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Abstract. It is shown that the method of maximum likelihood occurs in
w Ž .rudimentary forms before Fisher Messenger of Mathematics 41 1912

x155]160 , but not under this name. Some of the estimates called ‘‘most
wprobable’’ would today have been called ‘‘most likely.’’ Gauss Z. As-

Ž . xtronom. Verwandte Wiss. 1 1816 185]196 used invariance under
parameter transformation when deriving his estimate of the standard

wdeviation in the normal case. Hagen Grundzuge der Wahrschein-¨
Ž .xlichkeits-Rechnung, Dummler, Berlin 1837 used the maximum likeli-¨

hood argument for deriving the frequentist version of the method of
wleast squares for the linear normal model. Edgeworth J. Roy. Statist.

Ž . xSoc. 72 1909 81]90 proved the asymptotic normality and optimality of
the maximum likelihood estimate for a restricted class of distributions.
Fisher had two aversions: noninvariance and unbiasedness. Replacing
the posterior mode by the maximum likelihood estimate he achieved
invariance, and using a two-stage method of maximum likelihood he
avoided appealing to unbiasedness for the linear normal model.

Key words and phrases: Chauvenet, confidence limits, credible limits,
Edgeworth, Encke, Fisher, Gauss, Gosset, Hagen, invariance, inverse
probability, Laplace, least squares, likelihood limits, linear normal
model, maximum likelihood, Merriman, posterior mode, reparameteriza-
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1. INTRODUCTION

The modern version of the method of maximum
likelihood was created single-handedly by R. A.
Fisher between 1912 and 1922; see the recent dis-

Ž . Ž .cussions by Edwards 1997 , Aldrich 1997 and
Ž .Hald 1998, Sections 28.4]28.5 . Here we present

some further information on the history of the
Ž .method, as a supplement to Edwards 1974 . The

method of maximum likelihood occurs in various
rudimentary forms before Fisher, but not under
this name. Some of the estimates called ‘‘the most
probable values of the unknowns’’ are maximum
likelihood estimates. The terminological confusion
was not cleared up until Fisher in 1921 introduced
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the term ‘‘likelihood’’ and in 1922 the ‘‘maximum
likelihood estimate.’’

Ž .It is well known see Hald, 1998 that the method
of maximum likelihood was proposed independently
by Lambert and Daniel Bernoulli, but with no prac-
tical effect because the maximum likelihood equa-
tion for the error distribution considered was in-
tractable.

Ž .Gauss 1809 combined the Lambert]Bernoulli
idea with Laplace’s principle of inverse probability,
which led him to maximize the posterior density of
the location parameter in the error distribution,
assuming that the prior distribution is uniform.
Requiring that the posterior mode equals the arith-
metic mean, Gauss derived the normal distribution
and thus gave a probabilistic justification for the
method of least squares.

The methods considered lead to the same esti-
Žmates of the location parameters regression coeffi-

.cients in the linear normal model, so when looking
for differences we have to study the estimation of

214



MAXIMUM LIKELIHOOD, INVERSE PROBABILITY, LEAST SQUARES 215

the variance. The method of least squares does not
specify a rule for estimating the variance. However,

Ž .as noted by Laplace 1812, II, Section 20 in connec-
tion with his large-sample theory of this method, it
is natural, by analogy, to use the empirical second

2 n 2 2Ž .moment s s Ý x y x rn an estimate of s . Heˆ 1 i
used this estimate to obtain large-sample confi-
dence limits for the location parameter in the form

'x " usr n , where u denotes the standardizedˆ
normal deviate for the confidence level chosen.

In his frequentist version of the method of least
Ž . 2 nŽsquares, Gauss 1823 proved that s s Ý x y1 i

2 2. Ž .x r n y 1 is an unbiased estimate of s , and this
became the estimate ordinarily used by astron-
omers and surveyors.

However, Edgeworth’s genuine inverse method
and Fisher’s method of maximum likelihood both
lead to the estimate s 2, so they had to modify theirˆ
methods to obtain the Gaussian estimate. Edge-

Ž .worth 1908 showed that the estimate s may be
obtained as the mode in the marginal posterior

Ž .distribution, and Fisher 1922b derived s by a
two-stage maximum likelihood method. They both
avoided appealing to unbiasedness, a concept for-
eign to their methods.

