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Abstract

This paper concerns the estimation algorithm for hinging hyperplane �HH� models�
a non�linear black box model structure suggested in ���	 The estimation algorithm is
analysed and it is shown that it is a special case of a Newton algorithm applied on a
quadratic criterion	 This insight is then used to suggest possible improvements of the
algorithm so that convergence can be guaranteed	

In addition the way of updating the parameters in the HH model� is discussed	 In ���
a stepwise updating procedure is proposed	 In this paper we stress that simultaneous
updating of the model parameters can be preferable in some cases	

Key words� Nonlinear function approximation� hyperplanes� numerical methods	

� Introduction

There has been a large activity during the past years in the �eld of non�linear function
approximation� Many interesting results have been reported in connection with� for example
the projection pursuit regression in ���� neural network approach� see �	� and references therein�
and the recent wavelets approach� see �
�� The �rst two methods are closely related to
the hinging hyperplane �HH� model investigated here� All the dierent approaches can be
described as basis function expansions

f�x� �
KX
i��

hi�x� ���

and they dier only in the choice of basis hi�x�� One important dierence between the basis
functions used in HH models� projection pursuit and NN models as opposed to the basis
function used in the wavelet approach� is that the �rst three mentioned basis functions have
their non�linearity positioned across certain directions� In other directions the function is
constant� A name for this kind of functions is ridge functions�
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The wavelet basis is a localized one� If data is clustered along subspaces it can be prefer�
able to use one of the ridge basis functions� In the NN approach the basis function is the
sigmoidal function�

Recently a new interesting approach to non�linear function approximation named hinging

hyperplanes� was reported ���� The HH approach uses hinge functions as basis functions in
the expansion ���� A hinge function is maybe most easily illustrated by a �gure� see Figure ��

Assume that the two hyperplanes are given by

h� � xT ��� h� � xT �� �
�

where x � ��� x�� x�� � � � � xm�T � is the regressor vector and �� and �� are the parameter vectors
de�ning the hyperplanes� These two hyperplanes are joined together at fx � xT ������� � �g�
The joint� � � �� � ��� or multiples of �� are de�ned as the hinge for the two hyperplanes
h� and h�� The solid�shaded part of the two hyperplanes as in Figure �� is explicitly given
by

h � max�h�� h�� or h � min�h�� h��

and are de�ned as the hinge function� Which combination of hyperplanes that is chosen�
i�e�� whether the min or max function is used� is given when the parameters �� and �� are
estimated� In Section 
� a more detailed review of the estimation algorithm for the HH model
presented in ���� is given�

In this contribution two issues will be penetrated� One is the hinge �nding algorithm

�HFA� as it is presented in ���� It will here be shown that the HFA actually is a Newton
algorithm for function minimization applied on a quadratic loss function� and suggestions on
how to improve the HFA will be given so that convergence can be guaranteed� The original
HFA� depending on the function approximated� can behave in three ways� �� the algorithm
converges and a hinge location is found� 
� the algorithm is stuck in a limit cycle altering the
hinge location between a series of dierent values� and �� the HFA will not converge at all
and the hinge is located outside the data support� The improvement is straightforward when
realizing what family of numerical algorithms the HFA actually belongs to� The improvement
will guarantee global convergence of the algorithm which means that the algorithm converges
to a local minimizer of a non�linear functional regardless of the initial parameter guess� This
is in the spirit of ����






The second issue is the way additional basis functions� i�e�� hinge functions are introduced
into the HH model� In ��� the hinges are introduced one after the other and the parameters
of the already introduced hinges are �tted before the next one is introduced� The �tting
of the parameters after a new hinge function has been incorporated is also performed in an
iterative way� One step is taken with the HFA for each hinge function� This approach will
be discussed and compared to other possible estimation algorithms�

In the original presentation ���� it is advocated for HH models as a superior alternative to
NN models� One of the main argument is the e�cient estimation algorithm for HH models�
It will be shown that the same algorithms are applicable for both model structures� It follows
from this that the choice of model structure� i�e�� HH model or NN model should not be made
based on algorithmic reasons but rather on assumptions on the unknown relationship which
is to be modeled�

The paper is organized in the following way� In Section 
 the HFA and the strategy for
updating and adding hinge functions is reviewed� In Section � the novel insights and improve�
ments based on these are presented� The estimation algorithm when the HH model consists
of several hinge functions is discussed in Section �� Finally in Section � some comparisons of
performance of the dierent algorithms are given�

� Hinging Hyperplanes Function Approximation

The general goal is to �nd a model f��� which approximates an unknown function g�x� as
good as possible� To �t the parameters we have data available fyi�xig

N
i��� where yi are �noisy�

measurments of g�xi��
The choice of non�linear black box model f��� for a particular problem is an important

issue� A model where the basis functions manage to describe the data in an e�cient way
can be expected to have good properties and� hence� is to be prefered� This is� however� the
kind of prior knowledge which is rather exceptional� Instead the choice of a speci�c black
box model structure is usually guided by other arguments�

The main advantages of the new HH approach are�

� An upper bound on the approximation error� is available�

� The estimation algorithm used in the HH algorithm is a number of least�squares algo�
rithms which can be executed fast and in a computationally e�cient way�

� It may be an useful model structure since what is obtained by HH approximation is
piecewise linear models� and linear models have proven to be useful in a large number
of problems�

In ��� the upper bound on the approximation error for HH models is stated� Assume
that a su�ciently smooth function g�x� is given� where su�ciently smooth means that the
following integral is �nite Z

jj�jj��g���d� � c ���
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then there are hinge functions h�� � � � � hK such that

jjg �
KX
i��

hijj� �
�
R��c

K
�

�

�

where R is the radius of the sphere within which we want to approximate the function� c is
de�ned above and the �g��� is the Fourier transform of g�x�� The proof of the theorem is an
extension of Barron�s result for sigmoidal neural networks given in ���� This means that the
HH model is as e�cient as neural networks for the L��norm� This should be compared to the
best achievable convergence rate for any linear estimator for functions in the class

Z
Rm

jj�jj�g���d� ���

The lower rate for linear estimators is approximately K���m� This indicates that the largest
gain using NN or HH models is obtained when the dimension of the input space is high�

��� Hinge Finding Algorithm

In the estimation algorithm� proposed in ���� used for estimating HH models there is one
�subroutine� that is often called� namely the hinge �nding algorithm� Here the HFA is
reviewed� As stated above the hinge is the subspace of the input space that satis�es the
equation xT� � �� where � � �� � ��� Given a data set fy�xig� the HFA consists of the
following steps�

�� Choose an initial split of the data� or in other words� choose the initial hinge� Name
the two sets of data S� and S��


� Calculate the least�squares coe�cients of a hyperplane �tted to the values of fy�xg in
S� and denote the parameters by ��� Do the analogous with the fy�xg�s in S� to
obtain ���

�� Update S� and S� by �nding the new data sets according to the expressions S� � fx �
xT � ��� � ��� � �g and S� � fx � xT � ��� � ��� � �g�

�� Go to 
 until the hinge function has converged�

The HFA is illustrated by Figure 
� The function we want to approximate is g�x� � x�� and
in Figure 
 we use samples from that function paired with the x�values as the input to the
HFA algorithm� For later use we state the second least�square step of the algorithm

�� � �
X

xi�S�

xix
T
i �
��

X
xi�S�

xiyi

�� � �
X

xi�S�

xix
T
i �
��

X
xi�S�

xiyi� ���

As mentioned above� the HH models are preferably used when the dimension of the input
space is high� Some examples in this paper are� however� of low dimension purely for the sake
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Figure 
� The initial split of data was at x � ����� The least�squares estimates in S� and
S� are the two lines� Their intersection x � �� is the new hinge position which gives the
new split of the data for the next step of HFA�

of clarity of the presentation� From Figure 
 it is obvious how the hinge function should be
chosen �recall the min vs� max discussion�� Choosing the minimum of the two hyperplanes
as a hinge function would have the consequence of using the data in S� to calculate the
approximating hyperplane in S��

If the unknown function g�x� itself is a hinge function then it can be shown that the
HFA will converge towards the true hinge location� If g�x� is an arbitrary function� there are
three dierent ways the HFA can take� as mentioned in Section �� In practical applications
with real data involved this unpredictable behavior of the HFA causes problems� Let us look
at the following example for some further insights into the problems associated with hinge
search� Consider the function given in Figure �� If Breiman�s HFA is applied to this data set�
the resulting hinge position will vary dramatically for dierent initial values� The evolution
of the hinge position with dierent initial conditions is depicted in Figure �� where the y�axis
denotes the initial hinge position� and the x�axis represents the number of iterations of the
HFA� The empty parts of the y�axis� where it seems that no initial hinge positions have been
tested� are the initial values that will cause the hinge to go outside the border of the support�
In this case one of the sets S� and S� contains all data and the other one is empty� If this
happens the algorithm stops since step 
 cannot be performed and the obtained function
is linear in the domain of the data support� From Figure � it can be concluded that for
this particular function as shown in Figure �� if Breiman�s HFA is used� there would be two
convergence points� and one limit cycle� There is also an interval from ��
� to ���
� which�
if taken as the initial hinge positions� will lead to no converged hinge at all� That is� if the
HFA is initialized in that region� the hinge would end up at a position outside the support
area�

As a summary� Breiman�s algorithm cannot guarantee convergence� and depending on
the problem and the initial parameter value it might even diverge� Usually covergence can
be assured by modifying the parameter steps so that a criterion is decreaseed in each step�

�
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Figure �� Convergence of the HFA for dierent initial values� On the x�axis the number of
iterations is shown� and the y�axis is the initial hinge position� The empty intervals on the
y�axis correspond to the initial values that do not converge�
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Breiman�s algorithm� however� does not use any criterion so this modi�cation is not straight�
forward� In Section � we will show how the algorithm should be modi�ed�

��� HH Algorithm

Essentially the HH algorithm is a strategy to stepwise increase the number of hinge func�
tions in the model by using the HFA� The procedure is as follows� Given fyi�xig� run the
HFA on the available data� estimating the �rst hinge function� To introduce an additional
hinge function calculate the dierence between the given data and the estimated hinge �the
residuals� �y��� � y � h� and run the HFA on �y��� obtaining h��

Now� run the HFA on �y��� � y�h� and reestimate h�� Iterate between the reestimation of
h� and h� until the procedure has converged� If a third hinge function is added the procedure
is analogous� �rst calculate �y����� � y � h� � h� and run the HFA to obtain h�� and then
reiterate with the HFA on �y������ �y����� and �y������

In ��� the advice is to just run one step of the HFA in each iteration after introducing hinge
function number two� It is not clear whether this sequential updating of the hinge function
parameters is the best one and a number of variants are immediately apparent� e�g�� could all
the hinge function parameters be updated simultaneously� or could a more e�cient way to
update the parameters after introducing an additional hinge function be just to simply start
all over again re�initializing all the parameters� Also� as the HFA may not converge at all� it
is clear that the HH algorithm in its original shape� is not a reliable algorithm� This will be
further discussed in Section � and ��

� Globally Convergent HFA

In this section the course taken will be quite dierent from the one taken when deriving the
original HFA� However� the resulting scheme is the same� and the alternative derivation will
place the algorithm in a broader context of numerical algorithms and will give some hints on
how the algorithm can be improved�

This approach uses a gradient based search for the minimum of a quadratic criterion� To
dierentiate a function which consists of a sum of highly non�linear max and min elements
might rise some worries� This is� however� not a problem� With respect to the parameters

the criterion is smooth and the gradient and the Hessian both exist for all values of the
parameters�

Assume that a data set fyi�xig
N
i�� is given and the objective is to �t a hinge function using

the given set of data� This is always the problem de�nition when the HFA is considered and
in the general HH algorithm y is iteratively replaced by �y��� in sequences� The HFA remains
the same regardless of the present choice of y� when it is �called� from the HH algorithm�
The input to HFA is always a data set of the form as above�

