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Abstracf- One of the main heritage tools used in scientific 
and engineering data spectrum analysis is the Fourier 
Integral Transform and its high performance digital 
equivalent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the Fast Fourier Transform (FFT). The Fourier 
view of nonlinear mechanics that had existed for a long 
time, and the associated FlT (fairly recent development), 
carry strong a-priori assumptions about the source data, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as linearity and of being stationary. Natural phenomena 
measurements are essentially nonlinear and nonstationary. A 
very recent development at the National Aeronautics and 
Space Administration (NASA) Goddard Space Flight Center 
(GSFC), known as the Hilbert-Huang Transform (HHT) 
proposes a novel approach to the solution for the nonlinear 
class of spectrum analysis problems. Using the Empirical 
Mode Decomposition (EMD) followed by the Hilbert 
Transform of the empirical decomposition data (HT) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l], 
[2], [3], [15], the HHT allows spectrum analysis of 
nonlinear and nonstationary data by using an engineering a- 
posteriori data processing, based on the EMD algorithm. 
This results in a non-constrained decomposition of a source 
real value data vector into a finite set of Intrinsic Mode 
Functions (IMF) that can be further analyzed for spectrum 
interpretation by the classical Hilbert Transform. This paper 
describes phase one of the development of a new 
engineering tool, the HHT Data Processing System 
(HHTDPS). The HHTDPS allows applying the "T to a 
data vector in a fashion similar to the heritage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT. It is a 
generic, low cost, high performance personal computer (PC) 
based system that implements the HHT computational 
algorithms in a user friendly, file driven environment. This 
paper also presents a quantitative analysis for a complex 
waveform data sample, a summary of technology 
commercialization efforts and the lessons learned fiom this 
new technology development. 
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INTRODUCTION 

Oscillatory phenomena are omnipresent and the desire to 
learn about the oscillatory behavior of a signal is both 
natural and practically useful. Signal characteristics, the 
study of a signal by its decomposition into simpler 
components, the heritage signal processing method for linear 
systems and data, and the novel method that is applicable to 
non-linear and non-stationary data are presented in this 
introduction. 

The characteristic parameters of an oscillatory signal are 
period T, oscillation fundamental frequencyf& amplitude a, 
phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe(r), phase shift C within qt), polarization, as well as 
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signal average value, energy and power. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThese are 
described in detail in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5. 

When dealing with a signal that is not susceptible to a brute 
force study of its oscillatory behavior, it is tempting to 
decompose the signal into simpler oscillatory behavior 
components (analysis) and in such a way that allows 
straightforward reconstruction of the source signal from the 
decomposition components (synthesis). The signal synthesis 
from a subset of components yields the source signal 
approximation and always related to an approximation 
residue aflects. The decomposition, in turn, can use some set 
of basic functions (basis) for component representation, 
such as polynomials or trigonometric sine and cosine 
functions, or periodic exponential functions of a complex 
variable. Any complete set of functions can be used to 
represent arbitrary functions. There are also multitudes of 
ways to decompose anything, be to a simple signal with a 
constant amplitude or a complex non-linear function. For 
example, a signal with a constant amplitude in time x(t)=% 
can be represented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a sum of squared trigonometric cosine 
functions of time (components), namely 

3/4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x(t)=cos2(t-120) + cos2(t) + cosz(t+12~), for all t. 

However, there is very little knowledge about this signal 
oscillatory behavior (or absence of it) available from such 
arbitrary decomposition into non-linear cosine-based 
components. 

The heritage spectrum analysis method is based on the 
Fourier theoretics, a linear decomposition that is especially 
convenient when a signal originates within a linear and 
stationary oscillatory process. The Fourier series for 
periodic signals with a finite period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 or the Fourier 
Integral Transform (also called the Fourier Transform) for 
spectrum analysis of non-periodic linear and stationary 
functions is implemented for signals that satisfy the 

Dirichlet criteria which is described in Section 1.5. A signal 
with period T=O is a signal with a constant amplitude in 
time. It has no nonzero frequency oscillatory components 
and is also fully covered by the Fourier series. This linear 
decomposition into sine and cosine components, employed 
by Fourier series and the Fourier Transform, is of obvious 
advantage since it provides a direct solution for a linear and 
stationary signal that satisfies the Dirichlet criteria, where it 
is proven to be applicable. For example, the Fourier Series 
for signal x(t) = 3/4 that satisfies these conditions for period 
T=O (number of discontinuities is 0, number of extrema 
points is 0 and the integral over period T is finite and equals 
0), returns the constant component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3/4 only which contains all 

knowledge about the signal oscillatory behavior, namely its 
absence. The exclusive heritage use of the Fourier series 
functions, the trigonometric functions of sine and cosine, 
also has the following three reasons [16]. Given that we 
want a time invariant representation of signals, since there is 
usually no natural origin of time, leads to trigonometric 

functions that are the eigenfunctions of time translation. 
Linear systems also have the same eigenfunctions - the 
complex exponentials that are equivalent to the real 
trigonometric functions. The third good reason for the 
Fourier functions is that the synthesis of the band limited 
physical signal from equally spaced samples taken at a rate 
of at least twice higher than the signal's highest frequency is 
simple to understand as a consequence of the Nyquist 
sampling theorem. 

Most natural phenomena are non-linear and non- 
stationary, and direct application of the Fourier spectrum 
analysis may lead to undesirable affects and unrelated 
physical interpretation. There is presently no engineering 
tool for systematic spectrum analysis and synthesis of 
nonlinear and nonstationary data. Nonlinear and 
nonstationary processes are complex processes that evolve 
in time, such as speech or music and their properties are 
statistically non-invariant over time. A theoretical attempt in 
this endeavor was proposed by Dennis Gabor in 1946 in his 
"Theory of Communication" as depicted in the book on 
Gabor analysis and Gabor frames [14]. However, an 
effective computational method using Gabor frames is yet to 
be developed. 

Dr. Norden E. Huang recently proposed a novel Empirical 
Mode Decomposition (Em) computational method for 
non-linear and non-stationary signals. The EMD output 
basis functions, the Intrinsic Mode Functions (IMFs), are 
derived from the data and are susceptible to the Hilbert 
Transform for spectrum analysis, the Hilbert-Huang 
Transform (HHT) [l], [2], [3]. The Implementation of the 
Digital Hilbert Transform is using the FFI'. This paper 
describes the development of a novel engineering tool, the 
HHT Data Processing System that implements the HHT and 
allows a user to make use of HHT similar to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT for 
spectrum analysis of nonlinear and nonstationary data. The 
theoretical foundations of the HHT and the heritage FFT 
methods used in HHTDPS are discussed below. 

1.0 THEORETICAL FOUNDATION 
The theoretical foundation of HHTDPS comprises those of 
the HHT and the heritage Fourier Transform (used in 
evaluating the Hilbert Transform), as well as the discrete 
equivalents of these transforms, the Discrete Hilbert 
Transform (DHT) and the FFT. The FFT is used to 
implement the DHT. 

The theoretical foundations of the HHT method are related 
to nonlinear and non-stationary data analysis and synthesis 
and also comprise the relation between the heritage Fourier 
Transform and the Hilbert Transform [l], [2]. Because 
nonlinear and non-stationary systems are complex systems 
we will give a brief overview of the nature of complex 
systems that facilitates insights into the HHT method. 
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1.1 On Complex Systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The HHT method and its implementation, the “TDPS,  are 
applicable to non-linear and non-stationary systems and data 
that originate in such systems. These are complex systems 
and we discuss in brief the contemporary approach in 
studying them via empirical engineering and reduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
well as the view of their nature. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAempirical engineering, where observation is fundamental, 
the complexities of a phenomenon can be partially 
understood by repeated observations of a whole system 
under a wide range of circumstances; all the variables are 
retained and as many as possible are examined. By contrast 
in the reductionist approach, traditionally found in physics 
and engineering, experiments are specifically designed to 
simplify the study of a natural phenomenon by the 
elimination of all but a few variables and linear model 
explanation. 

1.1.1 HHT and Complexity 
Most phenomena are complex. A swirling vortex in a 
turbulent ocean cannot be expressed in terms of individual 
water molecules. All this waits for a model that will reveal 
the complex and time-dependent interaction of known and 
unknown variables. For nonlinear systems the whole is 
greater than the sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the parts, and they can only be 
understood by examining “global” behaviors in addition to a 
detailed examination of the individual features of which they 
are comprised. The continued study of complexity as 
promulgated by the HHT and HHTDPS is based on the 
premise that even if it does not provide exact solutions, so is 
the case with other methodologies, and we are aware that no 
matter how many details are uncovered there will always be 
unknowns beyond the sum of current knowledge. This paper 
describes a novel empirical approach of the HHT to the 
solution of spectrum analysis problems for nonlinear and 
nonstationary data that originate in complex systems. 
However, the HHT is also based on established theories of 
complex systems and signal processing. 