We shall in particular discuss three contributions
that imply the method of maximum likelihood:

Ž .namely, the contributions by Gauss 1816 , Hagen
Ž . Ž .1837 and Edgeworth 1909 ; see Sections 2]4.
Fisher did not know these results when he wrote
his first papers on maximum likelihood.

In Section 5 we discuss some of Fisher’s results
in relation to noninvariance, unbiasedness and con-
fidence intervals.

2. GAUSS’S ESTIMATES OF THE
STANDARD DEVIATION

Ž .Gauss 1809 wrote the normal distribution in
the form

2y1r2 2Ž < . w Ž . xf x u , h s p h exp yh x y u ,

y` - x - `, y` - u - `, 0 - h - `,

'the precision constant being h s 1rs 2 . He con-
sidered the estimation of u and h as separate
one-parameter problems; in 1809 he estimated u ,
assuming that h is known, and in 1816 he esti-
mated h, assuming that u is known; in both cases
he used the posterior mode as estimate.

Ž .For a sample of n observations x s x ,???, x ,1 n
we shall introduce the errors « s x y u and thei i
residuals e s x y x, i s 1,???, n. Moreover, we usei i

w x n 2the Gaussian summation notation «« s Ý « , so1 i
that

2Ž . w x w x Ž .1 «« s ee q n x y u .

The probability density of the sample is

Ž < . yn r2 n Ž 2 w x .p x u , h s p h exp yh ee
Ž .2

22w Ž . x= exp yh n x y u .

Assuming that u and h are uniformly distributed,
Ž < .the posterior distribution p u , h x , say, is propor-

Ž < .tional to p x u , h .
Applying Laplace’s principle of inverse probabil-

Ž . Žity in its likelihood ratio form, Gauss 1816, Art.
.3 stated that

Ž < . Ž < .p h « p « h1 1Ž . Ž .3 s , « s « ,???, « ,1 nŽ < . Ž < .p h « p « h2 2

for all values of h and h on the positive real line.1 2
He concluded that

Ž . Ž < . Ž < . n Ž 2 w x .4 p h « A p « h A h exp yh «« .

The most probable value of the true value of h is
ˆ w x'thus h s nr2 «« .

However, Gauss’s goal was to find probability
limits for u , and he therefore needed an estimate of

Ž .s . He writes in our notation :

The most probable value of s is consequently
ˆ'1rh 2 . This result holds generally, whether n

be large or small.

ˆ w x'Hence, Gauss transformed h to s s «« rn asˆ
if the estimates were parameters. We shall call this
rule the Gaussian rule of invariance. Gauss did not
give any argument for this rule, perhaps because it
seemed obvious to him for the following reason.
Reparameterizing the error distribution from h to
s , and denoting the corresponding densities by pU,
it follows that

U U 'Ž < . Ž < . Ž < .p s « A p « s A p « h for h s 1rs 2 ,

ˆ'which demonstrates the fact that s s 1rh 2 . It isˆ
clear that the Gaussian rule holds for any one-to-one
transformation of the parameters.

Gauss used the probable error r s 0.6744897s as
parameter; we have rewritten his formulas in terms
of s .

Expressed in terms of prior distributions, it can
be said that Gauss used a modified version of the
principle of inverse probability, namely: to estimate
h he assumed the prior distribution of h to be
uniform, and to estimate a one-to-one transforma-

Ž .tion of h, s s s h say, he assumed the prior
distribution of s to be uniform. However, this is
equivalent to using the method of maximum likeli-
hood.

Gauss did not mention the fact that if he had
used the normalized version of Laplace’s principle,
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he would have found that

Ž < . Ž < . < <p s « s p h « dhrds ,

which leads to a contradiction of his rule of invari-
ance.

Gauss’s rule was accepted by most statisticians,
although several writers pointed out that a uniform
prior distribution of h implies a prior distribution
for s proportional to sy2 .

