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ON THE HILBERT SCHEME COMPACTIFICATION OF 
THE SPACE OF TWISTED CUBICS 

By RAGNI PIENE and MICHAEL SCHLESSINGER* 

1. Introduction. One of the enumerative problems treated by Schu- 
bert in his book "Kalkul der abzahlenden Geometrie" [S] is that of deter- 
mining the number of twisted cubic curves which satisfy various given 
conditions. The complete solution to this problem should contain a de- 
scription of the intersection ring of some compactification of the space of 
twisted cubics. In this paper we make a step in this direction by undertak- 
ing a study of the compactification given by the Hilbert scheme (see also 

[P]). 
A twisted cubic curve is a rational, smooth curve of degree 3 in P3. 

The space Ho of such curves has the structure of a smooth, 12-dimensional, 
noncompact variety-in fact, Ho can be identified with the homogeneous 
space SL(4)/SL(2). Let HilbP(n,)(P3) denote the Hilbert scheme parame- 
trizing closed subschemes of P3 with Hilbert polynomial P(m). Then Ho C 
Hilb3m+l(p3 ), and we denote by H the closure of Ho. Our main result is the 
following theorem. 

THEOREM. Hilb3,, + 1(P3) consists of two irreducible components, H 
and H', of dimension 12 and 15 respectively. Both H and H' are smooth 
and rational, they intersect transversally, and their intersection is non- 
singular, rational, of dimension 11. 

The component H' which does not contain the twisted cubics contains 
the points corresponding to plane cubic curves union a point in P3. The 
intersection H n H' consists of plane, singular cubic curves, with a "spa- 
tial" embedded point at a singular point, "emerging from" the plane. The 
most degenerated such curve (in the sense that all curves corresponding to 
points in H n H' specialize to one of that kind) consists of a line tripled in 
the plane, with a spatial embedded point. A main ingredient in the proof 
of the theorem is the explicit construction of the deformation space of such 
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a curve. We use a comparison theorem which enables us to identify the 
deformation theory of a projective variety with that of its associated homo- 
geneous ideal, provided that suitable linear systems on the variety are com- 
plete (Section 3). The degenerate curve has a G,, action and its universal 
deformation is easy to compute (Section 5). 

2. Preliminary description of Hilb3m+l(P3). Let C C P3 = P3 (k is 
an algebraically closed field of characteristic * 2, 3) be a twisted cubic 
curve, i.e., C is smooth, rational, of degree 3. All such curves are projec- 
tively equivalent, hence we may fix one, say CO = s (P 1 ), where s: P 1 -* P3 
is given by s (u, v) = (u3, u2v, uv2, v3), and identify the space Ho of twisted 
cubics with automorphisms of P3 modulo automorphisms of P 1. So Ho = 
SL(4)/SL(2) is a homogeneous space, hence smooth and irreducible, of 
dimension 12. 

Since a twisted cubic curve has Hilbert polynomial P(m) = 3m + 1, 
we have Ho C Hilb 3fl+l(p3); let H = Ho denote its closure. Set H6 = 

{ C' : C' = a plane, smooth cubic curve in P3 union a point in P3 not on the 
curve}; then H6 C Hilb3nl+l(P3), and we denote by H' = H6 its closure. 
Since H6 is irreducible, so is H', and H' has dimension 15. 

LEMMA 1. Hilb3n,+l(P3) = H U H'. 

Proof. Suppose C C P3 is a closed subscheme with Hilbert polyno- 
mial P(m) = X(Oc(m)) = 3m + 1. We must show that C is a specializa- 
tion of a curve in Ho or H6. Let C C C be the maximal closed subscheme of 
C which is Cohen-Macaulay and of pure dimension 1. There are three 
cases to consider: i) C = C. Then C is projectively Cohen-Macaulay and 
there is a projective resolution of the maximal homogeneous ideal I C P = 

k[x, y, z, w] defining C, 

0 -* P(-3)2 -* P(-2)3 -* I -* 0 [E, Ex.1, p. 430]. 