1.1.2 Complexity Ingredients 
For complexity to emerge, two ingredients are necessary. 
The first, and foremost, is an irreversible medium [8] in 
which things can happen: this medium, for example, is time. 
The reason for stating the apparently obvious is that the laws 
of motion on the microscopic level do not distinguish one 
direction of time from another. Yet we know from the 
tendency of snowballs to melt that a preferred direction of 
time is singled out at the macroscopic level. Time is the 
irreversible medium of our problem’s complexity. The 
second essential ingredient is nonlinearity [S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Nonlinear 
systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo not obey the simple rules of addition. In general, 
nonlinearity of time-dependent processes produces complex 
and frequently unexpected results. Irreversibility and 
nonlinearity characterize phenomena in every field of 
science and engineering. Examples in medicine include the 
palpitations of a heart and the human brain, which in 

particular, is an extreme example of complexity achieved by 
biological evolution. Analysis of complexity affords a 
holistic perspective and with it insights into many difficult 
concepts, such as life, consciousness, and intelligence, that 
have consistently eluded science. It is our hope that the 
HHT and HHTDPS-based study and empirical spectrum 
analysis and synthesis of nonlinear and nonstationary 
phenomena are steps towards progress in this domain. 

1.1.3 The Language of Complexity 
Sizing up the degree of complexity of a given problem is the 
mission of mathematical complexity theory. Because 
complex problems lie beyond the scope of pen, paper, and 
analytical mathematics and because of their immense power, 
computers provide the only means for solving them. To 
tackle complexity with a computer involves a combination 
of subtlety and brute force. Both are characteristics of the 
HHT and “TDPS. 

1.2 Theoretical Foundations of Signal 
Spectrum Analysis and Signal Synthesis 
Like with many other cases in human endeavor we know 
some and desire to know more. For example, in 
trigonometry we are concerned with the problem of “solving 
a triangle” - finding all the sides and angles of a triangle, 
when some of these are known. In spectrum analysis we are 
concerned with a given a set of samples (measurements) of a 
complex phenomenon and are interested in deriving 
knowledge of its oscillatory behavior from these 
measurements. How much do we have to know about the 
data, and what is the minimal amount of information we 
must know to derive the spectrum? To approach this 
question we consider a few following basic issues related to 
oscillatory behavior. 

1.2.1 Signal Oscillatory Behavior 
Intuitively a signal oscillatory behavior comprises: 
- a point of outmost instability or a local maxima extrema, or 

- a zero-crossing point followed by 
- a point of outmost stability or a local minima extrema. or a 

- a repetition of the above which determines the time scale 

Is it possible to derive an oscillatory behavior’s time scale 
from a complex waveform using the input physical signal 
maxima and minima extrema points? In a linear system, all 
data measurements are used. In a complex nonlinear set of 
data measurements, more general information (extrema 
points) may be used, in addition to the whole data set, in 
order to derive the nonlinear and nonstationary features. 
Papers [I], [2], [3] propose to use the upper and lower 
extrema envelopes for this purpose in a process of 
successive median determination (sifting process) until the 
absolute value of the difference between the total number of 
extrema points and qero-crossings is less or equal to 1. This 

a waveform crest point followed by 

waveform throw or point of equilibrium 

of an oscillatory behavior. 
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process results in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoscillatory behavior’s time scale or 
Intrinsic Mode Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IMF). 

The Fourier approach of finding a large number of 
harmonics has been replaced in HHT by a multi-step sifting 
process of finding an oscillatory behavior time scale basis 
function, an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF. An IMF satisfies the oscillatory behavior 
criteria and is close to being a symmetric function. The 
symmetry will then contribute to the IMF bases 
orthogonality. It is intuitively obvious that such a process 
will separate the finest time scale from a complex waveform 
first. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of such a separation of a complex signal 
x(t) into its time scale components xl(t) (constant 1) and 
x2(t) (a sine function) is as follows: 

x 1 (t)= 1 
x2(t) = sin(t) 
x(t)=xl(t) + x2(t) = 1 + sin(t), 
where 0 <= t <= 10 and time increment step is 0.1. 

The first sift of the signal s(t), where s(t)=x(t) yields median 
constant (2-0)/2=1. Subtracting this median from signal s(t) 
yields the pure sinusoid that is the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMFl with period 
T=l and fundamental frequency fel/T=l.  Subtracting this 
IMFl from physical signal x(t) yields the constant residue 
xl(t)=l with period T=O; Whilst the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfull separation of time 
scales was achieved - from finest scale of sin(t) to the 
widest time scale of residue xl(t)=l. It can be remarked that 
an IMF is an eigenfunctions of the sifling process - if we 
input to sifting an Ih4F the result is just the input IMF with 
scaling factor 1. 

Figure 1. Separation of Oscillatory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScales by Sifting, 
cyan signal is xl(t)=l, blue signal is x2 = sin(t), green 
signal is x(t) = sin(t) + 1 

1.3 Frequency Spectrum 
Frequency spectrum determination and interpretation are 
performed in a few heritage ways such as Fourier, Wavelets 
and Hilbert. We will consider in this paper the Fourier and 
Hilbert spectrum analysis and physical signal synthesis, and 

straightforward in frequency domain and Fourier spectrum 
analysis provides an efficient transform from time to 
frequency domain, as well as the methodology for time 
signal synthesis from the frequency domain back to the time 
domain. 

The Fourier spectrum analysis became a practical 
engineering tool with the advent of its computer-based 
implementation as a Discrete (also called Digital) Fourier 
Transform (DFT). The Fourier spectrum analysis allows one 
to describe a time domain wafeform in both frequency- 
amplitude and frequency-phase domain in very clear terms. 
Because of this we give a short overview of the Fourier 
spectrum analysis. 

Before asking the questions of what the Fourier Transform 
or Hilbert Transform are, it might be well to ask how they 
came about. Why were these mathematical tools developed? 

1.3.2 On Waveforms and Fourier Spectrum 
A waveform is a general function of time x(t) that seemingly 
oscillates between some local maxima and minima extrema 
points or from a point of extreme instability (maxima) to a 
point of an equilibrium (minima) with a zero-crossing in- 
between in time. A waveform, if it can be described as a 
function, may be a periodic or a non-periodic function. A 
periodic waveform, in turn, may be a basic sinusoid function 
such as described by a trigonometric sine function x(t) = 
sin(t) or a cosine function x(t) = cos(t), or have a more 
complex form, but such that it still has a period T, the 
smallest time interval for which x(t)=x(t+T) for any t. The 
period definition and other waveform oscillation 
characteristic parameters are elaborated below. 

1.4 Oscillation Characteristic Parameters 
We will describe the waveform oscillation characteristic 
parameters on the example of a plane waveform being a 
basic sinusoid and described by a counterclockwise circular 
motion x(t) (pure oscillation or “tone”) with angular 
argument a t  and beginning at angle C (phase shift). 

Figure 2. Circular Motion Parameters 

Once the sinusoidal (circular) motion has been completely 
described with respect to time as time function x(t), where 

their relationship. 

1.3.1 Fourier Spectrum Analysis 
Spectrum analysis of a waveform function is difficult to 

perform in the domain. H ~ ~ ~ ~ ~ ~ ,  spectrum analysis is 

x(t) = a*sin(a*t + C) 

a new description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf the Signal With respect to frequency 
and phase shift can be obtained. This can be done in a 
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three-dimensional coordinate system with amplitude, time 
and frequency axes. This coordinate system comprises the 
amplitude-time plane (Oat) and the amplitude-frequency 
plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Oaf). The sinusoid is passing through point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe l m  on 
the frequency axis in a plane parallel to the amplitude-time 
plane. The projection of the sinusoid on the amplitude-time 
plane gives the time history of the sinusoid and its projection 
on the frequency plane takes the form of an impulse, a pulse 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinstantaneous rise and fall, with amplitude equal to the 
sinusoid’s time plane amplitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. Some additional 
information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the phase shift C is needed, however, to fix 
the sinusoid’s position relative to the coordinate system zero 
time reference 0 [ l l ] ,  [12]. 
For a basic sinusoidal waveform the constant term of the 
phase offset, called phase shift C, provides the additional 
information needed to fix the waveform position in time in 
relation to coordinate frame origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The phase shift C for 
a sinusoid that was obtained from measurements rather than 
from a formula, where it may be given explicitly, can be 
determined by looking at the positive peak closest to time 
point of reference 0, the zero time origin. Peak at zero is 
conventionally taken as phase shift 0. When peak occurs 
after zero the sinusoid is delayed and having negative 
phase, because it was expected before time 0. When peak 
occurs before zero the sinusoid would have been advanced 
and its phase is positive, because peak is expected at time 0 
but occurs earlier. This range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-180, +I801 is called 
modulo 2*pi phase representation as opposed to a 
continuous phase representation if a reference can be 
attached to the sinusoid. 

For any electromagnetic wave the fourth (polarization) 
parameter that describes its electric field vector is needed to 
fully characterize the wave in 3-dimensional space. 

The signal period T, frequency G its amplitude a, phase 
shift C are the sinusoid oscillation characteristic 
parameters for a plain waveform of one independent 
variable t. The basic sinusoid parameters fo, a, C in the 
frequency and phase domain can be then used to synthesize 
the waveform back into the time domain. 