Ž < .Expanding ln p h « in Taylor’s series about h s
ĥ, and neglecting terms of smaller order of magni-
tude than the first, Gauss obtained

2 2ˆ ˆ ˆŽ . Ž < . Ž < . Ž .5 p h « s p h « exp yn h y h rh ,

ˆso h is asymptotically normal with mean h and
ˆ2variance h r2n. He concluded that the large-sam-

ˆ 'Ž .ple limits for the true value of h are h 1 " ur 2n .
ˆ'Making the substitutions h s 1rs 2 and h s

'1rs 2 , Gauss found the corresponding limits for sˆ
'Ž .as s l " ur 2n ; that is, s is asymptotically nor-ˆ

mal with mean s and variance s 2r2 n.ˆ ˆ
Referring to Laplace’s central limit theorem,

w xGauss noted that the sampling distribution of ««
for large n is normal with mean ns 2 and variance
2ns 4. It follows that the probability limits for ŝ

'Ž .are s 1 " ur 2n , and solving for s Gauss ob-
'Ž .tained the limits s 1 " ur 2n . He remarked thatˆ

these limits are identical to those found above by
inverse probability.

Gauss had only the single word ‘‘probability’’ at
his disposal for characterizing the two sets of limits
that today are called credible and confidence limits,
respectively. However, there is no ambiguity in
Gauss’s description of the different probabilistic

Ž .backgrounds. Gauss 1816, Art. 4 also distin-
guished between parameter and estimate by using
lowercase letters for parameters and capitals for
estimates.

Ž .Gauss left three problems unsolved: 1 Why did
he not maximize the joint posterior distribution
Ž < . Ž .p u , h x with respect to both parameters? 2 Why

did he not use the marginal distribution of u for
Ž .finding credible limits? 3 Why did he not use the

marginal distribution of h to estimate the true
value of h? As we shall see in Section 4, these
problems were discussed by Edgeworth.

2 w xWe have used s as notation for ee rn as wellˆ
w xas «« rn, because both are maximum likelihood

estimates of s 2 depending upon assumptions made
about u .

Consider now the linear normal model with m -
n parameters in the usual matrix notation y s Xb

Ž .q « . Gauss 1809 proved that b , the r th compo-r
nent of b, is normally distributed with mean b ,r

the least squares estimate, and precision hr q ,' r r

where q is the r th diagonal element of Q sr r
Ž X .y1X X , r s 1,???, m. His main tool in the proof
was the decomposition

Ž . X X X6 « « s e e q v v , e s y y Xb,

Ž .where v s U b y b , U being upper triangular,
and the elements of v are independently dis-

Ž 2 .tributed as N 0, s , like the elements of « .
Ž .Gauss 1823 gave up the method of inverse prob-

ability, because he considered it as metaphysical,
and he also abandoned the assumption of normality
as too narrow. Instead he justified the method of
least squares as the method leading to minimum
variance estimates within the class of linear unbi-
ased estimates. He called these estimates the most
plausible values of the parameters. Moreover, he
proved that

X2 Ž . Ž . Ž .s s y y Xb y y Xb r n y m

is an unbiased estimate of s 2, and remarked that
the sum of the n squared residuals under normality
is distributed in the same way as the sum of n y m
squared true errors; presumably he based this re-

Ž .mark on relation 6 . He used s as an estimate of
s , that is, he did not require unbiasedness.

3. THE FREQUENTIST VERSION OF THE
METHOD OF LEAST SQUARES FOR THE

LINEAR NORMAL MODEL

ŽThe task of rewriting Gauss’s first proof Gauss,
.1809 in frequentist terms was carried out by as-

tronomers and geodesists writing elementary text-
books on the method of least squares. They found

Ž .Gauss’s second proof Gauss, 1823 too cumbersome
for their readers and did not need the generaliza-
tion involved, because the measurement errors en-
countered in their fields were in most cases nearly
normally distributed. They realized that the method
of maximizing the posterior density could be re-
placed by the method of maximizing the density of

Ž < . Ž < .the observations, because p u x A p x u . Hence,
the roles of parameters and estimates in Gauss’s
formulas were interchanged.

They did not relate their method to the Lam-
bert]Bernoulli idea, which presumably was un-

Žknown to them. Only Todhunter 1865, pages 236]
. Ž < .237 noted that the method of maximizing p x u

with respect to u for normally distributed observa-
tions was an application of Bernoulli’s method of
maximum likelihood.

These elementary textbooks authors wrote the
probability of the observed system of errors as

Ž . Ž .f « ??? f « d« ??? d« s P d« ??? d« ,1 n 1 n 1 n

calling P the probability of the system of errors,
the term ‘‘probability density’’ being of a later date.
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The estimates obtained by maximizing P were
called ‘‘the most probable values of the unknowns’’;
they thus adopted Gauss’s expression although they
did not use inverse probability. They did not grasp
the importance of Gauss’s distinction between ‘‘most
probable’’ and ‘‘most plausible.’’

