LOS/NLOS setting. TABLE III presents the mean and the
standard deviation of the RSS computed in different scenarios
from measurements acquired at UPB. Because recordings in
the same scenarios have lengths from 5 min to several days
and we do not want longer recordings to bias the statistics,
when there are multiple recordings in the same scenario we
chose an equal number of measurements at random from each
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recording from that scenario and computed the mean and
standard deviation using only the subset of samples. Usually,
recordings within the same scenario were acquired at different
locations to capture the variability of the RSS across space
for the same TX–RX distance. As a result, when there are
multiple recordings in a scenario, the standard deviation of the
RSS is higher than in single-recording scenarios. The number
of recordings (“Nr. rec.”) and the number of samples in each
recording (“Nr. samples per rec.”) are specified in TABLE III
for each scenario, as well as the advertising channel(s) on
which measurements were acquired.

Comparing the statistics in LOS and NLOS when all
advertising channels are used, we note that the mean RSS
varies within a range of 20 dB, indicating that the attenuation
introduced by an obstacle depends on the type of obstacle. The
mean RSS in LOS is usually higher than the one in NLOS but
not always—the mean RSS in the “NLOS door” recording is
higher than the one in LOS. Note also that the human body
causes a higher standard deviation than the other obstructions.
This can be seen more clearly in Fig. 16, which shows the
distributions of selected NLOS measurements from TABLE III
and one recording acquired in LOS on all channels. The large
spread can be caused by slight movements of the body which,
by nature, cannot be perfectly immobile (breathing alone
causes a slight movement of the body). These characteristics
can make the human body more easily detectable than other
obstructions, as previous works showed [26]. However, other
obstructions might be more difficult to detect. For instance,
the mean RSS in the “NLOS plexiglass” case is similar to the
mean RSS in LOS on individual channels, while the highest
mean RSS was obtained in the “NLOS door” case.

The inconsistency can be also caused by the fact that most of
the NLOS statistics were computed based on a single recording
and, as we saw in Section IV-B, single recordings can deviate
from statistics computed on aggregated data with more than
10 dB. Therefore, next we compare LOS and NLOS with a
wall distributions aggregated from all channels, at distances of
1, 2, and 3 m, acquired independently at UPB and TAU, shown
in Fig. 17. The distributions are plotted based on the same data
used in Section IV-E to estimate the path-loss parameters from
TABLE II. Each distribution was computed based on 5 to 18
recordings based on 326 measurements selected at random
from each recording. Based on the results in Section IV-B,
the mean computed based on 5 recordings should be within
several dB of the “stable” mean, but the standard deviation
can still fluctuate for less than 12–13 recordings.

Although the distributions in Fig. 17 mostly behave as
expected, i.e. the mean RSS should decrease with the distance
and the mean RSS should be lower in NLOS than in LOS
at the same distance, there are exceptions. The average RSS
in NLOS is higher than the one in LOS at 3 m for the UPB
data set and at 1 m for the TAU data set. Also, the NLOS
distributions have higher or equal spread than LOS ones in
most of the cases, even though the NLOS data sets contained
less recordings than the LOS ones. This result contradicts
observations in [43], where NLOS obstructions caused by
walls were identified when the standard deviation of RSS
measurements in a window was lower than a fixed threshold.

TABLE III
THE MEAN AND STANDARD DEVIATION OF THE BLE RSS IN

DIFFERENT SCENARIOS AT A TX–RX DISTANCE OF 2 m

Fig. 16. Comparison of selected RSS distributions acquired on all
advertising channels at 2 m, in LOS, NLOS with a plexiglass panel, NLOS
with a wall and a whiteboard, and NLOS with human body shadowing.

Although UPB and TAU data sets were acquired using the
same model of Raspberry Pis, measurements acquired at TAU
had a smaller spread than those from UPB even in LOS, which
points once more to the instability of RSS measurements.

In proximity-detection or RSS-based localization applica-
tions, obstructions will most of the time lead to inaccurate
distance or location estimates. Therefore, multiple solutions
have been proposed to correct RSS-based ranges by detecting
the NLOS condition [26], [42], [43] with the caveat that such
solutions might not generalize easily, as our measurements
show, or that large data sets might be necessary to extract
features that improve classification. In contact-tracing appli-
cations, such instabilities can lead to false alarms or fail-
ures in detecting potentially unsafe interactions. For instance,
since human body shadowing sharply attenuates the signal,
the distance predicted by a standard path-loss model can be
larger than in reality, so people might not be notified of risky
encounters. On the contrary, if the RSS reported when devices
(or people) are separated by walls is larger or equal than the
average RSS in LOS, an alert might be raised even if people
staying in different rooms are safe from each other. Therefore,
LOS/NLOS detection is still a highly relevant topic with room
for improvement. Hybrid solutions that combine BLE with
UWB, cameras, or other sensors might increase the reliability
of NLOS detection.