By [loc. cit, Thm. 2] C can be deformed to a twisted cubic. ii) C = C U Y, 
where Y n C = 0 and lg Oy = r 2 1. Since X(Oc(m)) = X(O- (m)) + r = 

3m + 1 and X((9C(m)) 2 3m, we have r = 1 and X(O(9(m)) = 3m. Hence 
C is a plane cubic curve, and Y is a reduced point, so C E H'. iii) C has 
embedded points. Set K = Ker(Oc --* Oj). Reasoning as in the previous 
case, we conclude lgK = 1, and C is plane, so that C E H'. 

LEMMA 2. If C E H n H', then C is a plane, singular cubic curve 
with a spatial embedded point, "emerging from" the plane, at a singular 
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point. More precisely, C is projectively equivalent to the curve defined by 
an ideal I C k [x, v, z, w] of the form I = (xz, yz, Z2, q (x, y, w)) where 
q(x, y, w) is a cubic form which is singular at (0, 0, 1). 

Proof. With the notation of the proof of Lemma 1, C is plane and C 
is connected, so we're in case iii) of that proof. Moreover, it follows from a 
lemma of Hironaka [H, p. 360] that the embedded point must occur at a 
singular point of C. It remains to describe the structure of C at the embed- 
ded point. First we observe that if C is contained in some surface S C P3, 
then S has to be singular at the embedded point p of C. In fact, we may 
assume that C C S are the closed fibres of families CR C SR C PR, over a 
discrete valuation ring R with traction field K, s.t. CK C P3 is a twisted 
cubic (if deg S = 1, replace S by S union a plane not containing p). If p 
were a smooth point on 5, then it would be smooth on SR, since S is a 
Carlier divisor on SR. Then CR would be a local complete intersection atp, 
hence so would C, and sop could not be an embedded point on C. Assume 
the embedded point is (0, 0, 0, 1), and that the ideal of C in the affine 
coordinate ring k[x, y, z] is equal to IJ, = (z, q) n Q, where q(x, y) is 
singular at (0, 0), and Q is an (x, y, z)-primary ideal. Consider the exact 
sequence 

0 -- K = (z, q)/Ia -* k[x,y, z]/Ia -* k[x,y]/(q) -* 0. 

We know lgK = 1, so that either (a) z E Q, or (b) there is a q' E Q with 
q' = q(mod z). In case (a), z E Ia' hence C is plane and cannot by the 
observation above, be the specialization of a twisted cubic. (In this case, 
I = (z, xq, yq), and the ideal of C is obtained by homogenizing q with 
respect to w.) In case (b), z E Ia, but necessarily (xz, yz, Z2, q t) C Ii,, and 
these ideals are equal. Now q' = q + Olz, a E k, and if a ? 0, then the 
surface defined by q' would be smooth at (0, 0, 0, 1). By the observation 
above, we must therefore have a = 0 and hence q' = q. 

Note that it follows from Lemma 2, by counting parameters, that the 
dimension of H n H' is equal to 11. 

3. Local Description of the Hilbert Scheme. To a subscheme X 
of P" corresponds the homogeneous ideal I in the polynomial ring P = 
k [xo, ..., x, ] such that X = Proj(P/I) and I is maximal with respect to 
this. We thus have a map 

u:M -*M' 
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from the universal deformation space M, which parametrizes all homoge- 
neous ideals with Hilbertfunction equal to that of I, to the Hilbert scheme 
M' which parametrizes subschemes of P" with Hilbertpolynomial equal to 
that of X. We shall show here that M and M' are isomorphic near the base 
points I and X, provided that the linear systems cut out on X by hypersur- 
faces of suitable degrees are complete. 

COMPARISON THEOREM. If the ideal of polynomials defining X C 
P'1 is generated by homogeneous polynomials fl, .. .,fr, of degrees dl, d2, 
* . dr,for which 

(k [xo, . ..., x ]i /I I)d -4H?(X, (9x(d )) 

d = d1, d2, dr 

then the map u :M -* M' is an analytic isomorphism at the basepoints 
I, X. 

We remark that in general, when the completeness condition is not 
satisfied, one must replace I by a high truncation, as Curtin [C] does for 
Mumford's obstructed curve. 