1.4.1 Angular Phase and Frequency Relationship 
The basic waveform function’s timedependent variable 

argument (at + C) is also called angular phase. It 

comprises two parts. The time-variable part at provides all 
information needed to determine the fundamental frequency 
fo. Namely, 

w = 2*pi* fo. 

It is obvious that if we denote the angular phase as 

then the phase derivative is the angular frequency o 

In other words, in the simplest case the oscillation angular 

frequency w can be determined as the derivate of angular 
phase, or phase change rate of a basic sinusoid waveform. 
The phase shift can then be expressed as 

This derivation of the oscillation characteristic parameters 
from phase is strongly intuitive for a sinusoid because the 
phase is the total advancement of the waveform in time and 
a higher phase rate speeds up its amplitude zero-crossing 
points and giving a direct correlation between phase and 
frequency. 

It is reasonable from this insight of frequency as phase 
derivative for the basic waveform to attempt this frequency 
determination approach to waveforms with more complex 
forms of theoretical phase or phase data obtained from 
measurements. For example, when phase shift is not a 
constant, but itself is some function of time, even the above 
sine function becomes a complex waveform with a very 
general phase function of time e(t). Indeed, even for this 

general case, if e(t) is a phase description, then consider the 
phase change rate at two successive time points tl, t2: 

This average angular phase rate in time interval At = [tl, t21, 

when At approaches 0 becomes e’(t) or instantaneous 
frequency [4]-[5]. This representation of angular phase was 
given in the polar coordinate system. In a rectangular 
coordinate system (Oxy) a function X(t) may be represented 
as a function of a complex variable: 

X(t) = x(t) + j*y(t) 

The amplitude and phase can correspondently be expressed 

a = sqrt(x2(t )+ y2(t)) and Q(t) = arctang(y(t)/x(t)). 

as 

Nonsinusoidal waveforms, for example, even one generated 
by a circular motion with a more complex structure than a 
basic sinusoid for the angle phase, require a new look on 
angular phase and its susceptibility to yield information on 
motion frequency. 

The cardinal problem is how to recover the phase of a 
complex waveform. The controversy is caused by different 
methods of phase recovery, and did not escape from the 
phase recovery provided by the Hilbert Transform. Phase 
recovery from function values is an inversion problem, and 
like many inversion problems, is extremely difficult to solve 
The HHT theory alleviates this controversy and yields 
powerful spectrum results for complex waveforms [ 11-[3]. 
Although it does not assume data linearity or stationarity, it 
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does use fundamental knowledge that the measurements data 
originated from an oscillatory phenomenon, that its spectrum 
exists, and that the zero-crossings are more fundamental to 
spectrum determination than amplitude, allowing data 
normalization to reduce the Bedrosian [6] and Nuttall [7] 
affects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.5 Heritage Fourier Spectrum Analysis Tools 
Nonsinusoidal periodic waveforms can be composed out of 
simple sinusoids and described by its component sinusoids 
of frequencies fo, 2f0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA... ,kfo, ... in the amplitude, time and 
frequency space, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas was a single sinusoid. Thus a 
nonsinusoidal periodic waveform has a spectrum, although it 
is not obvious what this spectrum may be, without looking at 
its frequency domain. To derive the spectrum of a complex 
waveform requires spectrum analysis tools. 

The two traditional tools of Fourier Spectrum analyses are 

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHardware spectrum analyzer 
2)  Fourier spectrum analysis - a mathematical 
technique that allows describing a time domain 
waveform in terms of both frequency-domain 
amplitude and phase. 

The hardware spectrum analyzer is based on the Fourier 
spectrum analysis performed in hardware. It has a very fine 
tuned oscillator and precise time interval generator - Giga 
Hertz frequencies and pico-seconds time interval resolution. 
The better the frequency analyzer the more expensive it is, 
the with costs as high as a hundred thousands of dollars. By 
fine sampling of a high oscillatory signal and coarse 
resolution it obtains a few thousands of data samples in a 
fraction of a seconds and performs a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF” to yield spectrum 
with that resolution. 

1.5.1 Fourier Spectrum Analysis 
Fourier spectrum analysis (Fourier Analysis) offers the 
option of spectrum results in rectangular form, which 
consists of real and imaginary part of the complex frequency 
domain. This complex frequency domain is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa rectangular 
coordinate system comprised of the Real and Imaginary axes 
and was briefly described above. 

The Fourier spectrum analysis is comprised of 

Fourier Series and the 
Fourier Integral. 

Unfortunately this classic mathematical apparatus is 
frustrating for all but the simplest waveforms. However, if a 
waveform can be sampled and digitized with a waveform 
digitizer, the Discrete Fourier Transform (and its 
computationally effective implementation - the FIT) can be 
used to perform the Fourier spectrum analysis for the 
digitized waveform. Since its general introduction in 1965, 
the FFT has been the commonly used algorithm for 

evaluating the DFT. The FFT algorithm can be implemented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in software, firmware or hardware. The heritage and the 

Hilbert Transform (used in HHT) discrete methods are 
based on the Fourier spectrum analysis as we briefly 
describe below. 

1.5.2 Frequency Domain Definition by Fourier Series 
The general form of the Fourier Series for a function x(t) 
with period T is 

x(t) = + (alcos%t+blsinoot) + (a2cos2q,t+b2sin2%t) + . . . 

where 
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

ao= l/T ] x(t)dt 

T 

0 
a,, = UT x(t)cos(noot)dt 

T 

0 
b, = UT x(t)sin(noot)dt, where 

00 = 2*pi *fo, where f F l / T  

and where fo is the fundamental frequency. The Fourier 
Series yields a discrete spectra. For example a Fourier series 
can easily represent a square wave with period T. Textbooks 
contain the Fourier series terms for many useful waveforms. 
Sometimes a seemingly periodic waveform can be 
approximated with waveforms for which the series is known. 
As long as a periodic waveform can be mathematically 
described as a function of time x(t), that meets Dirichlet 
conditions, its Fourier series can be written. However, this 
may not always be easy in practice, say with pulse functions 
that have discontinuities. If we approximate such practical 
function with a continuous “ideal” to the actual function and 
find the Fourier series for the “ideal”, it may yield good 
estimates for the practical frequency spectrum. 

1.5.3 Fourier Transform 
The Fourier series is a useful tool for investigating the 
spectrum of periodic waveforms, but the world is not made 
up exclusively of periodic waveforms. More complex 
waveforms do have a spectrum as we can hear the lightning 
bolt’s electromagnetic spectrum on a common radio 
receiver. For nonperiodic functions the Fourier Integral is 
used for treating a nonperiodic function as a function with 
period T approaching infinity. The Fourier Integral can be 
derived from the Fourier series and yields a continuous 
spectrum caused by infnite T. The integral is only 
applicable for nonperiodic waveforms. Phase seems to 
approach a continuous function of frequency too. The 
Fourier Integral is also called the Fourier Transform (F), 
as opposed to the Fourier Series that is only applicable for 
periodicfunctions. Because the integral is taken from minus 

to plus infinity (-=, +=) “negative frequencies” appear for 
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non-periodic waveforms spectrum derived from the Fourier 
Integral that have a non-complicated interpretation in the 
OATF plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Fourier Series (similar to Fourier 
Transform) can also be expressed in exponential form, 
which will yield a negative frequency domain. 

The Fourier Transform yield the frequency spectrum in 
rectangular form or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a vector of complex variable values f: 

or complex-valued function in rectangular form. Results can 
also be obtained in polar form (phasor form). The amplitude 
and phase of the frequency components can be derived from 
X(f) as described below.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.5.4 Signal Synthesis from Fourier Spectrum 
The original signal's time component #k can be synthesized 
from the Fourier spectrum amplitude and phase for each 
frequency f. 
Fourier spectrum frequency component amplitude A m  
IA(f)l=sqrt(Re2X(f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ Im2X(f)) 

Fourier spectrumfrequency component phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e(f) = tan-'(ImX(f)/ReX(f) ). 

1.5.5 Digital Fourier Transform 
The Digital Fourier Transform (DFT) is viewed as a discrete 
approximation of the Fourier integral. For a data vector 
comprising N data values the computational complexity of a 
DFT is o(N~>. ~n algorithm that implements the DFT 
definition and for which the computational complexity is 
C*logZN*N is called a Fast Fourier Transform or FFT. The 
DFT and FFT operate onfinite sequences (N) - sets of data 
with each point discretely and evenly spaced in time and 
obtained from analog signals by windowing and sampling at 
a selected sampling rate. 

