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Abstract. We study the higher eigenvalues and eigenfunctions for the so-called
∞-eigenvalue problem. The problem arises as an asymptotic limit of the nonlinear
eigenvalue problems for the p-Laplace operators and is very closely related to the
geometry of the underlying domain. We are able to prove several properties that
are known in the linear case p = 2 of the Laplacian, but are unknown for other
values of p. In particular, we establish the validity of the Payne-Pólya-Weinberger
conjecture regarding the ratio of the first two eigenvalues and the Payne nodal
conjecture, which deals with the zero set of a second eigenfunction. The limit
problem also exhibits phenomena that are not encountered for any 1 < p < ∞.

1. Introduction

Let Ω be a given bounded domain in the Euclidean space Rn. The minimization
of the so-called Rayleigh quotient

(1.1)

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

, 1 < p < ∞

among all nonzero functions in the Sobolev space W 1,p
0 (Ω) leads to a nonlinear

eigenvalue problem. The corresponding Euler-Lagrange equation is

(1.2) div(|∇u|p−2∇u) + λ|u|p−2u = 0,

interpreted in the usual weak form with test-functions under the integral sign. The
objective of our work is the asymptotic case p = ∞, the so-called ∞-eigenvalue
problem.

Notice that when p = 2, we have the familiar linear equation

(1.3) ∆u + λu = 0,

a solution of which describes the shape of an eigenvibration, of frequency
√

λ, of a
homogeneous membrane stretched in the frame Ω, see [9]. It is well-known that in
this case the spectrum is discrete and eigenfunctions form an orthonormal basis for
L2(Ω). For any 1 < p < ∞, the first eigenvalue, say λ1 = λ1(p), is the minimum of
the Rayleigh quotient (1.1) and it is simple and isolated. For a new and direct proof
of the simplicity we refer to [6]. It is also known that the second eigenvalue, say
λ2 = λ2(p), is well-defined and has a“variational characterization”, see [2]. However,
surprisingly little is known about the higher eigenvalues and eigenfunctions when
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p 6= 2. To the best of our knowledge, it has not even been rigorously proved that
it is impossible that every λ ≥ λ2 is an eigenvalue. Neither is anything known
about the multiplicity of the higher eigenvalues. It does not seem to help to assume
that Ω is a ball or some other appealing geometric object, when it comes to the
characterization of all the higher eigenvalues. One can produce infinitely many
eigenvalues using various methods but none of them seems to guarantee that the
whole spectrum is exhausted.

In order to shed some light on this problem it seems to be well motivated to study
the extreme cases p = 1 and p = ∞. We are here interested in the case p = ∞ and
continue our studies in [27]. For the first eigenfunction, or the “ground state”, the
correct limit equation of (1.2) is

(1.4) max{Λ1 − |∇ log u|, ∆∞u} = 0,

where Λ1 is the reciprocal number of the radius of the largest ball that can be
inscribed in the domain Ω, and

(1.5) ∆∞u :=
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

is the nowadays very popular infinity Laplace operator. The notation in (1.4) means
that at each point x ∈ Ω the larger of the two quantities is zero. Moreover, the
above equation has to be interpreted in the viscosity sense. The ground state is in
W 1,∞

0 (Ω). Every first eigenfunction is a minimizer of

(1.6)
‖∇u‖∞,Ω

‖u‖∞,Ω

,

where ‖v‖∞,Ω = ess supx∈Ω |v(x)|. However, the converse is not true, as (1.6) has
minimizers that do not satisfy (1.4). For all this we refer to [27]. The equation
is, indeed, somewhat complicated for p = ∞ but it has at least one advantage: the
value of Λ1 can immediately be read off from the geometry of the underlying domain
Ω. No such property is known even for p = 2. In passing, we mention that if Λ1 is
replaced by a number Λ 6= Λ1 in equation (1.4), then there is no other solution in
W 1,∞

0 (Ω) than u ≡ 0, which of course, does not qualify as an eigenfunction.
The equation for the higher eigenvalues, when p = ∞, is slightly more involved

than (1.4), and is given below in (2.2). We are able to prove several properties
in the case p = ∞ that are known in the linear case p = 2 but are unknown for
2 < p < ∞. First, the Payne-Pólya-Weinberger conjecture about the ratio of the
first two eigenvalues holds. This was proved by Ashbaugh and Benguria in [4], [5]
when p = 2 and is, as it were, open for other finite p’s. Second, the Payne nodal
conjecture about the second eigenfunction holds in convex domains. This was proved
by Melas [33] and Alessandrini [1] when p = 2. Third, the second eigenvalue has a
variational characterization. All these results rely on a geometric characterization
of the second eigenvalue for our problem, viz.

(1.7)
1

Λ2(Ω)
= sup

{
r : there are disjoint balls B1, B2 ⊂ Ω of radius r

}
,
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and are quite easily proved once this characterization has been obtained. In fact,
we give three different characterizations of Λ2.

Given the geometric characterizations of the first and the second eigenvalue, it
is natural to ask whether the entire spectrum could be obtained as a sequence
of optimal values for certain sphere packing problems. At this moment, we are
unable to give a definite answer, but is seems that the situation is not quite that
simple. Nevertheless, the sphere packing problems are clearly related to the higher
eigenvalues and can be used as an aid in the study of the spectrum with Λ ≥ Λ2. We
show that there exists an unbounded sequence of eigenvalues for every domain Ω,
and establish some other results that parallel those known in the case 1 < p < ∞.
However, not all the features of the problem (1.2) survive the passage to the limit.
For example, there are domains for which the first eigenvalue Λ1 is not isolated.

Our work [27] with Manfredi was devoted to the ground state in the case p = ∞.
An anisotropic version has been studied in [7] by Belloni and Kawohl. The other
extreme situation, the case p = 1, is studied in [16] by Fridman and Kawohl, see
also the references therein.

We would like to thank Juan J. Manfredi for several interesting discussions re-
garding this work.

2. Preliminaries and Definitions

In order to write our equation, let us define the function FΛ : R×Rn×Sn×n → R
by

(2.1) FΛ(s, ξ, X) =





min{|ξ| − Λs,−Xξ · ξ} if s > 0,
−Xξ · ξ if s = 0,
max{−Λs− |ξ|,−Xξ · ξ} if s < 0,

where Xξ · ξ =
∑

Xijξiξj. By Sn×n we mean the space of real, symmetric n × n
matrices. Observe that FΛ is not continuous at s = 0.

Definition 2.1. We say that a function u ∈ C(Ω), u|∂Ω = 0, u 6≡ 0, is an ∞-
eigenfunction, if there exists Λ ∈ R such that

(2.2) FΛ(u,∇u,D2u) = 0 in Ω

in the viscosity sense. The number Λ is called an ∞-eigenvalue.