Let us formulate the objective in the following way� Given the criterion of �t

VN ��� �
�




NX
i��

�yi � h�xi� ���
�� ���

	



calculate the parameter � that minimizes it� Formally it can be expressed as

�� � argmin
�

VN ���

where � is a vector that can be written as

� �

�
B� ��

��

�
CA �

Recall that the function h is de�ned as

h�x� �� � max �or min�fh�� h�g ���

and S� and S� are de�ned as those half�spaces where the �rst� respectively the second
argument of ��� holds�

As we will use gradient based methods we need the derivative of the hinge function with
respect to the parameters� The derivative with respect to �� becomes �with the analogue
expression for the derivative with respect to ���

dh�x� ��

d��
�

���
��

x if x � S�

� if x � S�

���

So the derivative is just x� as in the linear regression case� if x � S� and zero otherwise�
Possible data points on the hinges are not any problem in the algorithm� since the hinges
have measure zero in the space Rm �recall that x � Rm�� there will be no points at the hinge
in the generic case� To have a totally well de�ned problem one can let the hinge belong to
one of the two sets� which is the solution adopted in Breiman�s paper� Another possibility is
to de�ne the derivative as� e�g�� zero at the hinge� which means that any data at the hinge is
excluded from the �t�

To compute the minimum of VN ��� with a standard Newton procedure� the gradient and
the Hessian of the criterion VN � is needed� As for the derivative of the hinge function we
separate the parameter vector into �� and ���

rVN �

�
B�

�VN
���

�VN
���

�
CA �

�
B� �

PN
i��

dh�xi��	
d�� �yi � h�xi� ���

�
PN

i��
dh�xi��	
d�� �yi � h�xi� ���

�
CA

�

�
B� �

P
xi�S� xi�yi � xTi �

���

�
P

xi�S� xi�yi � xTi �
���

�
CA �

�
B� �

P
xi�S� xi�yi � xTi �

���

�
P

xi�S� xi�yi � xTi �
���

�
CA �

The expression of the derivative is the same as in the linear regression case with the modi��
cation that only the data in the correct half�plane are included�

�



The Hessian is obtained by dierentiating VN once again

r�VN �

�
B�

���
P

xi�S�
xi�yi�xTi �

�			

���

���
P

xi�S�
xi�yi�xTi �

�			

���

���
P

xi�S�
xi�yi�x

T
i
��			

���

���
P

xi�S�
xi�yi�x

T
i
��			

���

�
CA �

The o diagonal elements are equal to zero since the intersection of S� and S� is zero� The
derivative of the expressions in the diagonal is straightforward since the hinge function is
linear in the region over which the summation is performed� The result is thus

r�VN �

�
B�
P

xi�S� xix
T
i �

�
P

xi�S� xix
T
i

�
CA � �	�

We can now apply the Newton algorithm to �nd the minimum of ���� see ���� This means
that we have the following iterative search algorithm�

�k�� � �k � �r�VN ���rVN

� �k �

�
B�
P

xi�S� xix
T
i �

�
P

xi�S� xix
T
i

�
CA
���
B�
P

xi�S� xi�yi � xTi �
�
k �P

xi�S� xi�yi � xTi �
�

k �

�
CA

� �k �

�
B� �

P
xi�S� xix

T
i �
��P

xi�S� xi�yi � xTi �
�
k �

�
P

xi�S� xix
T
i �
��P

xi�S� xi�yi � xTi �
�

k �

�
CA

� �k �

�
B� �

P
xi�S� xix

T
i �
��P

xi�S� xiyi � ��k

�
P

xi�S� xix
T
i �
��P

xi�S� xiyi � ��k

�
CA � ���

In the last expression for the Newton step the rule for calculation of the next � from step 

of the HH algorithm ��� is recognized� If it is rewritten we obtain the expression

�k�� � �k � ��Brk�� � �k��

where �Br is the parameter which would have been obtained if the HH algorithm was used�
The conclusion is that using a Newton algorithm for minimization of ��� is equivalent to
using the HFA� Generally� Newton�s method is not globally convergent� since no precaution
is taken regarding the decrease of the loss function� One of the conventional solutions to the
convergence problem of Newton�s method is to include a line search� The modi�ed algorithm
is the damped Newton algorithm� The damped Newton algorithm will in our case give the
following parameter update recursion