Given a phenomenon, if you can acquire and sample it, you 
can apply the FIT to it. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT assumes periodicity in all 
cases. It also assumes that the windowed data repeats with 
the period equal to the window length in time and beyond 
both sides of the physical window. The FFT gives exact 
results for the digital data set. However, the continuous 
phenomena function was windowed and sampled and these 
operations that are used to digitize the continuous analog 
function, introduce issues that require careful interpretation 
of the FlT result if we are to apply the result to 
understanding the spectrum of the original continuous 
function. For example, the window length and shape may 
affect the so-called leakage of power to adjacent 
frequencies. Because of these problematic issues some 
techniques are used for improving the FFT results, such as: 

Filtering, Smoothing, Plotting axis' range selection, Signal 
averaging to remove additive noise, Removing the mean that 
often improves amplitude resolution, Use sample rates 

greater than twice the highest frequency in the signal, Phase 
is only valid for existing components, Remove delay to 
reduce phase, Change windows to change leakage, Change 
sample rates for different resolutions, Aliasing may not be 
unavoidable and there is a need, if it occurred, to 
rationalized what components are aliases. 

Similarly, improving actions will be required for the 
spectrum results from a Hilbert Transform. 

Examples of Discrete Fourier Transform Application 
and Interpretation of the spectrum results 

Some signals are recognized by senses - touch, sound, sight 
or smell. About some signals we may say that they are time 
histories of a phenomenon. The classification of signals may 
be comprised of periodic and non-periodic deterministic 
signals, random signals whose value at a future time cannot 
be predicted with certainty (noise) and transient signals. The 
periodic and random signals are infinite in length by 
definition. Transient signals, signals that have finite 
duration, because of their finite length are deterministic. 

Periodic Signal Definition 
For a periodic signal there exist the smallest time window of 
length T, such that placing a cut-out with a window T 
seconds long (say, 1/8 seconds) over the signal, sliding this 
window in either direction by an integer multiple of T gives 
the identical picture of the signal. 

For example, 

Figure 3. Periodic sin(t) signal, T=2*pi for 
O<=t<=2*pi*3, increment step is 0.01 

Any-Period-T Definition 
The original picture P, in the window was originally placed 
over the signal, say the left edge, coincides with time value t. 
However, once the window is placed at time t, sliding it on 
either end of this window will yield the same picture as in 
the original window P, for a periodic signal with period T. 
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For example, two windows of the same length T placed at 
different origins (t=O and ta .05)  depict different curves, but 
each will repeat itself when shifted to left or right by T. The 
following Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 demonstrate this example. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. Window for O.O<=t<=2*pi 

Figure 5. Window O.O+O.O5<=t<=2*pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 0.05 

Dirichlet Criteria Definition for a Periodic Signal 
A periodic signal satisfies the Dirichlet criteria if the 
criteria’s following three conditions are satisfied in “Any 
Period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT” or any period, namely: 

The number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscontinuities isfinire in any period 
The number of extrema points is finite in any period 
The integral of the signal absolute value 

isfinite in any period or over [t, t+T] for any t in 

-Qc < t < +4 

Signal Average Value 
For a periodic signal the average value of the signal equals 
the area bounded by one cycle of the signal function divided 
by T. For a random signal the period T is infinite. However, 
the average value can be obtained by integrating the signal 

over [-T, TI, dividing it by T and making T approach 
infinity. This yields the mean value of the random signal. 
For a transient signal, “average value” is not meaningful 
because if we follow the random signal definition of 
average, the area under a transient signal is finite and 
because T moves to infinity the average becomes 0 and that 
is not meaningful. This is why transient signals or 
intermittency artifacts must be taking out in the beginning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
an EMD sifting process. 

Signal Energy and Power 
The characteristics of signal and power are far more useful 
than the average value for signal characterization. 

Signal Energy 
Energy is the work potential or the amount of work done and 
has units of joules in the “Systeme International” (SI) system 
of measurement units comprised of {meter, kilogram, 
second, ampere}. The signal energy for an arbitrary signal 
x(t) in time T is defined as the integral of x2(t)dt over T, 
with no scaling factors. It is evident that the energy of a non- 
transient signal over the entire timeline is infinite and 
converges for a transient signal to a finite value. The 
HHTDPS Hilbert Spectrum is using IMFs energy for 
spectrum demonstration in different colors. The square root 
of energy may also be used for better spectrum visualization. 

Signal Power 
The rate of doing work is the signal power. Energy 
utilization may not be constant and vary from instant to 
instant. Instantaneous power is the true rate of change of 
energy in a system. In most cases, however, power refers to 
average power or signal energy over time T divided by time 
T. This is also called the mean squared value of the signal 
and the square root of it is called root mean squared value. 
Signal power may also be useful in the “TDPS Hilbert 
Spectrum interpretation. 

Harmonic Series 
The fundamental frequency fo of a sinusoid with period T is 
1A‘. A harmonic series is a set of sinusoids whose 
frequencies are harmonically related, meaning that 
frequency f of each sinusoid is an integer multiple of the 
fundamental frequency 6. Fourier developed the theory for 
obtaining the harmonic series that provides the best fit to a 
given periodic function. Finding the amplitude values of the 
harmonic components f giving the closest approximation to 
the original signal is termed Fourier analysis. 

Waveform Synthesis and Gibb’s Phenomenon 
It is advisable to verify a spectrum analysis by synthesizing 
the original waveform from its constituent spectral 
components. For example, when the Fourier harmonic series 
is derived for a square wave, the exact square wave is not 
regained (synthesized) for two reasons. First, the total 
number of frequency components is not added in. Even 
adding 20 components shows that the deviation from the 
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square wave is obvious. This is due to the second reason, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gibb's Phenomenon for signals with instantaneous 
transitions (discontinuities), such as in the square signal 
pulse edges or at boundary points for any signal in discrete 
analysis. The Gibb's phenomenon is always equal to 8.95% 
overshoot of the discontinuity amplitude. Adding more 
terms will take out more ringing at the end but the Gibb's 
phenomenon still occurs. There are methods of reducing the 
Gibb's phenomenon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas much as by a factor of 7 [16]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Harmonic Series Generation and Waveform Synthesis 
Details 
In a harmonic series generation and waveform synthesis 
application first we specify a period window by three 
relevant parameters: 

Window point of origin 0 
Window length D 
Sampling resolution Vt 

We specify a window origin at 0 on the function argument 

timeline, window length D and sampling interval Vt in 
seconds: 

The number N of data points generated is determined from 
the window size D and sampling interval as 

IO, Vt, DJ 

N=(D/Vt) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 

Example 1. 
A sinusoid in harmonic notation is used in this example. The 
fundamental frequency of this waveform function is f ~ 2 5  
and the number of cycles per second 25 Hz. The chosen in 
this example window spans from 0.0 to 0.31 seconds. As 
seen from the graph below the function curve has 8 maxima 
points. A one second long window would yield 100 data 
points and correspondently 100*8/32 or 25 maxima points 
that, in turn, corresponds to 25 Hz fundamental frequency fo, 

Figure 6. Window Parameters (0, Vt, D}, 
x(t)=cos(Z*pi*Z5*t) where O<=t<=.31 

Applying an FFT to the signal provides the correct 
frequency domain information for the properly windowed 
and sampled version of the waveform. The Frequency 

resolution interval Vf for a sampling window containing N 

points at sampling interval Vt is defined as 

Vf = l/NVt 

This means that each count in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT output frequency 

vector corresponds to Vf. 

In our example N = (0.31/0.01 + 1) = 32 and Vt = 0.1 or 

Vf = 1/32*0.01 = U0.32 = 3.125 Hz per count. 

The Nyquist frequency is the highest frequency sinusoid that 
can be defined at a given sampling rate. For equally spaced 

samples Vt the Nyquist frequency is 1/2Vt. In our example 
the Nyquist frequency is 1/2*0.01=50 Hz. 

The FlT standard output arrangement ( D E )  is as follows: 

{(The dc component count zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGO) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 1, +C22 . . . C N ~ N / ~  
Nyquist frequency . . . -Ci N-i . . . -GIN) 

To be able to synthesize a sinusoid of frequency F we need 
to sample it at a rate of 100 Hz (0.01 sec) and frequency 
resolution Vf a window wide enough to fit N data samples - 
such that N/2 * Vf => F, namely that N=> 2FNf. For our 
example N=>2*50/3.125=32. 

For example, if F=1.5 GHz we would need to sample it 
within a spectrum analyzer at a sampling rate of 2F or more 

or equal to 3 GHz. At frequency resolution Vf we would 
need N=3G/Vf sampling points. The FFT is fast to process 
2" or 1024 data points. This means that we must select N = 
1024 or deal with resolution 3 x lO9/2'' = 228-'0 = 218 
or frequency resolution in units of megahertz. As HHTDPS 
data size limitations are concerned the are similar to that of 

an FFT. For an FFT the preferable data size is <= 4096 data 
points. High frequency signals require short windows (a few 
milliseconds) and low frequency resolution, similar to the 
principles of a hardware spectrum analyzer. 

In the output vector of complex numbers the real part is 
arranged as depicted in the following vector. The significant 
amplitude frequency components occur on counts 8 from the 
top and count 8 from the bottom. A components' frequency 
for a corresponding count k can be derived from this count k 
and Vf as 

fk = k*Vf 

The frequency domain vector count 8 corresponds to 
frequency fg or 

f8= 8*3.125 HZ= 25 HZ 

>>z = real(f) 
Z =  
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0.0000 DC Component is zero for this function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.oooO count 1 of Positive frequencies down to 
0.oooO count 2 the middle point Nyquist count zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.oooO 
16.oooO count 8 from top yielding in Hz the fundamental 

frequency fo = 8 counts * 3.125=+25 Hz. 
The amplitude of the 25 Hz component is 
16/32 = 0.5 (N=32 is the normalization factor), 
where 0.5 is half of the signal sinusoid's 
amplitude of 1 .O. 
The negative frequency has the second half of 
the amplitude 0.5 with its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnegative sign implied. 