The equation (2.2) is derived as a limit equation of (1.2) as p → ∞ in Section 4
below. Notice that it has the property that a constant multiple of a solution is also a
solution. Moreover, it follows from Harnack’s inequality (see the appendix and [30])
that an ∞-eigenfunction is in W 1,∞

0 (Ω)1. Better global regularity than Lipschitz
continuity cannot be obtained, as an ∞-eigenfunction is never differentiable at its
maximum and minimum points, cf. [26]. The regularity outside these points is an
open problem.

For readers not familiar with the theory of viscosity solutions, we recommend [10]
and [8]. A very thorough account of the general theory can be found in [11].

1By W 1,∞
0 (Ω) we mean the functions that are Lipschitz continuous in Ω and vanish on the

boundary ∂Ω.
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It is a common feature of eigenvalue problems that many important properties
of the higher eigenvalues and eigenfunctions are derived from the fact that any
eigenfunction v is a first eigenfunction of each of its nodal domains, that is, connected
components of the set where v 6= 0. This is true for our problem as well, see Theorem
8.1 in the Appendix, and combined with the geometric characterization of the first
eigenvalue it turns out be a valuable tool in the analysis of the rest of the spectrum.
For the reader’s convenience, we collect relevant facts about the first eigenvalue and
eigenfunctions below. For the proof, see [27].

Theorem 2.2. Let Ω ⊂ Rn be a bounded domain. Then there exists a positive
viscosity solution u ∈ W 1,∞(Ω) ∩ C(Ω) to the problem

(2.3)

{
min{|∇u| − Λ1u,−∆∞u} = 0 in Ω

u = 0 on ∂Ω

where

(2.4) Λ1 = Λ1(Ω) =
1

max
x∈Ω

dist(x, ∂Ω)
.

Moreover, any positive solution u to (2.3) is a minimizer of the ∞-Rayleigh quotient:

‖∇u‖∞,Ω

‖u‖∞,Ω

= Λ1 = inf
{‖∇v‖∞,Ω

‖v‖∞,Ω

: v ∈ W 1,∞
0 (Ω)

}
.

Such a u can be constructed as a cluster point, as p →∞, of a properly normalized
sequence of the first eigenfunctions in (1.2). Furthermore,

Λ1 = lim
p→∞

λ1(p)1/p,

where λ1(p) denotes the first eigenvalue in (1.2). An alternative proof for the exis-
tence of the first eigenfunction can be found in [26]. As far as we know, the simplicity
of Λ1 is an open problem. In fact, it is not even proven that two different subse-
quences of the aforementioned sequence of first eigenfunctions have the same limit.
However, a local uniqueness result has been obtained in [27].

We have already referred to Λ1 as the first ∞-eigenvalue. Let us now justify
this designation by showing that for any domain Ω, it is the least number Λ for
which (2.2) has a nontrivial solution with zero boundary values. Indeed, if we have
FΛ(u,∇u,D2u) = 0 in Ω, then u is a solution to (2.3) in a connected component N
of {x ∈ Ω : u(x) > 0} (we may assume that this set is nonempty) and consequently,

Λ =
‖∇u‖∞,N

‖u‖∞,N

=
‖∇(uχN)‖∞,Ω

‖uχN‖∞,Ω

≥ inf
{‖∇v‖∞,Ω

‖v‖∞,Ω

: v ∈ W 1,∞
0 (Ω)

}
= Λ1(Ω)

by Theorem 8.1 in the appendix and Theorem 2.2. Here χN denotes the character-
istic function of the set N .

The fact that the first ∞-eigenvalue Λ1 can be read off from the geometry of the
underlying domain, as indicated by (2.4), has some immediate consequences. For
example, one has the Faber-Krahn inequality

(2.5) Λ1(Bω) ≤ Λ1(Ω) if Bω is a ball such that |Ω| = |Bω|.
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In fact, it is elementary to show the (sharp) estimate

(2.6) Λ1(Ω) ≥ Λ1(Bω)

(1− α(Ω))1/n
,

where the asymmetry of Ω,

α(Ω) := inf
x∈Rn

|Ω \Bω(x)|
|Ω|

see e.g. [21], [22], measures how close a set is to being a ball. Moreover, due to (2.4)
it is easy to analyze the stability of Λ1 under domain variations.

3. Eigenvalues of the p-Laplacian operator

In this section, we briefly review some known facts about the spectrum and the
eigenfunctions of the p-Laplacian operator,

(3.1) ∆pv := div(|∇v|p−2∇v), 1 < p < ∞.

Their usage is twofold. On one hand, some of these results are needed in the passage
to the limit as p → ∞. On the other hand, it is interesting to compare various
features of the ∞-eigenvalue problem to the corresponding features in the theory of
the p-Laplacian.

Definition 3.1. We say that a function u ∈ W 1,p
0 (Ω) ∩ C(Ω), u 6≡ 0, is a p-

eigenfunction, if there exists a λ ∈ R such that

(3.2)

∫

Ω

|∇u|p−2∇u · ∇φ dx = λ

∫

Ω

|u|p−2uφ dx

for all φ ∈ W 1,p
0 (Ω). The associated number λ is called a p-eigenvalue.

By the elliptic regularity theory, see e.g. [15], p-eigenfunctions are actually in
C1,α

loc (Ω) for some α > 0. Moreover, one can show that, at least for p ≥ 2, a function

u ∈ W 1,p
0 (Ω) ∩ C(Ω) is a p-eigenfunction if and only if it is a viscosity solution to

−∆pu = λ|u|p−2u. In fact, we only need to know that any p-eigenfunction satisfies
the equation in the viscosity sense. The proof is written down e.g. in [27] or [26].

We begin by describing the construction of an infinite sequence of eigenvalues.
In order to generalize the idea of the Courant-Fischer minimax principle to this
nonlinear setting, a suitable device for measuring the size of sets is the genus of
Krasnoselskii.

Definition 3.2. Let E be a real Banach space and let A ⊂ E be any closed sym-
metric set (v ∈ A implies −v ∈ A.). The genus γ(A) of the set A is defined to be the
smallest integer m for which there exists a continuous odd mapping ϕ : A → Rm\{0}.
If no such integer exists, then we set γ(A) = ∞.

Observe, in particular, that if 0 ∈ A, then γ(A) = ∞, because ϕ(0) = 0 for any
odd mapping. In what follows, we need to compute the genus of some relatively
simple subsets of W 1,p

0 (Ω). The lemma below will be enough for our purposes. For
the proof, see e.g. [38], [39].
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Lemma 3.3. Let A ⊂ W 1,p
0 (Ω). If the bounded neighborhood U ⊂ Rk of 0 is such

that there exists an odd homeomorphism h : A → ∂U , then γ(A) = k.