Proof of the Comparison Theorem. We compare the Zariski tangent 
and normal spaces of M and M'. Let R = k [[tI, .. ., t, l]]/J, J C (t)2, be 

the completion of the local ring of M at its base point. We have 

t 1((M) =((t)(t)2)* 

t2(M) = (J/tJ)*, 

the Zariski tangent and normal (i.e. "obstruction") spaces of M (In gene- 
ral t'(M) = T'(k/R, k) i 2 1 are the "homotopy" of R [A].) Now u induces 
u': t'(M) t'(M'), all i; as in [S, p. 153] we find easily that u: M -* M' is 
an analytic isomorphism provided that u is a "two equivalence" in the 
sense that ul is an isomorphism and u2 is a monomorphism. 

If we now take T'(I) = T'(A/P, A), T'(X) = T'(X/P", O(x) the ap- 
propriate cotangent cohomology, we get a commutative diagram 

t(M) > t(M') 

I l 
T(I) -> T(X) 
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where the vertical "Kodaira-Spencer" maps form two equivalences, by 

versality of M and M'. We must show that T (I) -*T (X) is a two equiva- 
lence. 

To compute T'(I) for i = 1, 2 we take a free resolution 

. H G FP 

of the module P/I over the polynomial ring P = k [xo, ..., x]. Here F = 

EP(-di) and X = (fl, .,fr). We map A2F G by sending u A v to w in 
G with ,u(w) = X(u)v- X(v)u E ker X. The cotangent complex, in low 

degrees, isthenL:L3 L2 -*L1 = A2F?A?H?A -* G?A 
F ? A with A = P/I (see [L. S. ]), and T'(I) is the cohomology of L = 

Hom(L., A). 
Now the complex ?. = L. restricts, over each affine open subset 

U of X to the relative cotangent complex of U in P't. Following Illusie [I] we 
then have T (X) = Extox (2., Ox). If we consider instead the cohomology 
S (X) of the complex of vector spaces Hom (L., Ox), the edge homomor- 

phism S (X) -* T (X) is a two equivalence and we need only show that 
T(I) --+S (X) is a two equivalence. The map in question comes from 
taking cohomology of the horizontal rows of the diagram 

a'3 a2 atl 

H0(L3) - H0(L2) H H0(L1) 

By hypothesis ce, is an isomorphism, so that ce induces a two-equivalence 
and the proof is thus complete. 

We remark that the cohomology sheaves i' of Hom(2, Ox) consist of 

the normal sheaf t = 3 1 to X in P", which determines local deformations 
of X, and the sheaf 3 2 which contains obstructions to local deformations of 
X. 32 is supported on the noncomplete intersection locus of X. We have 

H?(X, 3J1) T1(X) and 0 -* H1(X, 3') -* T2(X) -* H0(X, 3 2) which 
decomposes T2(X) into local and global obstructions. 

The hypotheses of the comparison theorem are certainly met for the 
smooth space curves in Ho or H6. For a curve C in H n H' let I = (xz, yz, 
Z2, q), J = (z, q) be the ideal of the Cohen-Macaulay curve C and K = J/I, 
which is isomorphic to P/(x, y, z) twisted once as a P module. The local 
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cohomology sequence associated to the exact sequence 0 -* K -* P/I 
P/J -* 0 now shows that (P/I)d -* H0(Oc(d)) is an isomorphism for all 
d > 0. By the comparison theorem above we find that the completion of 
the Hilbert scheme at the point C is given by the universal deformation of 
the ideal I associated to C. 

Alternatively, we may show directly that deformations of I and C 
agree by computing that the tangent space T1(I) = H0(C, OC)= HO(3) 
has dimension 16 and consists entirely of nonpositively weighted (thus glo- 
balizable) deformations of the singular point. Moreover, H'(3 l ) = 0 and 
T2(I) = H0(32) = T2(X) (has dimension two). The deformations of C 
thus coincide with the nonpositive deformations of its singular point, 
which coincide with homogeneous deformations of the affine cone over C. 

