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Fig. 5. Double bistability, 7'y/T> =10, C=20, =24, ®=8,(a) 5 =
-0.1,(®) 8 =0.1.
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stability. The optical multistability may be useful for multi-
logic computers and signal processing.
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On the High Power Limit of the Laser Linewidth

AMNON YARIV anp KERRY VAHALA

Abstract—’ihe quantum mechanical limit of the laser linewidth is
shown to imply a residual constant linewidth rather than obey an in-
verse power dependence as is usually assumed.

HE question of the limiting spectral linewidth of the field

of a single mode laser was addressed in the early stages of
the laser’s development. Schawlow and Townes, the first to
concern themselves with this problem, obtained [1]
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Equation (1) was subsequently modified to [2]
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where the factor
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N,
[V2 - N1(g2/81))in

accounts for the fact that when ¢, # 0, the finite population
N, of the lower laser level requires a corresponding increase in
N, in order for the gain to remain equal to the loss. This in-
creases the spontaneous emission noise power, which is pro-
portional to V,, and hence (Av)jaeer.

The common interpretation of (2) is that it predicts an in-
verse dependence of (Av)aer On the power output P.

It is the purpose of this letter to point out that, according to
(2), there should remain a residual laser linewidth, even as
P oo, This is due to the fact that, unless 7, is zero, as P in-
creases, Ny must increase since the increased net-induced tran-
sition rate into level 1 must equal in steady state Ny/¢; the
rate of emptying of level 1. This causes the population N, to
increase in order to keep N, - N1(g2/g1), and thus the gain,
a constant. At sufficiently high values of P, N, becomes and
stays proportional to P and the ratio NV, /P in (2) approaches a
constant value, thus leading to a residual power independent
linewidth.

u= €))
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To obtain the power (P) dependence of u, we solve the con-
ventional laser rate equations

dnN, N, g2
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where NV, and &V, are the level populations, g, , are their de-
generacies, ¢; and £, = fypont are the lifetimes, ¢, is the passive
resonator photon lifetime, R is the pumping rate into level 2,
W; is the induced transition rate, and p is the number of pho-
tons in the oscillating mode.

At equilibrium, d/dt = 0, we can solve (4) to obtain
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so that
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where the subscript “th’ indicates the value at threshold. The
power output, including “wall losses™ of the laser, is

p= [Nz - Ny ﬁ] Wi %)
&1l¢n
which, when used together with (6) in (2), gives
2rhv(Av, 1) t
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where Av,;, = 1/2nt, and (Avg,y) is the linewidth of atomic
transition responsible for the laser gain. V is the mode vol-
ume. In obtaining (8), we use

:l 81021 (AV)gain Vi
th c3 fe
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g1
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The first term on the right-hand side of (8) is the conven-
tional Schawlow-Townes expression containing the inverse P
dependence. The second term is power independent and cor-
responds to a residual linewidth as P —> oo,

To get an idea of the magnitudes involved, we consider the
case of a 0.6328 um HeNe laser with mirror reflectivities of
R =0.99, a resonator length of /= 30 c¢m, and take #, /¢, = 0.1.
We obtain

1-R
vy (Hz) = % = 1.6 X 10°
and
-3
Ay ~ +3.8X 1072
laser(HZ) P(mw)

The residual linewidth thus dominates at power levels exceed-
ing a few milliwatts.

In a semiconductor laser the situation is more complicated.
The dynamics of pumping are fundamentally different from
those in a simple atomic laser. Charge neutrality will dictate
that each injected electron is accompanied by the injection of
a hole which would tend to clamp N, above threshold. For
this reason we expect the above-described linewidth mecha-
nism, if at all present, to have a negligible effect on the line-
width of a semiconductor laser.
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