Let us now turn to the construction of the eigenvalues. Let Σk, k = 1, 2, . . . ,
denote the collection of all symmetric subsets A of W 1,p

0 (Ω) such that γ(A) ≥ k and
the set {v ∈ A : ‖v‖p,Ω = 1} is compact. Then it is known that the numbers

λk = inf
A∈Σk

sup
u∈A

∫
Ω
|∇u|p dx∫
Ω
|u|p dx

are p-eigenvalues and that they form an increasing sequence tending to infinity as
k →∞, see e.g. [19], [37]. For p 6= 2 it is not known whether this sequence contains
all the p-eigenvalues, but the method at least gives the correct λ1 and λ2. Observe
that

λ1 = inf
u∈W 1,p

0 (Ω)

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

because γ({u,−u}) = 1 for any u ∈ W 1,p
0 (Ω) \ {0}. It is clear from (3.2) that λ1

above is the least possible eigenvalue (just choose φ = u). Another known result,
due to Anane and Tsouli [2] (see also [13]), says that between λ1 and λ2, which
are always distinct, there are no eigenvalues. Thus the second p-eigenvalue is well-
defined and equal to λ2. For the reader’s convenience, we give a simple proof for
this fact.

Theorem 3.4. Let Ω be a bounded domain and λ2 = λ2(p) be as above. Then

λ2 = min{λ : λ is a p-eigenvalue that admits a sign changing eigenfunction}
= min{λ : λ is a p-eigenvalue and λ > λ1}.

Proof. It is enough to prove the first equality, see the discussion after the proof. Let
u ∈ W 1,p

0 (Ω) be any p-eigenfunction with eigenvalue λ having at least two nodal
domains Nj, j = 1, 2. We claim that λ2 ≤ λ. Define

vj = uχNj
∈ W 1,p

0 (Nj),

where χNj
is the characteristic function of the set Nj. Then

λ

∫

Nj

|u|p dx = λ

∫

Ω

|u|p−2uvj dx

=

∫

Ω

|∇u|p−2∇u · ∇vj dx =

∫

Nj

|∇u|p dx,

that is,

(3.3) λ =

∫
Nj
|∇u|p dx∫

Nj
|u|p dx

=

∫
Nj
|∇vj|p dx∫

Nj
|vj|p dx

for j = 1, 2. Let

A = Span{v1, v2} ∩ {v ∈ W 1,p
0 (Ω) :

∫

Ω

|v|p dx = 1}.
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Using Lemma 3.3 it is easily seen that γ(A) = 2, and thus

λ2 ≤ sup
v∈A

∫
Ω
|∇v|p dx∫

Ω
|v|p dx

.

To conclude the proof, we notice that
∫
Ω
|∇v|p dx∫

Ω
|v|p dx

= λ for all v ∈ A.

Indeed, if v = α1v1 + α2v2, then by (3.3)

∫

Ω

|∇v|p dx =
2∑

j=1

|αj|p
∫

Nj

|∇vj|p dx = λ

( 2∑
j=1

|αj|p
∫

Nj

|vj|p dx

)
= λ

∫

Ω

|v|p dx.

¤

As in the case of the Laplacian, the first p-eigenvalue λ1 and the eigenfunctions
associated to it have many special properties. First of all, λ1 is simple, which means
that the first eigenfunction is unique up to multiplication by constants. Second,
a first eigenfunction does not change its sign, whereas all higher eigenfunctions
necessarily do so. The conclusion that λ1 is isolated can be drawn from these facts.
Another immediate and useful consequence is that an eigenfunction restricted to a
nodal domain is a first eigenfunction of that nodal domain. In literature, there are
several proofs for these results. We refer the reader to [29] and to [6], which contains
a particularly elegant proof for the simplicity of λ1.

4. The second ∞-eigenvalue

Just as in the case of the p-Laplacian, we are able to prove much more about the
second ∞-eigenvalue than about the other higher eigenvalues. This is essentially
due to the fact that the second eigenvalue is the smallest eigenvalue admitting a
sign changing eigenfunction.

The second ∞-eigenvalue will turn out to have a geometric characterization anal-
ogous to that of Λ1. Let

r2 = sup{r > 0 : there exist disjoint open balls B1, B2 ⊂ Ω of radius r},
and define

Λ2 =
1

r2

.

The notation anticipates that this is the second ∞-eigenvalue. Obviously 0 < Λ1 ≤
Λ2 < ∞, and Λ2 > (2ωn

|Ω| )
1
n , where |Ω| denotes the Lebesgue measure of Ω and ωn is

the measure of the unit ball in Rn. Observe that for some domains Λ1 = Λ2. We
return to this matter in Section 7.

Theorem 4.1. Let λ2(p) be the second p-eigenvalue in Ω. Then λ2(p)1/p → Λ2 as
p →∞ and Λ2 is the second ∞-eigenvalue.



8 PETRI JUUTINEN AND PETER LINDQVIST

Before continuing any further we had better explain precisely what we mean by
the phrase “second eigenvalue” in this context. For a finite exponent p, we saw in
Section 3 that

λ2 = min{λ : λ is a p-eigenvalue and λ > λ1}
= min{λ : λ is a p-eigenvalue with a sign changing eigenfunction}.

We will show below that the second characterization is valid for Λ2 in any domain,
while the first one holds if Λ1(Ω) < Λ2(Ω). In particular, it is proven that Λ2 actually
is an ∞-eigenvalue and that there are no ∞-eigenvalues in between Λ1 and Λ2.

We have divided the proof of Theorem 4.1 into three lemmas. The first one shows
that the sequence {λ2(p)1/p} remains stable as p →∞.

Lemma 4.2. For any bounded domain Ω ⊂ Rn,

lim sup
p→∞

λ2(p)1/p ≤ Λ2.

Proof. Let us fix two disjoint balls Br2(x1) and Br2(x2) contained in Ω. We define
the truncated cone functions C1 and C2 in Ω by setting

C1(x) = (r2 − |x− x1|)+, C2(x) = (r2 − |x− x2|)+,

where f+ is the positive part of a function f . Define

A0 = Span{C1, C2} ∩ {v ∈ W 1,∞
0 (Ω) : ‖v‖∞,Ω = 1}.

Then A0 is symmetric and closed in W 1,p
0 (Ω) for each 1 < p ≤ ∞, and its genus is 2

by Lemma 3.3. Thus A0 ∈ Σ2, and we obtain

λ2(p)1/p ≤ sup
v∈A0

(∫
Ω
|∇v|p dx

)1/p

(∫
Ω
|v|p dx

)1/p
.

Now if v = αC1 + βC2 for some α, β ∈ R, then
∫

Ω

|v|p dx = (|α|p + |β|p)
∫

Br2 (0)

(r2 − |x|)p dx

and ∫

Ω

|∇v|p dx = (|α|p + |β|p)|Br2|.
Hence

lim sup
p→∞

λ2(p)1/p ≤ lim sup
p→∞

|Br2|1/p

(∫
Br2

(r2 − |x|)p dx
)1/p

=
1

sup
|x|<r2

(r2 − |x|)+
= Λ2,

as claimed. ¤

By virtue of Lemma 4.2, there exists a sequence pi →∞ such that λ2(pi)
1/pi → Λ̂

and Λ1 ≤ Λ̂ ≤ Λ2. We show next that this number Λ̂ is necessarily an ∞-eigenvalue
and that it has an ∞-eigenfunction which is not a first eigenfunction.
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Lemma 4.3. Let ui ∈ W 1,pi
0 (Ω) be an eigenfunction associated to the second eigen-

value λ2(pi) such that ‖ui‖pi,Ω = 1. Then there is a function u ∈ W 1,∞
0 (Ω),

u 6≡ 0, such that for a subsequence we have uij → u uniformly in Ω, and u sat-
isfies FΛ̂(u,∇u,D2u) = 0 in Ω. Moreover, u has at least 2 nodal domains.