They followed Gauss by treating the maximiza-
tion of the density

2yn r2 n 2Ž < . Ž .p x u , h s p h exp yh x y uÝ½ 5i

as two successive one-parameter problems. Max-
ˆimization with respect to u leads to u s x, and

ˆfor the linear normal model to b s b , r s 1,???,r r
ˆm. Maximization with respect to h leads to h s

w x'nr2 «« , and maximization with respect to s
ˆ'w x'gives s s «« rn . It follows that s s 1rh 2 , inˆ ˆ

accordance with Gauss’s rule.
We shall consider some early books and papers

on this topic to demonstrate how the method
evolved.

Ž .Encke 1832]1834 wrote a comprehensive sur-
vey of Gauss’s work on the method of least squares,
covering both of Gauss’s proofs and adding some

Ž .modifications of his own. He 1832, page 276 maxi-
Ž < .mizes p x u , h with respect to u , and afterwards

he notes that the same estimate is obtained by
Ž < .maximizing p u , h x . He reproduces Gauss’s de-

2 w x Ž .rivation of s s «« rn, and using equation 1 heˆ
Ž . w x1832, pages 283]284 remarks that ee is smaller

2w x Ž .than «« by the quantity n x y u , which on the
average equals s 2. He concludes that the estimate

2 2 w x Ž .of s should be s s ee r n y 1 when u is un-
Ž .known. He 1833, page 320 extends this proof to

the linear normal model. Taking expectations of
Ž . Ž X . Žboth sides of equation 6 he gets E e e s n y

. 2 2 X Ž .m s , so that s s e er n y m is an unbiased esti-
mate of s 2. This simple proof became standard in
textbooks on the method of least squares.

Ž .In his textbook for civil engineers, Hagen 1837
begins by deriving the normal distribution of errors
by a simplification of Laplace’s central limit theo-

Žrem. His hypothesis of elementary errors Hagen,
.1837, page 34 says that

the error in the result of a measurement is the
algebraic sum of an infinitely large number of
elementary errors which are all equally large,
and each of which can be positive or negative
with equal ease.

This means that the distribution of the sum of n
elementary errors is the symmetric binomial, which
converges to the normal for n ª `. To avoid
the complicated proofs of de Moivre and Laplace,
Hagen finds the relative slope of the binomial fre-
quency curve, which for n ª ` leads to a differ-

ential equation with the normal distribution as
solution. Because of its simplicity this proof was
adopted by many textbook writers.

Ž .Hagen 1837, page 75 emphasizes that, by using
this derivation of the normal distribution as start-
ing point, one avoids the circularity involved in

Ž .Gauss’s 1809 proof of the arithmetic mean as the
best estimate of u .

Assuming that the observational errors are nor-
mally distributed, and setting d« s d« for all i,i

Ž . Ž .Hagen 1837, page 67 obtains in our notation
nn n 2'Ž . Ž .Ž . Ž . Ž w x .7 p « d« s d«r p h exp yh «« .

He remarks that

the first factor of this expression will be un-
wchanged if we attach another hypothesis re-

xgarding the true value to the observations and
the individual errors therefore take on other
values; the second factor will however be
changed. Among all hypotheses of this kind,
which can be attached to the observations, the
most probable is consequently the one which

w Ž .Ž .n xmakes Y p « d« a maximum, which means
that the exponent of e should be a minimum,
that is, the sum of the squares of the resulting
errors should be as small as possible.

Hagen’s second factor is thus the likelihood func-
tion for u , which he maximizes to find the most
likely hypothesis.

For the linear normal model Hagen gets
XX X XŽ . Ž .« « s e e q b y b X X b y b ,

Ž .which inserted into p « gives the likelihood func-
Žtion for b. To find the likelihood for b , he Hagen,1

. Ž .1837, page 80 maximizes p « with respect to the
other elements of b and finds

22 Ž .yh b y b1 1Ž .max p « A exp ,ž /qŽ .Ž . b ,??? , b8 112 m

y1XŽ .Q s X X .

He concludes that b is normally distributed withr
mean b and variance s 2q , r s 1,???, m. This isr r r
the likelihood version of Gauss’s 1809 proof.