. . . . . . . . . 

. . . . . . . . . . 
-0.oooO Last count N/2-1 of positive frequencies 
-0.oooO Nyquist frequency 
-0.oooO Last count of Negative frequencies 

16.oooO count 8 from the bottom 

-0.oooO count 2 
0.0000 Count 1 of Negative frequencies and going up! 

. . . . . . . . . 

. . . . . . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Synthesizing the Waveform Using Fourier Spectrum 
Components 
The Fourier frequency domain vector amplitudes A at 
counts 8 (from top and from vector bottom) are 16. The 
renormalized amplitude is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA/N or equal to 16/32=0.5. 
Whilst, we have two ftequency components and 
x(t)=0.5 cos(2*pi*25*t) + 0.5 cos(2*pi*-25*t) = 
cos(2*pi*25*t). This is because cos(t) is an even function 
and cos(t)=cos(-t) for any t. 
This synthesis of the frequency components yields exactly 
the original signal function x(t)= cos(2*pi*25*t), as is 
guarantied by the Fourier Digital Transform definition. 

Example 2. 
Let us derive the Fourier spectrum for a constant function, 
x(t)=C=l for Oc=tc=.3 1 in increments of .01. 

f=fft(x) 

f= 
32 %dc component with amplitude 32/N=32/32=1.0=C. 
0 
0 

0 
... 

The signal synthesis yields x(t) = aO=l=C, as expected. 

Signal Synthesis 
x(t) = a0 + cos(2*pi*t) = 
dc/N + cos(2*pi*t) = 32/32+ cos(2*pi*t) or 
the exact input signal 1+ cos(2*pi*t). 

Another two illustrative examples would be a square pulse 
and a constant time signal analysis and synthesis. 

1.6 Hilbert Transform Spectrum 
The Hilbert Transform is known for a long time. However, it 
is not easily interpretable when used for spectrum analysis. 
To arrive at a meaningful Hilbert Transform spectrum 
interpretation we will first examine the more familiar 
Fourier spectrum analysis interpretation. 

1.6.1 Hilbert Transform Interpretation 
In 1930 Denis Gabor defined a generalization of the Euler's 
formula in the form of a complex analytic signal, namely: 

"(t) = u(t) + jr(t), where 

fit) = H[(u(t))] = -1h u(t)/ (q-t) dq, tEQ 

Y(t) is unique and it is an analytic signal by definition. 
The Hilbert Transform is just another integral transform 

with kernel equal to l/(n (t-q)). It is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Cauchy Principal (P) 
integral and is denoted by symbolic notation letter P in front 
of the integral 

-l/n Pjn u(t)/ (q-t) dq 

The Cauchy Principal integral is an integration technique 
that was proposed by Cauchy and solves the singularity 
problem at point t=q, Point q is surrounded by a small 

interval [q-&,q+~] .The integral is taken from the left to q-E 
and from the right to q-E. In the vicinity of point q the 

integral is taken along a positive semi-circle of radius E 

around point q. The integration is completed by allowing E 
to approach 0. 

Gabor used the analytic signal to introduce the Hilbert 
Transform (H) to signal processing for one-dimensional 
waveform u(t). When the Hilbert transform is applied to a 

general waveform function u(t), we obtain another function 
of time Nt). 

The complex variable conjugate pair of functions (u(t), 

lit)} then comprises the above analytical signal Y(t) that can 
then also be expressed as 

Y(t) = a(t)Gect), in which 

B(t)=arctan(($t)/ u(t)). 

This analytic signal form is similar to the Fourier frequency 
component expression in terms of amplitude and phase, 
which were used in above examples for component 
synthesis. In the Hilbert Transform the amplitude and phase 
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are time variables while in Fourier analysis they are fixed for 
each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf: 

Can the Hilbert Transform $t) yield information about the 

frequency spectrum of v(t)? 

W(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= de(t)/dt = 0'(t) It can be shown [13] that 

There is considerable controversy in using the Hilbert 
Transform for spectrum analysis [5], [6], [7]. For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[5] lists five paradoxes associated with the Hilbert 
Transform spectrum analysis. 
To avoid these paradoxes, the concept of a Intrinsic Mode 
Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(IMF) was developed. IMFs are signals with well- 
defined instantaneous frequency. Symmetrical by nature, 
with riding waves eliminated, these data sets can by 
processed by the Hilbert transform to obtain meaningful 
results. For a signal to be considered an IMF, it must fulfill 
the following conditions: "(1) in the whole dataset, the 
number of extrema and the number of zeros crossings must 
either equal or differ at most by one; and (2) at any points, 
the mean value of the envelope defined by the local maxima 
and the envelope defined by the local minima is zero" [l]. 
To obtain IMFs from a typical dataset, the EMD method 
was developed by Huang and others to filter and break down 
the data. When the Hilbert Transform is applied to a 
normalized IMF symmetric function, it yields powerful 
spectrum results and meaningful interpretation of physical 
oscillatory phenomena. Following is a brief description of 

H[cos(ot)] = +sin(ot) 
H[sin(ot)] = -cos(ot) 

From the first of the above two transforms and by the 
definition of the analytic signal the function 

expuot) =cos(ot) + jsin(ot) 

is an analytic signal. This allows us to derive the Hilbert 

spectrum for the function cos(cot) in the following example. 

1.6.2.1 Hilbert Spectrum for a simple sinusoid 
Let v(t)= cos(wt). Then 

$t) = H[cos(ot)] = +sin(ot). 

Y(t) = u(t) + i$t) = cos(ot) + jsin(ot) 

0(t) = arctang(sin(ot)/ cos(ot))=arctang(tang(ot)) = a t  

the Hilbert Transform and its application IMF spectrum 

expansion. 

or the same Hilbert frequency spectrum as the heritage 

This example's graphical results are depicted in the 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF represents a generalized Fourier Fourier Series for a sinusoid waveform, as was expected. 

following section 9.0. 

1.6.2.2 Hilbert Spectrum for a Complex Waveform 
Along these lines, under what conditions could 

1.6.2 Hilbert Spectrum Definition and Interpretation 
In 1743 Leonard Euler introduced the identity 

expuz) = cos(z) + jsin(z) 

d( arctang($t))/u(t)))/dt 
This identity was used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 years later by Fourier in the 
Fourier Transform. 150 years later Charles P. Steinmetz 
would use this identity to describe the complex notation of 
basic harmonic waveforms to electrical engineering 

be interpreted as instantaneous frequency for a 
complex than basic sinusoid 
considered in detail in [ 11. Furthermore [ 13, pp. 928 the 

definition of an interpretable Hilbert spectrum is derived as 
follows. 

This question is 

exp(jot) =cos(ot) + jsin(ot) (0=27tf), 

These are the bases for the Fourier Transform. Gabor's 
generalization of the Euler formula and analytic signal 

Having obtained the intrinsic mode functions (components), 
we apply the Hilbert transform to each IMF, and compute 
for each IMF the instantaneous frequency function as the 
derivative of the Hilbert transform phase function 0(t). Then 
we synthesize the IMF component k from its Hilbert 
Transform amplitude and phase functions as 

Y(t) = u(t) + i$t) 

are the bases for the Hilbert Transform. 

While the Fourier Transform of u(t) yields the spectrum of ak(t)ejek"' 
u(t) if the signal is linear and stationary and satisfies the 
Dirichlet conditions, the Hilbert Transform is applicable to a 
wider class of phenomena, such as non-linear and non- 
stationary functions. However, the Hilbert Transformation 
of a function of time v(t) is another function of time of 
different shape $t). 

Since W(t) = 
we can the above expression as 

ak(t)ej'%@'dt 

The input signal X(t) can then be synthesized as 
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for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk=l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., n. 
This equation as stated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l ] pp. 928 enables to represent 
the amplitude and the instantaneous frequency as functions 
of time in a 3-D plot, in which the amplitude can be 
contoured over the frequency-time plane as the z-axis 
surface or by using a color scale in the 2-D frequency-time 
plane to represent amplitude. This plot of a superposition of 

all colored w(t) in the instantaneous frequency-time plane 

(0, a ,  t} is called the Hilbert spectrum H(o,t). 

1.6.3 Marginal Spectrum Definition and Interpretation 
Based on Hilbert spectrum H(w,t) we define marginal 
spectrum as 

h(a) = jH(a,t)dt 

The marginal spectrum [l] offers a measure of total 
amplitude (or energy) contribution from each frequency 
value over the entire data span time interval [0, Td] .  