4. The tangent spaces to Hilb3m+l(P3). Let C E Hilb3,,,+I(P3) = 

H U H', let I C P = k [x, y, z, w] denote the maximal homogeneous ideal 
defining C, and set A = P/I, so that Oc = A. Set E = I, so that 9t = 
Hom(g, (9c) = (,q/,q2) is the normal sheaf of C in P3. With this notation 
the tangent space to Hilb3lln+l(P3) at C is given by THUH'C = H?(C, at), 
and we now want to compute this space, which, as we have seen in Section 
3, is isomorphic to T1(I) = Homp(I, A)o (the degree 0 piece of the graded 
module Homp(I, A).) By [E, loc. cit] we know that H - H n H' is 
smooth, so that dim THUH',C = 12 if C e H - H n H'. (This can also be 
computed directly from a presentation of I, as will be done below in the 
other cases.) 

LEMMA 3. If C eH n H', then dim THUH',C = 16. 

Proof. We may assume C is defined by a homogeneous ideal I as in 
Lemma 2. It suffices to show dim Homp(I, A)o = 16. SetJ = (z, q); thenJ 
defines a plane curve C C C. Set A = P/J and K = J/I; then we have an 
exact sequence 0 -* K -* A A -* 0. Consider the following presentation 
of J: 

0 - P(-4) - P(-1) ?P(-3) -J 0. 

By applying Homp(-, A) we obtain a long exact sequence which yields 
Homp(J, A) = A (1) (? M(3) (where M = (x, y, z)A) and Extp(J, A) = 

A (4). The presentation of K, 

(z\ y z 4) 

0---P(-4) - P(-3)3 OXYP(-2) >PZ)( z K --+0 
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shows Homp(K, A) = K(1) and that Extp(K, A)0 C A (2)o = A 3 is gener- 
ated by 

lr } zw , 0 -q2 1 

where q = xq I + yq2 (and q I, q2 E (x, y)A, since q is singular at (0, 0, 1). 
From 0 I -* J -* K 0 we therefore obtain the following exact 

sequence: 0 K(1) -*A(1)?M(3) -* Homp(I,A) -* Extp(K,A) > 

A (4). A diagram chase shows that the map 3 is the restriction of the map 
(qI, q2, o) A (2)3 A (4), and hence is 0. Thus we obtain a short exact 
sequence 

0 -- A (1) M(3) > Homp(I, A) > Extp(K, A) > 0, 

which yields dim Homp(I, A)0 = dimAI + dim M3 + dim Extp(K, A)0 = 

3 + 9 + 4 = 16. 

LEMMA 4. If CeH' -H n H', then dim THUH',C =15. 

Proof. Case (i): C = C U Y, where Y is a reduced point not on C. 
Then H?(C, 01) = h?(C, 9cO(3) ?) OeC(1)) + 3 = 15. Case (ii): C has an 
embedded point emerging from the plane of C, at a nonsingular point of 
C. We may assume I = (xz, yz, Z, q), where q E k [x, y, w] is a cubic form 
which goes through, but is nonsingular at, the point (0, 0, 1). The compu- 
tation of its dimension is similar to the one above, except that in this case 
Extp(K, A)0 is generated by 

(zw) (0) (0) 

O , zw , O , 

which completes the count. Case (iii): C has an embedded point and is 
contained in a plane, i.e., we are in case (a) of the proof of Lemma 2. Then 
we may assume I = (z, xq, yq), where q E k [x,y, w] is a cubic form vanish- 
ing at(O, 0, 1). SetP' = k[x,y, w] andI' = (xq,yq) C P', and let 9t' 
denote the normal sheaf of C in the plane z = 0. Reasoning as in the proof 
of the comparison thm. one shows H?(C, 01') = Homp(I, A)0. Since 
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h?(C, 0J) = ho(C, Ol') + ho(C, Oc(1)) and ho(C, Oc(1)) = 4, it suffices to 
show dim Homp (I', A)O = 11. 

Set J' = (q) C P', A = P' /J', and K J'/I'. The P'-module K 
has a presentation 

(_XY) 2(x,y) q 
O P (-5) >P'(-4)2 0 P'( 3) 3 K 0 . 