Ž .In his textbook on astronomy, Chauvenet 1863
wrote an appendix on the method of least squares
that essentially is an abridged English version of
Encke’s 1832 paper, except that it leaves out all
material on inverse probability. He thus proved
Gauss’s basic results for normally distributed ob-
servations by operating on the likelihood function
instead of the posterior distribution.

A more consistent exposition of the likelihood
Ž .theory is due to Merriman 1884 in The Method of
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Least Squares, written for ‘‘civil engineers who have
not had the benefit of extended mathematical train-
ing.’’ Merriman had an extraordinarily good back-
ground for writing this book because in 1877 he had
provided a ‘‘List of writings relating to the method
of least squares, with historical and critical notes’’
Ž .Merriman, 1877 , containing his comments on 408
books and papers published between 1722 and 1876.
It should be noted, however, that all his comments
are based on the principle of maximizing the proba-
bility of the sample; he does not even mention
inverse probability.

Ž .Merriman 1884, Art. 13 defines ‘‘most probable’’
as follows: ‘‘The most probable event among several
events is that which has the greatest mathematical
probability,’’ and in Art. 17 he writes that ‘‘The
probability of an assigned accidental error in a set
of measurements is the ratio of the number of
errors of that magnitude to the total number of
errors.’’

In Art. 41 he formulates the method of estima-
tion:

The most probable system of errors will be that
Ž .for which P is a maximum Art. 13 and the

most probable values of the unknowns will cor-
respond to the most probable system of errors.

Merriman’s postulate above obviously leads to
the maximum likelihood estimate, which for the
location parameter in the linear normal model
equals the least squares estimate.

To estimate h he maximizes the right-hand side
Ž .of formula 4 , leading to the maximum likelihood

ˆ 'estimate h. He remarks that because s h 2 s 1,
w x'the estimate of s becomes s s «« rn , and us-ˆ

ing Encke’s argument he obtains the estimate s
w x Ž .'s ee r n y 1 .

ˆ ŽTo find the uncertainty of h, Merriman 1884,
ˆ. Ž < .Art. 164 expands p « h around h and, omitting

terms of smaller order of magnitude, he obtains

2 2ˆ ˆ ˆŽ . Ž < . Ž < . Ž .9 p « h s p « h exp yn h y h rh .

ˆHe concludes that the sampling distribution of h
in large samples is normal with mean h and stan-

ˆ 'dard error hr 2n . This is the likelihood version of
Ž .Gauss’s 1816 proof; see 5 .

It will be seen that Hagen and Merriman derived
the likelihood functions for the parameters in-

Ž . Ž .volved; see 8 and 9 . Because the likelihood func-
tion is proportional to the probability density, they
interpreted these results as the sampling distribu-
tions of the estimates. In this way they came to the
same frequentist results as Laplace and Gauss, but
with much simpler proofs because they considered
only the linear normal model.

Merriman’s book was well known among British
statisticians; both Pearson and Edgeworth refer to
it.

4. EDGEWORTH’S GENUINE INVERSE
METHOD AND THE ASYMPTOTIC
SAMPLING DISTRIBUTION AND

OPTIMALITY OF THE POSTERIOR MODE

Ž . ŽEdgeworth 1883 maximizes the density p u ,
< .s x with respect to both parameters and thus ob-

w x'tains the estimates x and ee rn . He emphasizes
that the solution holds whether the number of ob-

Žservations be finite or infinite. Edgeworth uses the
' .modulus c s s 2 as parameter. It worries him

that Gauss and his followers use n y 1 instead of n
as denominator, and he therefore provides a further
argument for using n.

If s is known, then the credible limits for u are
'found by means of the standard error sr n , but

how are we to find these limits when s is un-
known? Edgeworth derives the marginal distribu-
tion of u for a uniform distribution of h, which
gives

Ž < . Ž < .p u x s p u , h x dhH
Ž .y nq1 r22� w x Ž . 4A ee q n x y u .

This means that

'Ž .u y x n
t s w x' ee rn

is distributed as Student’s t with n degrees of
freedom. Edgeworth concludes that the probable

Ž .limits 50% credibility for u ,

y1r2 y1r2 w x'x " un s ( x " un ee rn ,

Ž . Ž .F u y F yu s 0.5,

should be replaced by the limits

y1r2Ž . w x Ž . Ž .'10 x " tn ee rn , P t y P yt s 0.5,

Ž .where P t denotes the cumulative distribution
function of the t-distribution. Edgeworth takes this
result as further evidence for using n as denomina-
tor in the estimate of s .