Proof. We obtain by Hölder’s inequality that
(∫

Ω

|∇ui|q dx

)1/q

≤ |Ω|1/q−1/pi

(∫

Ω

|∇ui|pi dx

)1/pi

= λ2(pi)
1/pi|Ω|1/q−1/pi

if q ≤ pi, that is, the set {ui}q≤pi
is uniformly bounded in W 1,q

0 (Ω) for any 1 < q < ∞.
With the aid of the Sobolev embedding theorem, this implies the existence of a
subsequence pij →∞ and a function u ∈ W 1,∞

0 (Ω) such that uij → u uniformly and

in Cα(Ω) for any 0 < α < 1 (see [27] for details).
To show that u is a viscosity solution to FΛ̂(u,∇u,D2u) = 0, let us fix x0 ∈ Ω.

First we consider the case u(x0) > 0. Then there is ρ > 0 such that uij > 0 in Bρ(x0)
for all j sufficiently large, and we may proceed as in the case of the first eigenvalue,
see [27], to conclude that

min{|∇u(x0)| − Λ̂u(x0),−∆∞u(x0)} = 0

in the viscosity sense. The case u(x0) < 0 is similar.
Finally, let us assume that u(x0) = 0. Let φ ∈ C2(Ω) be such that u − φ has a

strict local maximum at x0. Since uij → u uniformly, there is a sequence xj → x0

such that uij − φ has a local maximum at xj. Then, as uij is a viscosity solution to
−∆pj

w = λ2(pj)|w|pj−2w, where pj = pij , we obtain

−|∇φ(xj)|pj−2∆φ(xj)− (pj − 2)|∇φ(xj)|pj−4∆∞φ(xj) ≤ λ2(pj)|uij(xj)|pj−2uij(xj).

Now if ∇φ(x0) 6= 0, we divide both sides of the inequality by (pj − 2)|∇φ(xj)|pj−4,
which is different from zero for j large enough. This yields

−∆∞φ(xj) ≤ |∇φ(xj)|2∆φ(xj)

pj − 2
+


λ2(pj)

1
pj−4 |uij(xj)|
|∇φ(xj)|




pj−4

uij(xj)
3

pj − 2
,

where the right-hand side tends to zero as j →∞, because

λ2(pj)
1

pj−4 |uij(xj)|
|∇φ(xj)| −→ Λ̂|u(x0)|

|∇φ(x0)| = 0 as j →∞.

Thus −∆∞φ(x0) ≤ 0, and since this inequality is trivially true if ∇φ(x0) = 0,
we conclude that u is a viscosity subsolution of (2.2). The fact that it is also a
supersolution can be deduced by considering −u and repeating the argument above.

Let us finish the proof by checking that u really does change its sign in Ω. We
denote Ω+

i = {x ∈ Ω : ui(x) > 0} and Ω−
i = {x ∈ Ω : ui(x) < 0}. Since

(∫

Ω+
i

|ui|pi dx

)1/pi

≤
( |Ω+

i |
ωn

)1/n
(∫

Ω+
i

|∇ui|pi dx

)1/pi
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by the Poincaré inequality, we obtain using the fact that ui is the first pi-eigen-
function on each of its nodal domains (and there are precisely two of them, see [14])
that

|Ω+
i | ≥

ωn

λ1(pi, Ω
+
i )n/pi

=
ωn

λ2(pi, Ω)n/pi
.

Furthermore,

lim sup
j→∞

Ω+
ij

:=
∞⋂

k=1

∞⋃

j=k

Ω+
ij
⊂ {x ∈ Ω : u(x) ≥ 0},

and
| lim sup

j→∞
Ω+

ij
| ≥ lim sup

j→∞
|Ω+

ij
| ≥ ωn

Λn
2

.

Thus the set {u ≥ 0} has positive measure. Similar estimates hold for the set
{u(x) ≤ 0}. Now, if u does not change its sign, say u is nonnegative, then by the
Harnack inequality u is positive in Ω, which clearly contradicts |{u ≤ 0}| > 0. ¤

Finally, we show that Λ̂ = Λ2, which means that Λ2 is an eigenvalue, and that Λ2

is the second ∞-eigenvalue.

Lemma 4.4. Let u be a viscosity solution of FΛ(u,∇u,D2u) = 0 in Ω and assume
that u has at least two nodal domains. Then Λ2 ≤ Λ.

Proof. Let Nj, j = 1, 2, denote the two nodal domains of u. As u is a first ∞-
eigenfunction on both of these domains, Theorem 8.1 in the appendix implies that
Λ1(Nj) = Λ for j = 1, 2. By the geometric characterization of the first ∞-eigenvalue
this means that Ω contains 2 disjoint balls Bj of radius 1/Λ, and thus we must have

1

Λ
≤ r2(Ω) =

1

Λ2

by the definition of r2 and Λ2. Hence Λ2 ≤ Λ. ¤
The second ∞-eigenvalue Λ2(Ω) has a variational characterization similar to that

obtained in [13] for the second eigenvalue of the p-Laplacian.

Theorem 4.5. Let S = {v ∈ W 1,∞
0 (Ω) : ‖v‖∞,Ω = 1} and let u1 ∈ S be any first

∞-eigenfunction in Ω. Then

Λ2 = inf
γ∈Γ

sup
u∈γ

‖∇u‖∞,Ω,

where Γ is the family of all continuous paths on S going from u1 to −u1.

Proof. Choose for a given path γ ∈ Γ, γ : [0, 1] → S, a point t0 ∈ (0, 1) such that
for u = γ(t0)

‖u+‖∞,Ω = ‖u−‖∞,Ω = 1,

where u+ and u− denote the positive and negative part of u, respectively. Denote
Ω+ = {x ∈ Ω : u(x) > 0}, Ω− = {x ∈ Ω : u(x) < 0} and choose two nodal domains
N± ⊂ Ω± such that ‖u‖∞,N± = 1. Then

‖∇u‖∞,Ω± ≥
‖∇u‖∞,N±

‖u‖∞,N±
≥ Λ1(N±) =

1

sup{r > 0 : Br(x) ⊂ N±} ,
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and thus necessarily

Λ2 ≤ max{Λ1(N+), Λ1(N−)} ≤ ‖∇u‖∞,Ω ≤ sup
v∈γ

‖∇v‖∞,Ω.

This shows that
Λ2 ≤ inf

γ∈Γ
sup
u∈γ

‖∇u‖∞,Ω.

For the other direction, we construct a continuous path γ ∈ Γ satisfying

‖∇v‖∞,Ω ≤ Λ2 for all v ∈ γ.