�k�� � �k � 	��Brk�� � �k��

The strategy for choosing 	 is to �rst try a full Newton step� i�e�� 	 � �� and if that fails
to decrease the loss function� a sequence of decreasing 	�s� e�g� 	 � f�� �

�

 � � � �g will be tried�

 



In ��� other strategies for the decrease of 	 are suggested where the function evaluations that
are performed when new 	�s are tested� are used for building local higher order models of
the cost function� These higher order models are used as base for calculation of 	�s to test�
However� for clarity in the examples given in this paper� the simplest possible strategy is
used� It is straightforward to include more sophisticated algorithms�

Let us end this section by stating some insights�

� To assure convergence� the HFA suggested in ��� should be modi�ed with a step length�
This necessity is exempli�ed in Section ��

� One single parameter update� ��� or ���� means that we solve a least�squares problem�
There is a non�linear eect due to that the subspaces S� and S� change together with
the parameters� Caused by this change xTi �

� will not apply to exactly the same data
as �� was estimated on� The step length is introduced to limit this non�linear eect
and to prevent a too large change of the subspaces S� and S� in one single iteration�

� Simultaneous Estimation of Hinge Function Parameters

In the previous section it was concluded that the HFA is equivalent to Newton�s algorithm
for minimization of a quadratic criterion� However� only parameters associated to one hinge
function are changed� and even when the model consists of many hinge functions the HFA
algorithm considers only one of them at the time� An alternative is to apply a damped Newton
method to all parameters at the same time� which would give a simultaneous parameter
update� In this section we discuss possible advantageous with this approach�

First we calculate the gradient and the Hessian of the criterion� Consider a HH model
with K hinge functions

f�x� �
KX
i��

hi�x� � �

where hi�x� are the hinge functions of the form �
�� Let the parameters be organized in one
column

� �

	











�

���

���
���

�K�

�K�

�
�

where the index shows to which hinge function the parameter vector belongs�

��



Using ��� the gradient of the criterion ��� becomes

rV �

	











�

�
P

xi�S��
xi�yi � f�xi��

�
P

xi�S��
xi�yi � f�xi��
���

�
P

xi�SK�
xi�yi � f�xi��

�
P

xi�SK�
xi�yi � f�xi��

�
�

� ����

where we skipped the index N indicating the number of data� Notice that the blocks only
dier from each other by the terms in the sums� Each sum includes the data of a half�space�

Dierentiating the gradient once more gives the Hessian

r�V �

	








�

r�V�� r�V�� � � � r�V�K

r�V��
� � �

���
���

� � �
���

r�VK� � � � � � � r�VKK

�
�
� ����

r�Vij �

�
B�
P

xk�S
i
�
�Sj

�

xkx
T
k

P
xk�S

i
�
�Sj
�

xkx
T
kP

xk�S
i
�
�Sj

�

xkx
T
k

P
xk�S

i
�
�Sj

�

xkx
T
k

�
CA �

Each component looks exactly as in the linear regression case with that modi�cation that
only those data which belong to the intersection of two half�spaces are included�

The diagonal blocks look like �	�� i�e��

r�Vii �

�
B�
P

xi�Si�
xix

T
i �

�
P

xi�Si�
xix

T
i

�
CA �

and have zero o�diagonal terms since the half�spaces Si� and Si� have no intersection by
de�nition�

An example will be used to illustrate the calculations� Assume that the hinging hyperplane
model consists of two hinge functions� From ���� the gradient can be expressed as

rV �
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P
xi�S���S

�
�
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�
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�
���

P
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P
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�
P
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P
xi�S���S

�
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xi�yi � xTi �
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P
xi�S���S

�
�

xi�yi � xTi �
�
��

�
P

xi�S��
xi�yi � xTi �
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���

P
xi�S���S

�
�
xi�yi � xTi �

�
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P
xi�S���S
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Figure �� Example of summation areas for two hinge functions� The shaded area S�
� � S�

� is
the part of hinging hyperplane model that is in!uenced both by ��� and ����

The case above is illustrated in Figure �� where a two�dimensional example is given� and the
lines represent the partition of the space into the half�spaces S� and S�� When the gradient is
dierentiated� to obtain the second derivative� the o diagonal blocks will contain terms of the
type

P
xix

T
i � where the summation index goes over intersections of two hyperplanes belonging

to dierent hinge functions� At �rst sight the calculation of the second derivative might look
messy� However� using a software package that utilizes vector and matrix multiplication� this
kind of operation is performed in one step�

Having obtained both the gradient and the second derivative all components for applying
a Newton type algorithm are available� e�g�� the parameters can be updated according to

�k�� � �k � 	�r�V ���rV� ��
�

Remark �� When the damped Newton method is implemented one avoids the computational
demanding computation of the inverse of the Hessian� Instead one solves a system of linear
equations

r�V��k�� � �rV

where the parameter update ��k�� � �k�� � �k is the unknown� This can be done very fast
in� e�g�� MATLAB�
Remark �� It can be shown that the original description of the HH model with the max�min
basis functions is over�parameterized� This means that one has to use the pseudo�inverse in
��
�� Alternatively� by changing the parameterization a more sparse description with less
parameters can be obtained� See ����

When can we expect to obtain a better performance with a simultaneous update like
��
� than with the HH algorithm� There is no clear answer to this question� The Newton

�




algorithm corresponds to a second order Taylor expansion of the criterion� If this is a good
approximation of the criterion then we also can expect the Newton step to be good�

Using the HFA algorithm implies that the o�diagonal elements in the Hessian ���� are
not considered� This makes each iteration faster but must typically be compensated by some
additional iterations� If the criterion is close to quadratic and if the o�diagonal elements are
of importance� then this will be a disadvantage� Typically the quadratic expansion is a good
approximation close to the minimum and if the criterion has a narrow valley in the parameter
space then we can expect that neglecting the o�diagonal elements slows down the process
considerably� See ���

Far away from the minimum� e�g�� at the beginning of the search� the quadratic expan�
sion might not be applicable and then it might be advantageous to neglect the o�diagonal
elements�

In the introduction it was mentioned that the HH model can be viewed as a basis expan�
sion� A function expansion where the basis functions are orthonormal all parameters can be
estimated independent from each other� i�e�� all o�diagonal elements of the Hessian are zero�
For the HH model� however� the basis functions overlap and the importance of this overlap
depends problem� It depends not only on the data but also on the current parameters �k�

The simultaneous update becomes more computational expansive when the number of
parameters increase� i�e�� when more hinge functions are included in the HH model� Then it
might be interesting to use the conjugate gradient method which builds up a Newton step by
a series of gradient steps avoiding to compute the Hessian� This algorithm has been found
successful in many neural network applications� See ��� and further references there�

In Section � the simultaneous update is compared to the HH algorithm in some simulation
examples�

� Examples

This section is divided into two parts� where the �rst part treats the improvement of the
HFA by introducing a step length parameter to assure convergence� The second part deals
with the simultaneous updating of all parameters instead of only a subset of them� and the
performance is compared to the HH algorithm from ����

��� Performance of the Modi�ed HFA

Let us use the same data as in Figure � for which the original HFA did not converge for all
initial parameter values� The HFA is now modi�ed with a step length and started at dierent
initial parameter values which correspond to dierent initial splits of the data� The result is
that the modi�ed algorithm always converges to one of the two local minima� The evolution
of the hinge position is depicted in Figure �� Compare this to the behavior of the original
algorithm� depicted in Figure �� For one of the initial values the algorithm jumps from one
local minimum to the atractor of the second minimum� Such jumps can be prevented by
implementing a more advanced step length rule� e�g�� the Armijo�Goldstein rule� see ����

Figure � should be compared to Figure � in Section 
� When the damped Newton algo�
rithm is used the HFA converges for all initial values� while using the unmodi�ed HFA will

��
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Figure �� Evolution of the hinge position for a number of initial data splits in the interval
x � ��� � � � � ������ There are two local minima�

result in no convergence or limit cycle behavior for some initial hinge intervals�

��� Simultaneous Parameter Updating

Two examples will be presented illuminating the practical dierences between the stepwise
updating of the parameters in the HFA and the simultaneous updating described in Section ��

One iteration with the simultaneous updating means one step with the Newton update
��
�� One iteration with the HFA algorithm means one cycle of Newton updates where each
hinge function is updated once� The HFA iteration will always be faster than the simultaneous
one� However� in general� not as e�cient �in the sense that the criterion decreases less��

In the examples to follow we will see that HFA is a short cut to gain speed which can
turn out not to be the fastest way�

����� Simultaneous vs� Stepwise Updating

In this example we will compare the performance of the HFA and the Newton algorithm when
applied to data generated by an HH model in two dimensions� The HH model contains two
hinge functions and is depicted in Figure 	�

The position of the hinges of the two hinge functions are easier seen in Figure ��
The input data is uniformly distributed on the square ��� ���� The number of samples is

��� � ��� � ��
��� The equations of the two hinges are�

x� � ���

x� � ���x� � �����

The true parameter vectors� giving the hinges above� are perturbed and is then used as the
initial vector� The equations of the two initial hinges given to the algorithms are�

���	�	x� � ��� ��x� � �����	

��
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Figure 	� Two dimensional HH model consisting of two hinge functions�
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Figure �� Hinges of the two hinge functions in Figure 	�
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	x� � ��
���x� � ��� ��

Using the same initial parameter vectors the two algorithms are executed� The result is
presented in Figures  and ��� To avoid a too messy plot only the result after every two
iterations is shown in the plot�

The initial hinge positions are marked by �initial hinge "�� and �initial hinge "
� in
Figure  � Using the HFA algorithm both hinge positions jump to the right of the true positions
and then very slowly converge towards the true hinges� In Figure  the hinge position for
hinge number � almost does not move for iterations � to �� Using the simultaneous updating
Newton algorithm� on the contrary� the hinges converged to their true positions after �
iterations� For the HFA over 

� iterations are necessary for convergence �not shown in the
�gure�� When the HFA had iterated 

� iterations� the hinge positions were�

���
 	x� � ������x� � ����
�

�� 	��x� � ��� ��x� � ����	��

which still deviates from the true position�
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Figure  � Hinge position evolution for � iterations of the HFA�

Remark �� Following the recommended procedure in ��� we should have run the HFA using
one hinge function until it converged� and then introduced the second hinge function� After
the second hinge function is introduced� the HFA should be re�iterated with one iteration at
a time� This procedure results in a worse result than the one�iteration procedure used in this
example�

It is important to calculate the total time needed for the minimization of the criterion� and
not to only consider how computationally complex parts of the algorithm are� For this two�
hinge example an HFA iteration takes about ��
 seconds and with the 

� iterations needed
to reach close to minimum� the HFA needs about �� minutes� For the simultaneous Newton
algorithm each iteration demands approximately � seconds� multiplied with the number of
iterations ��� this algorithm needs only �� seconds for the minimization�
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Figure ��� Hinge position evolution for � iterations of the Newton algorithm� Note that the
last iteration ends up on the true hinge position�

Since the simultaneous updating Newton algorithm performed signi�cantly better than
the HFA� the o�diagonal elements in the Hessian are important in this example� This is well
in line with the discussion in Section �� The HFA is a short cut to gain some speed but as
we have just seen is can easily turn out to be slower than the simultaneous Newton update�

����� A High Interaction Example

As the last example of this paper we have chosen to compare the algorithms in this paper
using the same simulated data as in ���� There the following �high interaction example� is
designed� The dimension of the input space is �� and the distribution of x is uniform on
��� ����� The following three functions are then formed�

l� � ��x� �  x� � �x� � 	x
 � �x� � �x �  x� � �x� � 
x� � x��

l� � �x� � 
x� � �x� � �x
 � �x� � �x � 	x� � �x� �  x� � ��x��

l� � �x� � 
x� � �x� � �x
 � �x� � �x � �x� � 
x� � x��

The sample size was chosen to ��� and the functions l�� l� and l� were normalized in such
a way that they have the upper  	��# sample equals 
��� For example� if we consider the
function l� we have obtained ��� samples of the linear function� Assume the samples of l� are
ordered in a vector from the lowest� labeling the lowest sample by �� to the largest� labeling
the largest sample by ���� Then the element lord�� �� at sample number � �� which is  	��
# of ���� in that ordered vector is read o� Finally� the function l� is multiplied with the
same factor that would give the result 
 if it multiplied the read o value lord�� ��� A second
triple is formed by vi � 
�li � 
�� Finally� the non�linear function is