Returning to this problem in 1908, Edgeworth
Ž .says Edgeworth, 1908, pages 393]394 that the

Ž .probable limits 10 appear to be of no great signifi-
cance. Presumably he did not realize the impor-
tance of the t-distribution because he considered
only the probable limits where the difference be-
tween u and t is rather small.

Ž . w x'He remarks that the estimate n y 1 r2 ee
can be found as the mode in the posterior marginal
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distribution of h because

Ž < . Ž < .p h x s p u , h x duHŽ .11
ny1 Ž 2 w x .A h exp yh ee .

After the invention of Karl Pearson’s four-param-
eter system of frequency curves it became clear
that new methods of estimation were needed. Pear-
son used the method of moments, whereas Edge-
worth developed a generalized version of Gauss’s
Ž .1809, 1816 method and applied it to nonnormal
distributions.

Ž .Edgeworth 1908, pages 392, 396 points out that
the posterior mode is noninvariant to parameter
transformation. However, limiting himself to large-
sample theory, he remarks that this fact is of no
importance, because ordinary transformations are

ˆ y1r2nearly linear in a neighborhood of u of order n .
For large n he introduces the ‘‘genuine inverse

method,’’ which may be summarized as follows:

1. Use a uniform distribution for the parameters in
the model, whatever parameterization has been
chosen.

2. Maximize the joint posterior distribution to find
the estimates.

3. The parameters are asymptotically multivariate
normal with the posterior mode as mean and the
inverse of the observed information matrix as
dispersion matrix.

4. Interchanging the roles of parameters and esti-
mates, it follows that the estimates are asymp-
totically multivariate normal with the parame-
ters as means and the inverse of the expected
information matrix as dispersion matrix.

5. The posterior mode minimizes the posterior ex-
pected squared error.

Edgeworth next takes the remarkable step of
ˆinvestigating the sampling distribution of u to show

ˆthe optimality of u within the class of consistent
Ž .and asymptotically normal statistics t s t x that

are symmetric functions of the observations. As-
Ž .suming that f x y u is symmetric about zero,

he proves by means of Schwarz’s inequality that
ˆŽ < . Ž < .var u u O var t u for t equal to the arithmetic

mean and the median, respectively. For a skew
ˆdistribution, Pearson’s Type III, he proves that u is

at least as good as the estimate found by the method
of moments. However, he does not find a general

ˆproof of u ’s optimality by this method.
Returning to the problem in 1909, Edgeworth

limits the investigation to location densities and to
Ž .the class of estimates today called M-estimates

Ž .satisfying an equation of the form Ýg x y u s 0,i

� Ž .4 XŽ .where E g y s 0 and g 0 / 0, y s x y u . The
error of estimation u s t y u of an estimate t is

Ž .thus found from the equation Ýg y y u s 0, andi
using Taylor’s expansion he finds to a first approxi-
mation that

Ž .Ýg yi
u s .X Ž .Ýg yi

From the central limit theorem it follows that u is
asymptotically normal with zero mean and that

2X2Ž . � Ž .4 w � Ž .4 xn var u s E g y r E g y .

Using the calculus of variations, Edgeworth proves
Ž .that the function minimizing var u is proportional

X ˆŽ . Ž .to f y rf y , which means that u has minimum
variance within the class of estimates considered.

He gives a similar analysis of the estimation
problem for the scale parameter model and indi-
cates that analogous results hold for the location]
scale model.

More detailed discussions of Edgeworth’s proofs
Ž . Žare given by Pratt 1976 and Hald 1998, Section

.28.3 .
It is an astounding fact that Edgeworth’s papers

were unknown to Fisher when he wrote his paper
on maximum likelihood estimation in 1912.

5. ON THE DEVELOPMENT OF FISHER’S
METHOD OF MAXIMUM LIKELIHOOD

Ž < . Ž .Let f x u dx, u s u ,???, u , be the chance of an1 m
observation falling within the range dx, and set

X Ž < . Ž < .P s f x u ??? f x u dx ??? dx .1 n 1 n

Ž .Fisher 1912 introduces the method of maximum
likelihood by the following argument:

w xThe factors d x dx ,???, dx are independent of1 n
the theoretical curve, so the probability of any
particular set of u ’s is proportional to P, where

n

log P s log f .Ý
1

The most probable set of values for the u ’s will
make P a maximum.