From this, we obtain Homp, (K, A) = K(3), and that Extp, (K, A)o is gen- 
erated by (%qw) (0 ). Thus there is an exact sequence 

O -> A(3) > Homp(I', A) > Extp(K, A) - 0, 

and we conclude: dim Homp, (I', A)o = dim A3 + 2 = 11. 
Thus we have shown that H U H' is smooth outside H n H', and 

that dim THUH',C =16 if C e H n H'. 

LEMMA 5. For all C e Hilb3mll+l(P3), H1(C, 0,) = 0. 

Proof. We shall consider separately four cases and show that in each 
case we have X(0t) = ho(C, 0Y), by the above computations. i) C e H - 

H n H'. The exact sequence of sheaves 

0 > Op3H(-3)2 > Op3(-2)3 0 

gives 

0 9 > OC(2)3 > OC(3)2 > WC(4) > 0, 

where wc denotes the dualizing sheaf on C, from which we get x(9Y) = 

12 = ho(C, at). Hence h1(C, 9Y) = 0. ii) C e H n H'. The exact sequence 

O > ~(9-(1)?M(3) 9 > ExtpI3(K, Oc) 0 0 

gives X(01) = 7 + X(M(3)) = 7 + X(OC(3)) - 1 = 16 = ho(C, at). iii) 
CeH' - H n H', C = C U Y, Y n C = 0. Then x(0t) = X(01C/p3) + 

3 = 15 = h?(C, at). iv) C e H' - H n H', C C p2 C P3, C has an 
embedded point. Then X(01) = X (Olc/p2) = X(Oc(1)). The exact se- 
quence (Lemma 4, (iii)) 

0 > Oe(3) O lC/P2 > Extp2(K, Oc) 0 0 

gives X(OlC/p2) = 11, hence X(9Y) = 15 = ho(C, at). 
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5. The universal deformation of k [x, y, z, w]/(xz, yz, z2, x3). From 
the description given in Lemma 2, we know that every C E H n H' special- 
izes to a curve of the form: a line tripled in a plane, with a spatial embed- 
ded point. Such a curve is completely determined by its associated (point- 
line-plane) flag, and all such curves are projectively equivalent. (They form 
a closed orbit-isomorphic to the flag variety, hence of dimension 6- 
under the action of SL(4) on Hilb3nll + I (P3 ).) Thus, in order to study defor- 
mations of some C E H n H', it suffices to study deformations of a curve of 
the above degenerated form, e.g. whose maximal homogeneous ideal is 
I=(xz, yz, z2, x3). 

LEMMA 6. Suppose I = (xz, yz, Z2, x3). Then I has a universal defor- 
mation space of the form M = Al2 U A'5, where A'2 n A'5 = A" and the 
intersection is transversal. 

Proof. Consider the following presentation of A = P/I over P = 

k [x, y, z, WI: 

0 > P(-4) - P(-4)?P(-3)3 

1> P(-2)3 P(-3) x p - A 0, 

where the maps are given by 

X2 y z j OX 

(xz, yz, z2, x3), Au =- z 0) 
O O -x -y _y 

-z O O O/ xl 

We have already seen (Lemma 3) that dim Hom(I, A)0 = 16, and one 
checks that the following 10 elements (of A3 3(A3), 

au, 0= aU2 = aU3 - 02 a =U Y0 
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aU5= ?0 aU6 
00l 

aU7= 
0' 

a88 0 

ZW2 x2w XyW y2w 
a_ _ a a 

au9=0?8 @1au ' an u 
aU XY2) a: 3 

together with the 6 "trivial deformations" (corresponding to moving the 
flag determined by C), 

a (a \~ Od a - 

t = WA) =Y = 
at, ax at2 ax- 

3x2w 3x 2y 

? xw' 

a a zw a a yw 

- = w- -= w-= 

a a XY a a y2 
at5 a = at6= aZ 

form a basis of Hom(I, A)O. 
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To obtain homogeneous deformations of I, we consider homogeneous 
perturbations X', ,u', v' of the maps X, ,u, v: 

= (xz + u1(bx + cy),yz - uI(ax + by), (z + u2w)z - ul2(b2- ac), 

2= 2 

U5W 0 -x -y 

-z -U1 0 0 

-ul 

_y 

x 

where we have set a = X + U6W, b = U9y + U7W, C = UIOy + U8W, and 
where the variables ui, i = 1, ..., 10 give infinitesimal deformations tan- 
gent to the basis elements of Homp(I, A)0 denoted by a/aui. 