g�x� �
ev�

� � ev�
�

ev�

� � ev�
�

ev�

� � ev�
�

�	



The function g is normalized by the factor a� so that the standard deviation of the function
was ���� and then white noise with standard deviation ��� was added� The expression for the
output data is hence

yi � a � g�xi� � ei�

A general comment that can be made regarding the function above is that it belongs to
the family named ridge functions� which are well suited for approximations with HH models�
The shape of this particular function g�x� is not possible to match exactly by HH models�
In other words� an example chosen not to be too di�cult� but not too easy either�

In ��� it is concluded that the best �t was obtained by a three hinge HH model� The
conclusion comes from inspection of a� so called PEGCV criterion� which is a combination
of the mean residual sum�of�squares �MRSS� and a penalty on the number of used hinge
functions�

Our experience when running the algorithm proposed in this paper and the HFA is that
there is a variation of the cpu�time depending on the chosen initial value of the parameter
vector� Of course� also the �nal MRSS depends on the initial value due to local minima� The
experiments were performed on a SPARCstation LX �running MATLAB�� The cpu�time used
varies from ���� seconds to 
��� seconds for the algorithm with simultaneous updating of the
parameters� and from 	��� seconds to ���	� seconds for the HFA� The MRSS goes from ���

to ���� for both algorithms depending on the initial value� The MRSS is the same for both
algorithms� because the same minimum was reached using both the algorithms� We have
summarized the results in Table ��

HFA Newton

" iter time MRSS " iter time MRSS

�	 ���	�� ����	 
� 
����� ����	


� ���	�� ����� 	  ���� �����

�� ������ ����� � 
����� �����

�� 	���� ���
� � ����� ���
�

�� 
 � �� ����� �� � ���� ����


Table �� Results of a comparison between HH model estimation using HFA and the method
proposed in this paper� The �rst and fourth columns shows the number of iterations used by
the HFA and Newton algorithm� respectively� The second and �fth columns contain the cpu�
time� in seconds� used by the algorithms� The third and sixth column display the achieved
mean residual sum�of�squares�

The initial values of the parameter vectors were picked at random� We used the same
initial vectors for both algorithms� The table above shows the cpu�time consumed by the
algorithms� the number of iterations needed� and the MRSS accomplished� One iteration

��



in the HFA case is one complete update of the HH model� i�e�� one iteration of each hinge
function in the HH model�

The conclusion is that the performance of the simultaneous updating algorithm proposed
here is better than the HFA algorithm� The average time needed per iteration is lower for
the HFA� but the Newton algorithm needs less than half the number of iterations compared
to the HFA�

� Conclusions

In this paper the estimation algorithm for the recently introduced hinging hyperplane model
has been considered� The main building block of the estimation algorithm is the so called
hinge �nding algorithm� It has been shown that it is a Newton algorithm for minimization
of a quadratic loss function� From this insight we can make the following conclusions�

� Di�culties with the convergence with the original hinge �nding algorithm can be cir�
cumvented by using standard techniques in numerical minimization theory� By intro�
ducing a step length the method is converted into a damped Newton algorithm which
assures convergence�

� A damped Newton search can also be applied to all parameters simultaneously� This is
an alternative to the iterative HH algorithm suggested in ���� The dierence between
these two approaches and advantages and disadvantages of the proposed algorithm have
been discussed� Which method is best� is problem dependent� but in general it can be
expected that a simultaneous update gives faster convergence close to the minimum�

� From the two conclusions above� it is clear that there are no evident algorithmic ad�
vantageous with the HH model in comparison with for example neural nets� The same
numerical search methods are applicable for both of these model structures�

The conclusions have been illustrated in the examples�
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