In order to do this, let us fix two disjoint balls Br2(x1), Br2(x2) ⊂ Ω with radius
r2 = Λ−1

2 . Define the corresponding truncated cones

C1(x) = (1− 1
r2
|x− x1|)+, C2(x) = (1− 1

r2
|x− x2|)+.

We may assume that u1 > 0 in Ω. The path γ will be constructed from 6 pieces.
We start from u1 and go to C1 − C2, using the paths

γ1(t) = max{u1(x), tC1(x)},
γ2(t) = max{(1− t)u1(x), C1(x)},
γ3(t) = C1(x)− tC2(x),

where 0 ≤ t ≤ 1. Clearly γi(t) ∈ S for all i = 1, 2, 3, and

‖∇γ(t)‖∞,Ω ≤ max
{
‖∇u1‖∞,Ω ,

1

r2

}
= Λ2.

It is now obvious how to complete the construction with three paths connecting
C1 − C2 to −u1. ¤

The proof of Theorem 4.5, actually, implies that the second eigenvalue Λ2 is
obtained by a simple variational formula.

Corollary 4.6. For every bounded domain Ω ⊂ Rn,

Λ2 = inf
v∈O

‖∇v‖∞,Ω

‖v‖∞,Ω

where
O = {v ∈ W 1,∞

0 (Ω) : v 6= 0, ‖v+‖∞,Ω = ‖v−‖∞,Ω}.
5. Higher eigenvalues

In this section, we address the issue of existence of ∞-eigenvalues Λ > Λ2. In the
one dimensional case all eigenvalues and eigenfunctions are explicitly known. Let Ω
be the interval (0, 1). Now Λ1 = 2 and the first ∞-eigenfunction is

u1(x) = 1
2
− |x− 1

2
|,

the distance function. The higher eigenvalues are just 2Λ1, 3Λ1, , 4Λ1, . . . , and the
corresponding eigenfunctions uk are obtained from u1 by the usual method of first
extending u1 to an odd function on (−1, 1) and then periodically to the whole real
line, and finally setting

uk(x) = u1(kx) for x ∈ (0, 1), k = 2, 3, 4, . . . .
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Observe that for example the function

v(x) =

{
1
4
− |x− 1

4
|, x ∈ (0, 1

2
],

2( |x− 3
4
| − 1

4
), x ∈ (1

2
, 1)

is not an ∞-eigenfunction because it does not satisfy −∆∞v = 0 at x = 1
2
.

For the case n ≥ 2, let us define for k = 3, 4, . . . the numbers

rk = sup{r > 0 : there exists k disjoint open balls Bi ⊂ Ω of radius r},
and

(5.1) Λk = Λk(Ω) =
1

rk

.

By repeating the arguments of the previous section, we can now study the limiting
behavior, as p → ∞, of the sequences {λk(p)1/p} for k = 3, 4, . . . as well as the
sequences of corresponding suitably normalized p-eigenfunctions. The important
difference from the case k = 2 is that we do not have such a good lower bound for
the number of nodal domains. As a result, the numbers Λk for k > 2 only bound the
accumulation points of {λk(p)1/p} from above and, in general, they are not known
to be ∞-eigenvalues themselves. The proofs of Lemma 5.1 and Lemma 5.2 below
are analogous to the proofs of Lemma 4.2 and Lemma 4.3, respectively.

Lemma 5.1. Let Ω ⊂ Rn be any bounded domain. Then

lim sup
p→∞

λk(p)1/p ≤ Λk

for all k ∈ N.

Lemma 5.2. For a fixed k ∈ N, let pi → ∞ be any sequence such that the eigen-
values λk(pi)

1/pi converge to a number Λ∗k ≤ Λk. Let further ui ∈ W 1,pi
0 (Ω) be a

p-eigenfunction associated to λk(pi), normalized so that ‖ui‖pi,Ω = 1. Then there

exists u ∈ W 1,∞
0 (Ω) such that for a subsequence we have uij → u uniformly in Ω

and FΛ∗k(u,∇u,D2u) = 0. In particular, Λ∗k is an ∞-eigenvalue.

Lemmas 5.1 and 5.2 do not imply right away that the set of ∞-eigenvalues is
unbounded. The sequence Λk(Ω) clearly tends to ∞ as k →∞, but these numbers
only bound the ∞-eigenvalues we found from above. If the domain is, for example,
a parallelepiped, then one can construct arbitrarily large ∞-eigenvalues with the aid
of Schwarz’s reflection principle, Theorem 7.1. In a general domain we will use some
ideas from [37].

Theorem 5.3. For every bounded domain Ω the set of ∞-eigenvalues is unbounded.

Proof. We consider first the case in which the domain is a ball B. Let {ϕm} ⊂
W 1,2

0 (B) be an orthonormal sequence of eigenfunctions of the ordinary Laplacian,
and denote

EC
k = EC

k (p) = {v ∈ W 1,p
0 (B) :

∫

B

vϕj dx = 0 for all j = 1, . . . , k}.
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If 2 ≤ p < ∞, ϕm ∈ W 1,p
0 (B) and so Proposition 7.8 in [38] shows that the set EC

k

intersects every closed symmetric subset of W 1,p
0 (B) whose genus is at least k + 1.

If we set

λ̂k(p) = inf
A∈Σk

sup
u∈A∩EC

k−1

∫
B
|∇u|p dx∫

B
|u|p dx

,

then clearly λk(p) ≥ λ̂k(p). By a diagonal argument and Lemma 5.1 we can find a
sequence pj →∞ such that for every k ∈ N

λ̂k(pj)
1/pj −→ Λ̂k for some Λ̂k ≤ Λk.

By Lemma 5.2, there exists an ∞-eigenvalue Λ∗k ∈ [Λ̂k, Λk], and hence it suffices to

prove that Λ̂k →∞ as k →∞.
To this end, we argue by contradiction and suppose that there is a constant C > 0

such that Λ̂k ≤ C for each k ∈ N. This implies, after some relabeling, that there is
a sequence kj →∞ and a number Λ̂ ≤ C such that

λ̂kj
(pj)

1/pj −→ Λ̂ as j →∞.

By the definition of λ̂k(p), this means that there are sets Aj ∈ Σkj
(pj) and functions

uj ∈ Aj ∩ EC
kj−1(pj) such that for

vj =
uj(∫

B
|uj|pj dx

)1/pj

we have ∫

B

|∇vj|pj dx −→ Λ̂

as j → ∞. Hence by Hölder {vj}pj≥q is uniformly bounded in W 1,q
0 (B), and with

the aid of the Sobolev embedding theorem and a diagonal argument as in [27], we
find a function v ∈ W 1,∞(B) such that vj → v uniformly in B. In particular, since
||vj||pj ,B = 1 for every j, we obtain ||v||∞,B = 1. However, as vj ∈ EC

kj−1(pj), we
must have ∫

B

vϕm dx = lim
j→∞

∫

B

vjϕm dx = 0

for every m ∈ N. Thus v ≡ 0, which is clearly a contradiction, and we have proved
the claim for a ball.