Fisher’s argument is thus the same as Hagen’s
Ž .1837 , and his terminology and notation are those
used by Chauvenet and Merriman. However, Fisher
was not aware of the distinction between the fre-
quentist and the inverse probability versions of the
method of least squares, so confusingly he calls
Ž < .p x u , h ‘‘the inverse probability system.’’ At the

end of the paper he explains that P, after all, is not
an inverse probability but ‘‘must be considered as



A. HALD220

the relative probability of the set of values u , ??? ,1
u .’’m

Like Edgeworth, Fisher notes that the posterior
mode depends on the parameterization of the model.
While Edgeworth dismisses this problem, because
it is of no importance in large samples, Fisher
makes the crucial remark that ‘‘the relative values
of P would be unchanged by such a transforma-

Ž .tion,’’ whereas the inverse probability that the
true value lies within a given region would change
unless the Jacobian of the transformation equals
unity. Hence, Fisher rejects inverse probability be-
cause of its noninvariance.

Ž <For normally distributed observations P s p x
ˆ.u , h ; hence, Fisher finds the estimates u s x and

2ˆ w x w x'h s nr2 ee , and thus s s ee rn. To defendˆ
this result, as opposed to the ordinary estimate s2,
Fisher criticizes Chauvenet’s proof because it de-
pends on unbiasedness, leading to noninvariant es-

Ž 2 < .timates. Instead he suggests maximizing p s hˆ
with respect to h to find the most probable value of
h. This is rather bewildering for the reader; Fisher

ˆhad just explained why he preferred h to the classi-
ˆcal estimate, and now he proposes to replace h by

Ž .another more probable? estimate. If he had known
Ž . Ž .the papers by Helmert 1876 or ‘‘Student’’ 1908 ,

Ž 2 < .in which p s h is derived, he would have foundˆ
that the proposed procedure leads to the estimate

2 w x Ž .s s ee r n y 1 that he had just criticized.
Ž .As pointed out by E. S. Pearson 1968 , Fisher

Ž .came into correspondence with Gosset ‘‘Student’’
in September 1912. Fisher’s letters to Gosset are
lost, but Gosset’s correspondence with K. Pearson
reveals that Gosset’s arguments for n y 1 as de-
nominator made Fisher reconsider the problem. In
his second letter to Gosset, Fisher gave an exact

Ž .proof of Gosset’s ‘‘Student,’’ 1908 joint distribution
Žof x and s and of the distribution of z s x yˆ

. Ž .u rs , which was Gosset’s ‘‘Student,’’ 1908 origi-ˆ
nal form of the t-distribution.

Fisher’s proof was not published until 1915; he
Ž .used Fisher, 1915, page 509 a geometrical argu-

ment, which may be expressed in algebraic terms
as

Ž < . Ž .p x u , s d x
21yn y2 2Ž Ž . . Ž .A s exp y s n x y u q ns d xˆ½ 52

2y1 2Ž .A s exp yn x y u r2s dxŽ .½ 5
� yŽ ny1. ny2 Ž 2 2 . 4? s s exp yns r2s dsˆ ˆ ˆ

Ž < . Ž < .A p x u , s dx p s s ds .ˆ ˆ

This result led Fisher to introduce a two-stage
maximum likelihood method. At the first stage, the

ˆordinary maximum likelihood estimate u is found

Ž < . Ž < .by maximizing L u x A p x u ; at the second stage
ˆthe sampling distribution of u , say, is derived, and1

if this distribution depends on u only, then a new1
ˆ̂ ˆŽ < .estimate u , say, is found by maximizing L u u1 1 1

ˆŽ < . Ž .A p u u . Aldrich 1997 calls this ‘‘the second1 1
Ž .criterion’’; like Savage 1976, page 455 , we suggest

that it is better considered as the second step in an
extended maximum likelihood procedure.

Estimating s by this method, we first find s 2 sˆ
ˆ 2w x w x Ž .ee rn, and next s s ee r n y 1 by maximizingˆ

Ž < . Ž < .L s s A p s s . Transforming from s to h, itˆ ˆ
ˆŽ < .will be seen that L h h is proportional to Edge-

Ž < .worth’s p h x . Hence, the two-stage method leads
to the same result as the posterior marginal distri-
bution, and as the frequentist method with its re-
quirement of unbiasedness.