Example 3. 
Hilbert Spectrum and Hilbert Marginal Spectrum 
The length of day measurements file Lodt78.dat [l] was 
processed by the Empirical Mode Decomposition module 
producing the file of 11 Intrinsic Mode Functions stored in  
file Lodt-p.dat. The resulting IMFs were then processed by 
the HHTDPS' Hilbert Transform module with Hilbert 
Spectrum and Hilbert Marginal Spectrum options. The 
corresponding results are demonstrated below in Figure 7 
and Figure 8. 

The Hilbert Spectrum and the Hilbert Marginal Spectrum 
are described in more detail in Section 9.2. 

Figure 7. Lodt78-p.dat Hilbert Spectrum for parameters 
{nyy=200, tO=1, t1=2688} 

1.6.4 Hilbert-Huang Transform Synthesis 
The waveform synthesis in the HHT is a direct summation 
of physical signal's IMFs generated by EMD. Presently 
there is no other way to synthesize the physical signal 
waveform from its Hilbert Spectrum. 

1.7 Empirical Mode Decomposition Algorithm 
The Empirical Mode Decompositioning method is, in 
simplest terms, a filter that sifts through data and breaks it 
down into simpler components, the IMFs. IMFs retain the 
features of their parent data set and can uncover oscillatory 
trends that are not easily visible in the original. This break 
down is not haphazard; summation of the IMFs will return 
the parent dataset. This allows the IMFs themselves to be 
used for data analysis and manipulation without use of the 
Hilbert Transform. 

The EMD process is relatively straightforward. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA set of x(t) 
values, the original dataset, is inputted for evaluation. From 
here begins the sift process. The data is then examined for 
local maximum and minimum extrema; those values are set 
aside. Using the extrema as knots, an upper envelope, with 
the maximum values, and a lower envelope, with the 
minimum values, is created via cubic spline interpolation. 
These envelopes are then linearly averaged together to 
create a mean envelope. This mean envelope represents the 
general trend of the data. This envelope is then subtracted 
from the parent data to create an IMF candidate. The IMF 
candidate signal is then tested if it passes the definition of an 
IMF, i.e., the number of extrema differs from the number of 
zero crossings by no more than one. If the IMF candidate set 
meets the criteria, a counter is incremented; otherwise the 
counter is set to zero. A check is then done-on the counter - 
if it meets a user-defined value the IMF candidate is 
returned as an IMF. If not, the sifting process is executed 
again on the candidate, regardless if it passes the criteria or 
not. 

Data returned as an IMF is stored and then subtracted from 
the parent data. The difference is used as a parent dataset for 
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a new sifting process. This is repeated until a dataset 
contains only two extrema. This data set is considered the 
“residual” and is returned with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMFs. 

2.0 HHTDPS PROPOSAL OVERVIEW 
The proposal was to develop a generic, low cost, high 
performance PC based computer system that implements the 
HHT computational algorithms in a user friendly, file driven 
environment. This Huang-Hilbert Transform Data 
Processing System (”TDPS) will then be tested using data 
provided by a number of appropriate application teams, and 
the data analysts from the respective provider organizations 
will evaluate the results. 

The implementation will port and optimize Dr. Huang’s 
existing preliminary C-language and Matlab code to the PC 
system, and baseline its functional performance. We will 
then run a series of simulations and benchmarks to measure 
system speed and identify processing bottlenecks. This 
information will be used to target specific functions for 
hardware acceleration. Computationally intensive routines 
will be implemented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas Field Programmable Gate Array 
(FPGA) and Digital Signal Processing (DSP) hardware 
functions, and integrated into the baseline system to produce 
the final high performance system. Finally, we will test the 

new system on a few commercially viable applications and 
deliver a complete HHT tool and its documentation. 

The proposed PC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ FPGA / DSP hybrid system leverages 
state-of-the-art commercial data processing hardware, and 
the significant experience of the Code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA565 engineering team 
with this technology. This project also benefits from a 
significant cost savings through the sharing of advanced 
design tools that already exist within the Code 565 
infrastructure. 

The proposed system has numerous potential NASA and 
commercial applications. The HHTDPS could be used to 
support the development and analysis of adaptive optics, 
finite element models, stray light models, orbit and attitude 
models, thermal models, and image and science data 
processing for space and earth science missions. There are 
also prospective space flight applications of HHT such as 
satellite sensor performance degradation analysis and 
compensation, as well as large structures deformation 
analyses as those of the Space Station and compound mirror 
observatories. Commercially, the medical industry could 
benefit from electronic data analysis of cardio-vascular and 
neurological systems functions. Critical security systems 
and forensic investigative tools using advanced bio-pattern 
analyses (voice and eye “fingerprints”, sound and video 
decomposition) applications would benefit law enforcement. 
Seismology data analyses would have many applications, 

including oil and mineral exploration, natural disasters 
(earthquake) data analyses for developing better models by 
NASA, National Geodetic Survey (NGS) and Federal 
Emergency Management Agency (FEMA), spacecraft 

components environmental vibration testing data analyses 
(aerospace industry and NASA) and industrial tool wear 
detection (commercial manufacturing). In addition to these 
current high volume commercial applications, this new 
technology could enable new applications such as the 
development of nano-tubes for use in medical and 
commercial fluid mechanics applications. 

2.1 Goal and Objectives 
The goal of the proposal was to develop a novel engineering 
tool for spectrum analysis of nonlinear and nonstationary 
data. In addition, it must have a user friendly, operational 
quality “T data processing system that supports a wide 
range of applications, and ready for commercialization. The 
objectives are as follows: Port and optimize existing HHT 
software to a PC platform. Simulate and benchmark the 
HHT algorithms and identify bottlenecks. Implement the 
bottlenecks in Reconfigurable Computing (RC) hardware 
and deliver a low cost, high performance HHT 
implementation. 

In the development process it was expected to demonstrate: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) That the published results [l], [2], [3] can be- reproduced 
by a computer code 
2) That the code works and yielding similar results as given 
in [ 11 on the same input 
3) Determine the HHT method capabilities and limitations 
by testing against different data sources at different data 
rates, volumes and magnitudes. 

3.0 HHTDPS Implementation Cardinal Points 
There were a few cardinal points that affected the HHTDPS 
Phase 1 development. These points stem from the intention 
to use HHT on-board a spacecraft whilst the necessity of 
having all HHTDPS components very compact and 
computationally fast, and considerations typical to the 
development of a project on schedule and within a tight 
budget. These points are described below. 

3.1 Implementation in C-Language 
The heritage Matlab functions are used for spectrum 
analysis. However, Matlab is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlurge general purpose system 
and because it is an interpreted language it will always be 
slower than compiled code. It would be difficult to fly a 
Matlab program it in a “flight box” configuration since it 
would require the overhead and additional complexity of 
having to run Matlab to interpret the code. Therefore there is 
a need to convert basic spectrum analysis Matlab scripts to 
C-Language a cost of losing the mathematically inclined 
Matlab programming environment. This conversion to 
compiled code will also permit the integration of the 
spectrum analysis functionality into the HHTDPS, as well as 
remove the dependence for users of the system to have 
Matlab. 
In addition, EMD’s code must be constructed from publicly 
available patents’ descriptions and published papers and 
developed in plain C rather than C++. This makes it more 
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susceptible to future implementation in hardware, since 
many systems currently do not fully support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC++. 

3.2 Algorithmic Definitions 
In addition to language definition, it was necessary to 
provide precise definitions of many of the elements required 
to create the EMD. Although it is easy at a top level to use 
terms such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas “extrema”, “envelope”, and “intermittency” 
and make perfect sense, a different level of detail is required 
to implement these items in a programming language. 
Particularly in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, which contains little beyond basic 
mathematical constructs, does this become evident as even 
the most intuitive of concepts must be broken down to a 
most basic level. 

3.2.1 Extrema Points Definitions 
The extrema points’ definitions must be systematic 
throughout the HHTDPS code. Although this may seem 
simple to define as a maxima extrema point is defined as an 
internal data set point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, such that Yi-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< yi > yi+l and minima 
extrema point is defined by yi-1 > yi < yi+] this will not 
account for two of the following situations and may cause 
serious problems in creation of the envelope. 
The first is that an extrema may actually resemble a plateau, 
that is, there may be two or more points equal to each other 
prior to changing direction. If these are not identified, the 
envelope will not be correctly created which can cause 
severe problems in the generation of the IMFs. 
The second situation comes directly from with the methods 
used to deals with the first. That is, one could try to 
compensate by defining yi-1 < yi >= yi+l as the maxima and 
minima extrema point is defined by yi-1 > yi <= yi+l. 
However, this can cause detection of “false extrema”, Le. 
plateaus that do not change direction after the level section. 
Therefore a better definition for finding an extrema is: 

’ 

Maxima: 

where j > i and no point between j and i contains a value of 

Y > Yi 

Yi-1 < Yi >Yj 

Minima: 

where j > i and no point between j and i contain a value of y 
Yi-1 > Yi < Yj 

< Yi 

Although it may seem trivial to define this to such an extent, 
it is something that can be easily overlooked if considering a 
classical definition of extrema 

3.2.2 Upper and Lower Envelopes Definitions 
An upper envelope, or upper awning, is created by 
connecting the maxima extrema points of a data set and a 
lower envelope is created by connecting the minima extrema 
points. For the connection, a piecewise cubic spline is used 
which provides a smooth curve between extrema points that 
is continuous in the second derivative. Although a cubic 

spline may not most accurately reflect the trends of the data 
such as a piecewise hermite spline, the IMFs created with it 
prove to be more symmetrical than with other methods. 