V. DISCUSSION

One of the unexpected results of our measurement
campaigns—a result which has also not been emphasized
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Fig. 17. Comparison of RSS distributions based on data acquired in
LOS and NLOS with a wall at UPB and TAU at distances of 1, 2, and 3
m, irrespective of the advertisement channel.

enough until now in the current literature—is the fact that
snapshot BLE RSS measurements are highly unstable and fluc-
tuating, and only by lumping together enough measurements
(i.e., by using aggregated data), the results seem to converge,
to some extent, to the classical path-loss models (e.g., average
RSS decreasing with transmitter-receiver distances, average
RSS under LOS scenarios stronger than the average RSS under
NLOS scenarios). Nevertheless, for fast proximity-detection
or contact-tracing algorithms, when the observation window
can be as small as 15 min, aggregated RSS data may be
unavailable, and estimations based on what we called snapshot
recordings can suffer from significant errors due to high RSS
fluctuations. We also provided guidelines for building data sets
that best represent the conditions in a particular scenario.

VI. CONCLUSION, AND OPEN ISSUES

This paper presented a detailed analysis of BLE RSS
fluctuations based on an extensive measurement campaign
performed in tandem in Tampere, Finland, and Bucharest,
Romania. We documented in detail the main sources of
high fluctuations (or instabilities) of BLE RSS measurements
occurring, surprisingly, in static scenarios and diverging from
the classical path-loss models, e.g., as given in Eqs. (1) and (2).
We defined controlled scenarios, such as fixing the transmitter
and receiver BLE models, fixing the BLE advertising channel
to have transmission on a single carrier frequency, turning the
Wi-Fi transmitter off in chipsets sharing the 2.4 GHz antenna
between BLE and Wi-Fi, and fixing the transmitter-receiver
distance.

We emphasized several challenges that still remain to be
addressed by the research community when standalone BLE
RSS measurements are used for contact tracing, proximity
detection, or positioning purposes, namely: the challenges of
NLOS scenarios with stronger average (and median) RSS
than LOS scenarios at the same distance, the challenge of
increased RSS fluctuations (or variance) when the measure-
ments are acquired on multiple BLE advertising channels
(as it is customary in contact-tracing applications) or with
different receiver-transmitter orientations (which again are
highly variable, as users can keep their mobile devices in
various positions: in hand, inside bags, inside front or back
pockets, etc.).

A possible solution to overcome the instability of snapshot
BLE RSS recordings is, for example, the hybridization of BLE

RSS measurements with other sensors, such as vision sensors
(to enable LOS/NLOS detection) or time-of-arrival UWB
sensors (to enhance the range estimation). However, this will
increase the energy consumption of end-user devices, so the
trade-off between proximity detection accuracy and energy
consumption must also be considered. Collecting data from
additional sensors can also potentially decrease user privacy.
Another possibility would be to collect large training databases
in hotspot areas (e.g., shopping centers, commuting halls, etc.),
which could facilitate a baseline statistical modeling based on
both snapshot and aggregated training data, and to further use
machine-learning approaches to derive data-driven estimators
instead of the model-driven estimators which rely on path-loss
modeling.

The main goal of this paper is to shed additional light on
the challenges encountered in BLE-based contact tracing and
to raise awareness among the research community that several
challenges related to BLE RSS ranging and positioning are still
to be solved. One solution based on our measurements is to
use enough aggregated data, as, by virtue of the central-limit
theorem, this seems to remove the outliers and to converge
towards known path-loss models. Such a solution could be
sufficient for positioning purposes when training databases can
be based on large amounts of aggregated data, but it may still
be unfeasible for contact-tracing solutions in need working
with snapshot data. Another solution could envisage more
sophisticated path-loss modeling, such as by taking waveguide
effects [66] into account or using stochastic ray-tracing mod-
eling [67].

The measurement data will be made open-access at the
research community on Zenodo,2 in order to enable the
reproducibility of the research and to provide benchmark data
for further investigations on BLE RSS-based contact tracing.
Future work also includes collecting data from more devices,
including various types of mobile phones, and looking into
more detail at the yet-unsolved research question of whether
NLOS situations can be separated with high accuracy from
LOS situations and under which conditions.
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