Fisher’s first example of the two-stage method is
given in his paper on the distribution of the corre-

Ž < .lation coefficient p r r . The first-stage estimate
Ž < . Ž < .is r s r, and maximizing L r r A p r r Fisherˆ

Ž .1915, page 521 finds, to a first approximation,
that

1 y r 2

ˆr s r 1 q .ˆ ž /2n

ˆBoth r and r are biased estimates of r.ˆ
ˆSuppose that u is normally distributed with mean

Ž . 2 2u q b u rn and variance v rn, where v is inde-
ˆ̂ ˆ ˆŽ .pendent of u . It follows that u s u y b u rn, to a

first approximation, so that the bias at the first
stage is removed at the second stage.

This is the idea underlying Fisher’s second exam-
ple, in which he considers the transformed correla-
tion coefficient

1 1 q r
z s ln .

2 1 y r

Ž .Fisher 1921 proves that the distribution of the
first-stage estimate, which is obtained by replacing

Ž .r by r, is nearly normal with mean z q rr2 n y 1
Ž .and variance 1r n y 3 , so that

1 1 q r rˆ̂z s ln y Ž .2 1 y r 2 n y 1

is a nearly unbiased estimate of z . Fisher remarks
that the correction to the first-stage estimate is
immaterial for a single sample, because it is of
higher order than the standard deviation, but for
pooling the information in several samples the cor-
rection should be taken into account to avoid a
systematic error of estimation.

When giving his final definition of the likelihood
Ž .of u, Fisher 1922a, page 310 mentions only the

Žfirst stage. Nevertheless, he Fisher, 1922b, page
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.600 uses the two-stage method for estimating the
within-group variance in a one-way layout and the
variance about the regression line. Under the usual
assumptions for the analysis of variance, the first-
stage estimate becomes

nm 2 iÝ n ŝis1 i i 22 2 Ž .s s , n s s x y x .ˆ ˆ Ýi i i j imÝ nis1 i js1

Noting that the within-group variances are inde-
pendent, Fisher gets

m
Ž .n y3 r2i2 2 yŽn y1. 2iŽ < . Ž .p s s A s sˆ ˆŁ i

is1

Ž 2 2 .= exp yn s r2s ,ˆi i

and, maximizing with respect to s 2, he obtains

Ým n s 2ˆis1 i i2ŝ s .ˆ m Ž .Ý n y 1is1 i

In this way he provides a maximum likelihood
argument for using the number of degrees of free-
dom as denominator; he has thus obtained an unbi-
ased estimate of s 2 without invoking the criterion
of unbiasedness.

Suppose that the m samples are of the same size,
n say, so that s 2 s Ýms 2rm. For a fixed value of nˆ ˆ1 i

2 2Žand m ª `, s tends in probability to s n yˆ
.1 rn. This inconsistency of the maximum likelihood

estimate was pointed out by Neyman and Scott
Ž .1948 ; they have, however, overlooked that in this
problem Fisher would have used the two-stage

Ž .method; see Savage 1976, page 455 .
Fisher considered the likelihood function as mea-

suring the support, given by the observations, to
the various possible hypotheses within the model.

Ž .He suggested Fisher, 1921 that the ratio of the
likelihood function to its maximum may be used to

Ž .find ‘‘likelihood intervals’’ our term for the param-
eter, presumably to replace the two other types of
probability intervals in ordinary use. He remarked
that if ‘‘the sampling curves are normal and equiv-
ariant,’’ then the normed likelihood function will be

ˆ 2 2� Ž . 4proportional to exp y u y u r2v , so that inter-
vals can be found within which the normed likeli-
hood exceeds any chosen value.

Ten years after postulating the superiority of the
absolute criterion, and after having used it only for

Ž .normally distributed observations, Fisher 1922a
realized the need to support his statement by an
investigation of the sampling distribution of the
maximum likelihood estimate for the parameters of
a distribution of arbitrary form, satisfying only some
regularity conditions, which he left the reader to

Žexplore. It is well known see Hald, 1998, Section

.28.5 that he proved the asymptotic normality and
ˆoptimality of u within the class of statistics that

are asymptotically normal with mean u and vari-
ance of order ny1, and that he linked the maximum
likelihood estimate to sufficiency. His proofs are
simpler and more general than Edgeworth’s.
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