3.2.3 Prediction 
A problem with the creation of the envelopes is that they 
must cover the entire dataset, however it is rare, if ever, that 
extremas will be found precisely at the ends of the dataset. 
For this we need a pair of maxima and minima extrema 
points that lies to the right and to the left of the end points of 
the data set. These four extrema points must be predicted. 
The prediction of the four points, like any prediction, is 
difficult to do. This is attested to by multitudes of prediction 
algorithms and not a single one has been accepted as a rule. 
Envelopes’ extensions to cover data set window by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
prediction of a set of points and find one maxima and 
minima outside envelopes is followed by truncation of the 
mean data set to bring it back into the signal envelope. The 
HHT processes are very sensitive to end points’ selection. 
This is why three prediction options are available in the 
HHTDPS: pattern, linear, and mean. 
Pattern prediction statistically analyzes the extremas at the 
borders of the dataset and estimates the distances and 
amplitudes of the predicted extrema based on those results. 
Linear prediction originally involved using the linear 
predictive coding algorithm; however this was found to be 
processor intensive and could occasionally cause data 
degradation. It was replaced with an algorithm that simply 
copies the extrema points closest to the data borders. 
Finally, mean prediction uses the average distances and 
heights of the extrema points to generate predictions. All 
these algorithms have their respective advantages and 
disadvantages. 
Problems with prediction can result in an extrema point at a 
far distance from the last extrema point which may cause 
waves in the cubic spline that connects these two points. 
This becomes problematic even in the sifting for the first 
few IMFs and may lead to data corruption or degradation. 

3.3 Intermittency Definition, Detection and Removal 
Intermittent or “riding waves” affect the outcome of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF 
generation. In general, riding waves are defined as a 
transient signals that are interrupting the predominant 
pattern of the wave. Particular to intermittency detection, 
intermittency is defined as any set of a maximum and 
minimum extrema such that the distance between the 
adjacent extrema points is less than the designated 

threshold,q. In EMD during the process of removing 
intermittency from an IMF, a search is made in the signal for 
all maximum and minimum extrema which the distance 

between any two extrema is greater than or equal to q. 

In order to separate the intermittency artifacts into a 
different IMF, those points found during the process are 
removed, and all values that are less than the threshold are 
retained, and the EMD calculation is continued. There is 
currently no automatic heuristics for selection of threshold 
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values, due to the complexity of such analysis. It is 
important to note that with this process all properties of the 
EMD will be retained, including that all IMFs generated will 
sum together to provide the original signal. Intermittency 
checking does not remove waves from the dataset, but 
reserves them for calculation in the next generation of an 
IMF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.6 Other Cardinal Points 
There were other cardinal points which were considered in 
the HHTDPS Phase 1 implementation and which we will 
only list without further elaboration: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- IMF Normalization and Symmetry Definition (integral of 

the IMF is close to 0) 

- IMF basis orthogonality as criteria of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF basis quality 
and zero value is ideal. 

- Heritage definition of orthogonality for polynomials and 
trigonometric functions. 

-Hilbert Transform and Resulting Phase Angle 
- Instantaneous Frequency Definition [4] 
- HHTDPS Qualitative Spectrum Analysis 
- Gibbs phenomenon and its resolution [9]. 
- Hardware implementation of bottleneck functions [ 101. 

4.0 DEVELOPMENT PLAN 
The development plan for the HHTDPS was stated first and 
then rigorously followed. The plan was for all phases of the 
HHTDPS. However, this paper describes only the Phase 1 
activities of the development plan. 

Phase 1 
Develop a complete, PC-based, user-friendly software 
version of the HHT Data Processing System. Users supply 
data files on CD, floppy disk, ZIP disk or via electronic file 
transfer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAperform their processing at the local PC, and take 
their processed data away with them on CD, floppy disk, 

ZIP disk or via electronic file transfer. Complete “user’s 
guide” documentation is provided. This baseline system 
will serve as the functional benchmark during Phase 2. 

Analyze the performance of the Phase 1 system while 
processing various types of input data. Identify compute 
intensive processes that may be accelerated via DSP and/or 
FPGA implementation. Generate DSP andor FPGA 
modules and integrate into the Phase 1 system. Benchmark 
Phase 2 system performance and compare to Phase 1 
performance. 

Phase 2 

Phase 3 
Investigate remote user access to the “TDPS. Generate 
list of issues and implementation options. Implement one or 
more prototype remote access functions. This phase will be 
completed as time allows (remote access is not a 
requirement). 

Phase 1 Activity Plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Purchase PC hardware 
0 Obtain and analyze existing code 

0 List basic algorithms 
Collect user requirements, including IO data types 

and formats 
0 Develop modular system architecture (keeping 

Phase 2 in mind) 

0 Develop functional specifications for system 
elements 

o I/Oformats 
o UserI/F 
o Processing modules 

0 Write code for modules 
0 Test 

0 Benchmark 

0 Document. 

5.0 TOP LEVEL ARCHITECTURE 
The HHTDPS was designed as a modular system 
comprising the Empirical Mode Decomposition module 
(EMD), the Instantaneous Frequency and Hilbert Spectrum 
module (IFS and Data Analysis Too1s)and the Graphical 
User Interface module (GUI). The architecture is 
represented in the following Figure 9. 

I GUI 

Figure 9. HHTDPS Components 

6.0 EMPIRICAL MODE DECOMPOSITION 
MODULE ARCHITECTURE 

The EMD module architecture generally follows the block 
diagram presented in [3] for a 1-dimensional input case. The 
input physical signal is loaded and stored as a physical 
signal array. The user can then perform the EMD process on 
the signal, and extract the IMFs. From there, the user has the 
options of obtaining additional information about the IMFs 
or using one of several means to convert them into the 
Hilbert Spectrum. All data generated by the program can be 
saved or exported to disk. 
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7.0 INSTANTANEOUS FREQUENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND HILBERT 
SPECTRUM MODULE ARCHITECTURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The IFS module comprises the Hilbert Transform of the 
IMF components, phase formulation and differentiation that 
yields the instantaneous frequency. The instantaneous 
frequency for all IMFs is then further aggregated into 
frequency bands for a chosen band resolution that is chosen 
by the user. The aggregated instantaneous frequency energy 
is displayed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a 2-dimensional frequency-time color-coded 
image. This is the signal Hilbert Spectrum. 
The Marginal Hilbert Spectrum Option [l] is generated by 
summation of energy values in the Hilbert Spectrum across 
the time line. This produces a typical 2-dimensional 
frequency-amplitude plot. 

8.0 GRAPHICAL USER INTERFACE 
ARCHITECTURE 

The Graphical User Interface is a method to integrate EMD, 
IFS modules and provide User with typical graphical means 
to run the HHTDPS functions. The CUI utilizes Visual 
Basic to provide a robust interface. It was designed to be 
intuitive to use, but does not abstract the user from control 
of the various functions. 

9.0 SYSTEM OPERATIONS AND TEST RESULTS 
The following section demonstrates results obtained using 
the completed system. This includes generation of IMFs 
using the EMD, as well as the display of the nominal and 
marginal Hilbert spectrum. 

Figure 11. IMFs generated, in order from top to bottom. 
Last signal is the residual 

The resulting IMFs must be saved and used for signal 
synthesis. A copy of the IMFs may be then preprocessed as 
required to obtain a better Hilbert Transform for spectrum 
analysis. 

9.1.1 Decomposition Interpretation 
We may begin the interpretation with the direct observation 
of the last decomposition component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the Residue in Figure 
11. This is the data long-term trend. The next to the last 
decomposition components IMFOS, IMFM, and IMF03 are 
depicting some transients resulting from the fact that the 
spline is only an approximation. The oscillatory behavior 
components are the IMF02 and I M F O l ,  where IMFOl is the 
finest oscillatory scale followed by the next scale IMF02. 
These base functions can be further analyzed using the 
HHTDPS Hilbert Spectrum module as described below. 

9.1 Empirical Mode Decomposition Results 
Consider a waveform comprised of two pure sinusoids. It is 
expected that there will be two IMFs from EMD and each 
having small amplitude residuals. For k sinusoids EMD is 
expected to generate k IMFs for any small or large k. For 
example, if k=200 the EMD is expected to produce around 
200 IMFs. 
The two modes I M F O l  and IMF02 are the input signal main 

9.2 Hilbert Spectrum Analysis 
The pre-conditions to get an interpretable Hilbert 
are as follows within the HmPS are: 

In HHTDPS the Hilbert Spectrum is derived from the 
IMFs - the output of the Empirical Mode Decomposition of 
the physical signal. 

modes, as observed from the IMFs significant amplitudes. 
The remaining IMFs are small residue components that can 
be attributed to algorithm computational traces, resulting 
from spline processes. 