To deal with the general case, we choose for a given domain Ω a ball B such
that Ω ⊂ B. Then λk(p, Ω) ≥ λk(p,B) by the definition of these numbers, and the
theorem now follows from the first part of the proof and Lemma 5.2. ¤

According to [20], [17], for 1 < p < ∞ there exist constants C1, C2 depending on
p and n such that

C1

(
k

|Ω|
)1/n

≤ λk(p, Ω)1/p ≤ C2

(
k

|Ω|
)1/n

for all k ∈ N. One can probably deduce the unboundedness of the spectrum also
from this result, but then the dependence of the constant C1 on p should be analyzed
carefully.
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Also Lemma 4.4 in the previous section has its natural counterpart which is proved
in analogous manner.

Lemma 5.4. Let Λ be any ∞-eigenvalue for which there exists an ∞-eigenfunction
having at least k nodal domains. Then Λ ≥ Λk.

Lemma 5.4 implies, in particular, that if the domain Ω satisfies

Λ1(Ω) < Λ2(Ω) < Λ3(Ω),

then every ∞-eigenfunction associated to Λ2(Ω) admits exactly two nodal domains.
For the second p-eigenfunctions this is true in any domain, see [14]. It is easy to find
an example of a domain for which Λ2 = Λ3 that has an ∞-eigenfunction associated
to this common value with a given number of nodal domains, see Section 7.

It is natural to ask, whether it could be that the numbers Λk in (5.1) exhaust the
spectrum. This is clearly true if n = 1, but we doubt very much that it holds in
higher dimensions. The next example should explain our skepticism.

Example 5.5. The following packing problem was raised by Moser [33], see also
[12]: Find the value of ρm, the maximal radius of m non-overlapping equal circles in
a unit square. Optimal packings and values for ρm, and consequently the numbers
Λm for the domain Q = (0, 1)2, are known at least for m ≤ 27, see [34]. Yet the
most striking result obtained is that the natural square lattice packing is not optimal
for m = 49, see [35]. This means, in particular, that Λ49(Q) < 14. On the other
hand, using the reflection principle, it is easy to see that for Λ = 14 there exists an
∞-eigenfunction having exactly 49 nodal domains. Observe that this does not yet
disprove the conjecture, since it might be that 14 = Λm for some m > 49.

6. Properties of the spectrum and eigenfunctions

We record some properties of the spectrum and eigenfunctions. First we bound
the number of nodal domains in a rather explicit way.

Theorem 6.1. Let u ∈ C(Ω), u|∂Ω = 0, be a solution of FΛ(u,∇u,D2u) = 0 in
the bounded domain Ω ⊂ Rn. Then the number of nodal domains of u is at most
Λnω−1

n |Ω|, where ωn is the measure of the unit ball of Rn. Conversely, if u has k
nodal domains, then Λn ≥ kωn|Ω|−1.

Proof. By Theorem 8.1 in the appendix, Λ1(N) = Λ for any nodal domain N ⊂ Ω.
Thus

|Ω| ≥
∑

|N | ≥ ωn

(
1

Λ

)n

#{nodal domains},
whence the result. ¤

It is not difficult to see that the bound found above is optimal. Just consider as
the domain Ω a chain of k disjoint balls of radius 1, connected by corridors of width
ε > 0, and let ε → 0. The ∞-eigenfunction with the right number of nodal domains
can be constructed with the aid of the reflection principle, Theorem 7.1.

Next we link together the eigenvalue and the value of the Rayleigh quotient for
the eigenfunction. For a finite p, the corresponding result is obtained easily by using
the p-eigenfunction itself as a test function in the weak formulation of the problem.
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Lemma 6.2. Let u 6≡ 0 be a solution to FΛ(u,∇u,D2u) = 0 in Ω. Then

||∇u||∞,Ω

||u||∞,Ω

= Λ.

Proof. Let us choose a nodal domain N so that ‖u‖∞,N = ‖u‖∞,Ω. Then necessarily
‖∇u‖∞,N = ‖∇u‖∞,Ω. Indeed, if this is not the case, there is another nodal domain
N ′ so that

‖∇u‖∞,N ′

‖u‖∞,N ′
>
‖∇u‖∞,N

‖u‖∞,N

.

But this is impossible due to Theorem 8.1 in the appendix, and consequently

‖∇u‖∞,Ω

‖u‖∞,Ω

=
‖∇u‖∞,N

‖u‖∞,N

= Λ.

¤
In the previous section the spectrum was seen to be unbounded. Next we show

that it is also a closed set.

Theorem 6.3. For every bounded domain Ω the set of ∞-eigenvalues is closed.

Proof. Let Λi ∈ R be ∞-eigenvalues such that Λi → Λ as i → ∞, and choose
eigenfunctions ui satisfying FΛi

(ui,∇ui, D
2ui) = 0 and ‖ui‖∞,Ω = 1. Since

‖∇ui‖∞,Ω ≤ Λi < 2Λ

for all i large enough, we see that the sequence {ui} is uniformly bounded and
equicontinuous. Thus, by Ascoli’s theorem, we may assume that ui → u uniformly
in Ω where u ∈ W 1,∞

0 (Ω).
If the function FΛ : R × Rn × Sn×n → R in (2.2) were continuous, the theorem

would now follow immediately from the standard stability results in the theory of
viscosity solutions. However, since the equation is discontinuous at {u = 0}, we need
to check that the limit function really satisfies −∆∞u = 0 at those points. So let
x ∈ Ω and φ ∈ C2(Ω) be such that u(x) = 0 and φ− u has a strict local minimum
at x. In order to show that u is a viscosity subsolution, we have to prove that
−∆∞φ(x) ≤ 0. We will derive a contradiction from the antithesis −∆∞φ(x) > 0.
By the uniform convergence ui → u we find a sequence xi → x such that φ − ui

has a local minimum at xi. Because −∆∞φ(xi) > 0 for i large, we obtain using
the equation that ui(xi) > 0. Indeed, if ui(xi) ≤ 0 for i large, then −∆∞φ(xi) ≤ 0
contradicting the antithesis. Thus ui(xi) > 0 and

0 ≥ min{|∇φ(xi)| − Λiui(xi),−∆∞φ(xi)} = |∇φ(xi)| − Λiui(xi)

for i large. But this implies that ∇φ(x) = 0 and consequently −∆∞φ(x) = 0,
establishing that u is a subsolution. An analogous argument shows that u is also a
supersolution, and hence u is a solution in Ω. ¤

Next we will prove counterparts for two famous results of the linear theory. The
first one shows that the Payne-Pólya-Weinberger conjecture, regarding the ratio of
the first two eigenvalues, is true for the ∞-eigenvalue problem. In the linear case,
this was proved by Ashbaugh and Benguria in [4] for n = 2 and in [5] for any n. For
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the eigenvalues of the p-Laplacian, p 6= 2, the validity of the conjecture is an open
question.