One checks that X'*' 0 mod(u1u2, uU3, UU4, U1U5). Moveover, 
I' vP' = (-u1u3w2, -uu4W2 ,-uu5W , -u1u2w) 0 mod (u1u2, U1U3, 
U1U4, U1U5), and no additional higher order terms can cancel these entries. 
Therefore, the flat deformation that we can obtain over the union of the 6- 
space U2 = U3 = U4 = U5= 0 with the 9-space u I = 0 cannot be extended 
to any larger parameter space. (Alternatively, the entries arising from 
X' ,' may be shown to span T2.) We have thus exhibited a versal defor- 
mation of I (and hence of C). 

A universal deformation is now obtained from the above by adding the 
trivial deformations; this is done by performing everywhere the following 
substitutions: x = x + tlw + t2y,y = y + t3W, Z = Z + t4W + t5X + t6y. 

Hence we have shown: 

M = Spec(k[ul , ..., ul0, t1, . . ., t6]/(U1U2, U1U3, U1U4, U1U5)). 
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Remark. Recalling the exact sequence (proof of Lemma 3) 

0 - A (1) ? M(3) > Hom(I, A) > Ext'(K, A) - 0 

and remarking that 

xa 

ya3 
a eAl goes to l E Hom(I, A)0 C A23 A3 

za 

and 

be M3goes to 

we observe that Hom(I, A)0 is generated, modulo the trivial deformations, 
by the elements coming from M3, together with the elements a/au 1 and a! 
au2. The former corresponds to "twisting the curve into space" (hence 
making the embedded point disappear), whereas the latter corresponds to 
moving the embedded point out of the plane. 

6. The Hilbert Scheme Hilb3m+l (P3). We shall now prove the theo- 
rem stated in the introduction. 

THEOREM. The scheme Hilb3'l?+ I (P3) is the union of two nonsingu- 
lar rational varieties H and H', of dimension 12 and 15; their transversal 
intersection is nonsingular rational of dimension 11. 

Proof. By the previous Lemmas, we need only demonstrate the ra- 
tionality of H, H', H n H'. Consider the point CO E H f H' whose ideal is 
I = (xz, yz, z2, x3), and the universal family of deformations of I con- 
structed in section 5. We get a flat family X -> A'2 U A'5 of subschemes of 
P3 and hence a classifying map &:A12 U A15 -> Hilb(P3). We have seen 
that b is an analytic isomorphism at each point of its domain. The ideal I 
occurs only at the base point of A12 U A15, and does not reappear as the 
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parameters (u, t) approach infinity. b has degree one over the Hilbert point 
CO, and therefore has degree one over each point of its image, as any such 
point specializes to CO. k is therefore an open immersion, and the theorem 
follows. 

Alternatively, one may compute directly that the ideals corresponding 
to parameter values (u, t) and u', t') are not equal unless u = u', t = t', 
and proceed as above. 

Also, as Robert Varley has kindly pointed out to us, the rationality of 
H is classical. Fix two planespI, P2 in P3. They intersect a general twisted 
cubic C in two pairs of three points, and these six points in turn determine 
C. H is thus birationally equivalent to the product of Symm3(P2) with it- 
self. A modern proof of the rationality of a symmetric product was given by 
Mattuck [M]; this may also be seen from the versal deformation of a suit- 
able thick point. 

COROLLARY. The scheme Hdecomposes as afinite disjoint union of 
affine spaces, H = A'2 U UA"'i, where 0 < ni < 11 and all integers be- 
tween 0 and 11 occur. 

Proof. H is smooth, complete (in fact projective), and has a finite 
number of orbits under the action of SL (4). By a result of D. Luna (see [D- 
P], 7.2) the set of fixed points of a maximal torus of SL(4) is finite, and 
therefore we can apply the results of Bialynicki-Birula [B, section 4]. (The 
A12 found in the proof of the theorem can be taken as the beginning of such 
a decomposition.) 
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