2) The IMFs, in order to be used as input to the Hilbert 
be normalized in order to the 

Bedrosian [6] and Nutall [7] requirements. Even a sinusoid 
function A*cos(t) must be normalized to yield a meaningful 

Figure 10. Input Physical Signal y = 
(cos(2*pi*t)+cos(2*2*t))/2 

for spectrum interpretation Hilbert Transform by a factor of 
1/A. Some signal data is already normalized naturally - any 
signal with small amplitudes, including length of day 
deviation from 24 hours in microseconds or voice data as 
recorded on a standard PC sound card as a wave file has 
magnitudes between 0 and 1. 

3) Like all discrete transforms the Hilbert Transform is an 
approximation and the Gibbs phenomenon end affects must 
be taken into consideration for the Hilbert Transform to be 
usable for Hilbert Spectrum derivation and interpretation. 
This requires preprocessing of the IMFs before using them 
as input to the Hilbert Transform. Namely, in order to get a 
“good” Hilbert Transform each IMF must have equal values 
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at end points, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as the same slope. In any other case of 
IMF the end-affect (the Gibbs phenomena) propagates into 
the spectrum and may result in a broken line. 
Preconditioning the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMF to meet these two requirements 
may result in IMFs of different size and some shorter than 
original IMF produced by EMD. This is not a problem for 
the derivation of the Nominal and Marginal Hilbert 
Spectrum. 

3) There are two types of interpretable Hilbert Spectrum 
data produced by the HHTDPS. The first is called “The 
Nominal Hilbert Spectrum” and the second type is called 
“The Marginal Hilbert Spectrum”. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9.2.1 Nominal Hilbert Spectrum 
The Nominal Hilbert Spectrum depicts IMF components 
instantaneous frequencies’ amplitudes in time as color on a 
2-D graph (Oft}. 

For each IMFi component datai(t) the ISP1 module is 
producing an array of instantaneous frequencies fi(t) and 
corresponding time amplitudes %(t). The global maximum 
and minimum frequencies two values across all fi(t) are 
determined and the Hilbert Spectrum is derived within this 
range [max fi(t), min fi(t)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [Fl, F2] for all i. A graph is 
produced of amplitudes a(f,t). For each point tj all fi(tj) 
values across the IMFs vertical cut in time are examined and 
all k-frequency values in this cut are aggregated into a few 
frequency bins specified by user in the GUI window. If user 
selected F-bins, then [Fl, F2] is divided by scale F1, F1+ F, 
F1+ 2*F, ...,E 

Color a 

Figure 12. Hilbert Spectrum Frame {Oft, Color a} 

Following is the Hilbert Spectrum for the above example 
with expected result being two straight lines y=l, y=2. 

Gibbs phenomenon affects are clearly seen at the end points 
and propagate into the middle of the Hilbert Spectrum data. 

Figure 13. Nominal Hilbert Spectrum 

9.2.1 Marginal Hilbert Spectrum 
The Marginal Hilbert Spectrum is obtained from the 
Nominal Hilbert Spectrum by summing up the amplitudes 
along the frequency bin time lines F1, Fl+F, F1+2F, ... ,F2 
and a display in plane aOf. Adding frequency amplitudes in 
Figure 13 as shown in the following picture 

results in a 2-D Marginal Hilbert Spectrum Figure 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Figure 14. Marginal Hilbert Spectrum Frame {Oaf) 

9.3 EMD, Hilbert Spectrum and Physical 
Signal Synthesis 
The waveform synthesis from using Hilbert Spectrum is not 
feasible. However, the synthesis can be achieved directly by 
using the IMFs generated by the HHTDPS EMD 1 module. 

10.0 TECHNOLOGY COMMERCIALIZATION 

The HHT method has many diverse commercial 
applications. The HHTDPS can be applied in a variety of 
fields to study phenomena such as basic nonlinear 
mechanics, climate cycles, solar neutrinos variations, 
earthquake engineering, geophysical exploration, submarine 
design, structural damage detection, satellite data analysis, 
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nonlinear wave evolution, turbulence flow, speech 
recognition, and biometrics, voice identification, blood 
pressure variations and heart arrhythmia. It also can be used 
as a filter for audio recordings. 

This method is also used to analyze sea surface temperature 
data collected by NASA satellites and instruments. The 
National Oceanic and Atmospheric Administration uses 
Huang’s method to analyze images from some of its Earth 
orbiting spacecraft. It has proven successful in connecting 
environmental changes to El Nino phenomena with weather 
changes. 

NASA has patented this method. The goal of the HHT 
technology commercialization is to collaborate with industry 
and academia to get people using the method. A beta version 
is available for university research, while the final version of 
HHTDPS is available for licensing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11.0 LESSONS LEARNED 
In the words of Dijkstra testing can show presence of errors 
but not their absence. Testing may take longer by an order of 
magnitude of the time planned for testing. We have learned 
some lessons in new technology development and 
commercialization, that new technology development is 
expensive and requires funding. We learned about HHT 
details that, in-turn, helps to advance the HHT state of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
art. 

CONCLUSIONS 

We have accomplished the goal we set out in the 
introduction and developed the first engineering tool based 
on the Empirical Mode Decomposition. We have developed 
a new ground system configuration for this specific project 
and laid the basis for its re-use in future projects, including 
spacecraft on-board data processing. We have developed a 
methodology that widens the field of digital signal 
processing and spectrum analysis of nonlinear and non- 
stationary data. We have demonstrated that the published 
HHT algorithms and results can be implemented 
independently in a computer code and have demonstrated 
that the code runs in reasonable time (making it a useful 
engineering tool) and produces the same results on the same 
inputs. Future work includes the development of the 
HHTDPS Phase 2. In Phase 2 the computationally intensive 
components will be implemented as Field Programmable 
Gate Array (FPGA) and Digital Signal Processing (DSP) 
hardware functions, and integrated into the baseline system 
comparable in performance to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFFT. 
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was responsible for establishing the Global Positioning 
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System (GPS) applications and test facility at GSFC and 
supported GPS simulations for several space projects, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as the OrbView-2, SAC-A and EO-1 spacecrafts. He is 
currently developing capabilities to access spacecrafts as 
nodes on the Internet, to accelerate generation of images 
derived from the GOES-8 spacecraft data [lo] and 
implementing algorithms for high rate control loops in 
optical instruments. He proposed the development of the 
Hilbert-Huang Transform Data Processing System 
(HHTDPS) and has been leading the " T D P S  development 
team. He graduated from Johns Hopkins University with an 
MS degree in computer science. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tom Flatley is an Electronics Engineer at the NASA 
Goddard Space Flight Center, and is currently the Chief 
Technologist and Acting Associate Head of the Electrical 
Systems Branch. From 1998-2002 he served as Associate 
Head of the Ground Systems Hardware Branch, and fiom 
1993-1997 he served as head of the Flight Electrical 
Systems Section and Flight Component Development 
Group. Prior to this period he developed numerous flight 
and ground components and subsystems for various NASA 
missions, beginning in 1985. hfr. Flatley's current work 
includes the coordination of Re-confgurable Computing 
technology development and Accelerated Science Data 
Processing activities for the GSFC Electrical Engineering 
Division, with the primary goal of developing RC 
technology and hybrid systems for flight and ground science 
data processing applications. He also manages several 
collaborations with government, industry and academic 
partners, and serves as liaison between technology 
developers and end users in the science community. 

Norden E. H u n g  is a senior fellow at NASA, Goddard 
Space Flight Center. He holds a doctoral degree in Fluid 
Mechanics and Mathematics fiom the Johns Hopkins 
University. Dr. Norden Huang has worked on nonlinear 
random ocean waves spectrum determination. Recently, he 

developed a new method, the Hilbert Spectrum Analysis, 
specifically to process non-stationary and nonlinear time 
series. He developed the Empirical Mode Decomposition 
method that is the basis for the Hilbert-Huang Data 
Transform [l], [2], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3]. Dr. Norden Huang is a member of 
the National Academy of Engineering. 

Karin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABlank is a computer engineer with NASA, Goddard 
Space Flight Center. She implemented the GOES-8 color 
picture generation algorithms on a digital signal processor 
(DSP) and she is the lead software engineer for the 
HHTDPS development. She graduated fiom Worcester 
Polytechnic Institute with a BS degree in computer science 
and is currently studying for her masters in computer science 
at the Johns Hopkins University. 

Commercialization Office. She received a BA in 
Mathematics from Cheyney University of Pennsylvania and 
an MS degree in Engineering Management from George 
Washington University, Washington, D.C. She had 
facilitated license and partnership arrangements for NASA 
technology transfer and commercialization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith some 23 
organizations in USA. 

Darrell Smith is a principle software engineer with the 
Orbital Sciences Corporation. His areas of interest include 
satellite ground systems, simulators, databases, and client- 
server computing. He received a BS in Computer Science 
from the University of Maryland, College Park, and an MS 
in Computer Science from the Johns Hopkins University. 
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