Theorem 6.4. For a bounded domain Ω, the ratio of the first two ∞-eigenvalues
satisfies

Λ2(Ω)

Λ1(Ω)
≤ 2,

and equality holds if and only if Ω is a ball.

Proof. First, it is easy to see that the supremum of the ratios is attained by a ball
B. Indeed, for any bounded domain Ω ⊂ Rn, a maximal inscribed ball of radius
Λ1(Ω)−1 contains two disjoint balls of radius (2Λ1(Ω))−1, and thus

Λ2(Ω)

Λ1(Ω)
≤ 2Λ1(Ω)

Λ1(Ω)
= 2 =

Λ2(B)

Λ1(B)

for the ball B.
Hence it remains to show that if Ω is not a ball, then Λ2(Ω)

Λ1(Ω)
< 2. To this end, let

us denote R = 1/Λ1(Ω) and suppose that BR(0) ⊂ Ω. Since Ω \ BR(0) 6= ∅, there
exists x̂ ∈ ∂BR(0) and τ > 0 small such that Bτ (x̂) ⊂ Ω. Now the proof reduces to
the elementary problem of finding two disjoint balls of the same size contained in
BR(0) ∪Bτ (x̂) such that their common radius exceeds R/2.

Without loss of generality, we may assume that R = 2 and x̂ = 2e1 = (2, 0, . . . , 0).
Since

min{ dist(x, ∂B2(0)) : x ∈ ∂B1(e1) \Bτ/2(2e1) } > 0

and Bτ (2e1) ⊂ Ω, there exists ε > 0 such that B1+ε(e1) ⊂⊂ Ω. We claim that the
balls

B
1+

ε
4
((1 + 3ε

4
)e1) and B

1+
ε
4
(( ε

4
− 1)e1)

are disjoint and contained in Ω. Indeed, clearly B
1+

ε
4
((1 + 3ε

4
)e1) ⊂ B1+ε(e1) ⊂ Ω

and B
1+

ε
4
(( ε

4
− 1)e1) ⊂ B2(0) ⊂ Ω, and the balls are disjoint because

|(1 + 3ε
4
)e1 − ( ε

4
− 1)e1| = 2 + ε

2
= 2(1 + ε

4
),

that is, the distance between the centers is the same as the sum of the radii of the
balls. This concludes the proof of the theorem. ¤

The second result deals with the zero set of a second eigenfunction. In 1967 Payne
[36] conjectured that in any bounded domain Ω ⊂ R2 a second eigenfunction of the
Laplacian cannot have a closed nodal line. This was proved to be correct if Ω is con-
vex by Melas [32] and Alessandrini [1]. On the other hand, an example constructed
by Hoffmann-Ostenhof et al. [23] shows that the conclusion need not be true if the
domain is not convex and not simply connected. To the best of our knowledge,
nothing similar is known about the nodal line of a second eigenfunction of the p-
Laplacian. In the case of the ∞-eigenvalue problem, we show that a weaker version
of Payne’s conjecture holds: every nodal domain of a second ∞-eigenfunction in a
convex domain necessarily meets the boundary. The proof works in any dimension
and is again very simple due to the explicit characterization of Λ2(Ω).
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Theorem 6.5. Let Ω be a bounded convex domain and let u be a second ∞-
eigenfunction in Ω. Then the closure of each nodal domain of u intersects the
boundary ∂Ω.

Proof. Suppose that the claim is not true. Then there exists a nodal domain N ,
associated to u, such that d := dist(N, ∂Ω) > 0. Since u is a second∞-eigenfunction,
this means that for some small ε > 0 there exist disjoint balls Br(x1) ⊂ Ω and
Br+ε(x2) ⊂ Ω, where r−1 = Λ2(Ω) and x2 ∈ N . Indeed, since N contains a ball B of
radius r and (1+d/r)B, the concentric ball with radius r +d, is contained in Ω, the
ball Br+ε(x2) can be found inside (1 + d/r)B \ Br(x1). Without loss of generality,
we may assume that x1 = 0 and x2 = e1 = (1, 0, . . . , 0), in which case 0 < r < 1

2
.

Denote

K = convex hull
(
Br(0) ∪Br+ε(e1)

) ⊂ Ω.

Then for µ > 0 sufficiently small, dist(µe1, ∂K) > r, that is, Br(µ)(µe1) ⊂⊂ K for
some r < r(µ) < r + µ.

Let us choose r < ρ < r + ε
8

and µ < ε
8
. Then the balls Bρ((1 + r + ε− ρ)e1) and

Br(µ)(µe1) are both contained in K ⊂ Ω and have radius larger than r. They are
also disjoint, because

|(1 + r + ε− ρ)e1 − µe1| = 1 + r + ε− ρ− µ > 1 + 3
4
ε

> 2r + ε
4

> (r + µ) + (r + ε
8
)

> r(µ) + ρ.

Thus

Λ2(Ω) ≤ 1

min{r(µ), ρ} <
1

r
,

which contradicts the definition of r. The claim now follows. ¤

In Theorem 6.5 it is important that u is a second∞-eigenfunction. The conclusion
is not true for higher eigenvalues even in a ball. Indeed, one can check that the
function

u(x) =

{
1− |x|, if |x| ≤ 2
|x| − 3, if 2 < |x| < 3

satisfies (2.2) in B3(0) with Λ = 1 > Λ2(B3(0)) (and u even has two nodal domains),
but the zero set of u does not meet the boundary of the ball B3(0).

7. Examples

In this section, we present some examples displaying various features of the ∞-
eigenvalue problem. Most notably, we consider domains for which the first and the
second ∞-eigenvalue coincide.

We base most of our examples on the following reflection principle. It enables us
to build higher eigenfunctions from first eigenfunctions of suitable subdomains.

Theorem 7.1. Let Ω ⊂ Rn be a bounded domain that is symmetric in the xn direc-
tion, i.e., (x′, xn) ∈ Ω if and only if (x′,−xn) ∈ Ω. Let u be a first ∞-eigenfunction
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in Ω ∩ {x ∈ Rn : xn > 0}, and define û : Ω → R by

û(x) = û(x′, xn) =





u(x), if xn > 0,
0, if xn = 0,

−u(x′,−xn), if xn < 0.

Then û is an ∞-eigenfunction in Ω, associated to the eigenvalue Λ1(Ω∩ {xn > 0}).
Proof. It is enough to show that −∆∞û = 0 on Γ = Ω ∩ {xn = 0}. To check this,
let x0 ∈ Γ and φ ∈ C2(Ω) be such that φ− û has a local minimum, relative to Ω, at
x0. Without loss of generality, we may assume that x0 = 0 and φ(0) = 0. Since the
function φ|Γ of (n− 1) -variables has a minimum at 0 we have

∇φ(0) = (0, . . . , 0, φxn(0)).

This implies, in particular, that

−∆∞φ(0) = −φxnxn(0) (φxn(0))2 .

In order to estimate φxnxn(0), we note that

û(ten) ≤ φ(ten) = φxn(0)t +
1

2
φxnxn(0)t2 + o(t2)

and

û(−ten) ≤ φ(−ten) = −φxn(0)t +
1

2
φxnxn(0)t2 + o(t2)

for t ≥ 0 sufficiently small. Here en = (0, . . . , 0, 1). Since û(−ten) = −û(ten) we
thus have

φxn(0)t +
1

2
φxnxn(0)t2 ≥ φxn(0)t− 1

2
φxnxn(0)t2 + o(t2)

which implies

φxnxn(0) ≥ 0.

Consequently

−∆∞φ(0) ≤ 0,

and we conclude that û is a subsolution. To see that û is also a supersolution, repeat
the argument above for −û. ¤
Examples 7.2. (i) Let Ω = (0, 1)×(−1, 1) ⊂ R2. Then clearly Λ1(Ω) = Λ2(Ω) = 2,
and we may construct a sign changing ∞-eigenfunction by taking a positive first ∞-
eigenfunction of the unit square (0, 1) × (0, 1) and then extending the function to
the whole of Ω by using the odd reflection above. Furthermore, each integer k ≥ 2
is an ∞-eigenvalue of Ω, and so is also for example 2

√
2. These facts follow from

the reflection principle as well.
It is obvious how one can modify the example to find, for a given k ∈ N, a domain

such that Λ1 = Λ2 = · · · = Λk.
(ii) Let Ω = (0, 1)× (0, T ) ⊂ R2 for T > 2. Then again Λ1(Ω) = Λ2(Ω) = 2, and

for each s ∈ [1, T − 1] we can construct an ∞-eigenfunction us with precisely two
nodal domains in such a way that

{us = 0} = {(x, y) ∈ Ω : y = s}.
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The construction is based on “gluing” together pieces of a (fixed) first ∞-eigen-
function of the unit square and the distance function of Ω, cf. [28], and applying the
reflection principle at the nodal line. The set {us}1≤s≤T−1 is linearly independent.

8. Appendix

In [27], it was proved that if the domain Ω satisfies ∂Ω = ∂Ω then a positive
∞-eigenfunction is necessarily a first ∞-eigenfunction. We will now remove the
assumption about the boundary. This improvement is crucial in the study of nodal
domains whose regularity properties are in general unknown. Our argument here is
different from that used in [27], where a logarithmic comparison principle was the
main ingredient of the proof.

Theorem 8.1. Let Ω be any bounded domain of Rn and let Λ1 be the first ∞-
eigenvalue of Ω. If u ∈ C(Ω) is a positive viscosity solution to the equation

min{|∇u| − Λu,−∆∞u} = 0

in Ω with u = 0 on the boundary ∂Ω, then Λ = Λ1. Furthermore, we have

‖∇u‖∞,Ω

‖u‖∞,Ω

= Λ1.

To prove this, we need the following Harnack inequality.

Theorem 8.2. Let u be a nonnegative viscosity supersolution of −∆∞u = 0 in Ω,
and let δ(x) = dist(x, ∂Ω) for x ∈ Ω. Then

|∇ log u(x)| ≤ |∇ log δ(x)| for a.e. x ∈ Ω.

Proof. For the ∞-harmonic functions this was proved in [30], and there it was also
noticed that the estimate holds for any supersolution that is a limit, as p → ∞, of
a sequence of p-superharmonic functions. However, it turns out that this approxi-
mation property is true for all supersolutions, see [31], [26], and thus the Harnack
inequality follows. Another proof, based on the “comparison with cones” property
of supersolutions of −∆∞u = 0, is due to Crandall, see [3]. ¤

Now we turn to the proof of Theorem 8.1.

Proof. Notice first that if Λ ≤ 0, then the eigenvalue equation above reduces to the
∞-Laplace equation −∆∞u = 0, whose only solution with zero boundary values is
u ≡ 0, according to Jensen’s uniqueness theorem, cf. [24], [3]. Thus necessarily
Λ > 0.

Let us normalize u so that sup u = 1
Λ
. Then Λu ≤ 1 in Ω, which implies that

min{|∇u| − 1,−∆∞u} ≤ 0 in Ω

in the viscosity sense. Since the distance function δ(x) = dist(x, ∂Ω) satisfies

(8.1) min{|∇δ| − 1,−∆∞δ} = 0,
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see [26], and δ = u on ∂Ω, we obtain by Jensen’s comparison principle for the
equation (8.1), see [24], that u(x) ≤ δ(x) for all x ∈ Ω. Hence, as |∇δ| = 1 a.e.,

|∇u(x)| ≤ u(x)

δ(x)
≤ 1 a.e. in Ω

by the Harnack inequality (Theorem 8.2) and, consequently,

(8.2)
‖∇u‖∞,Ω

‖u‖∞,Ω

≤ 1

‖u‖∞,Ω

= Λ.

Because Λ1 is the minimum of the ∞-Rayleigh quotient, we must have Λ1 ≤ Λ.
To prove the reverse inequality, we approximate v = log u by its semiconcave

inf-convolutions (see e.g. [25])

vε(x) = inf
y∈Ωσ

{
v(y) +

1

2ε
|x− y|2

}
, ε > 0,

in the set Ωσ = {x ∈ Ω : δ(x) > σ}. Since |∇v| ≥ Λ in the viscosity sense by the
assumptions and vε is twice differentiable a.e., it follows from the properties of the
inf-convolution (see [25]) that |∇vε(x)| ≥ Λ for a.e. x in a smaller set Ωσ,ε = {x ∈
Ωσ : dist(x, ∂Ωσ) > C

√
ε}. Moreover, the function evε

is a positive supersolution of
−∆∞w = 0 in Ωσ,ε. Thus we obtain, using Theorem 8.2 and then letting ε → 0,
σ → 0 that

Λ ≤ |∇ log δ(x)| = 1

δ(x)
a.e. in Ω,

and so

Λ ≤ 1

supx∈Ω δ(x)
= Λ1.

This completes the proof of the first assertion, and the second one now follows
immediately from (8.2) and the definition of Λ1. ¤
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[8] L. A. Caffarelli, and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathe-
matical Society Colloquium Publications, 43. American Mathematical Society, Providence,
RI, 1995.



ON THE HIGHER EIGENVALUES FOR THE ∞-EIGENVALUE PROBLEM 21

[9] R. Courant, and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience
Publishers, Inc., New York, N.Y., 1953.

[10] M. G. Crandall, Viscosity solutions: a primer Viscosity solutions and applications (Mon-
tecatini Terme, 1995), Lecture Notes in Math., 1660, Springer, Berlin (1997) pp. 1–43.

[11] M. G. Crandall, H. Ishii, and P-.L. Lions, User’s guide to viscosity solutions of
second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), pp.
1–67.

[12] H. Croft, K. Falconer, and R. Guy, Unsolved problems in geometry, Problem Books
in Mathematics. Unsolved Problems in Intuitive Mathematics, II. Springer-Verlag, New
York, (1994).

[13] M. Cuesta, D. de Figueiredo, J.-P. Gossez The beginning of the Fučik spectrum for
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