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Abstract

We establish the Hodge conjecture for some subvarieties of a class of toric varieties. 

First we study quasi-smooth intersections in a projective simplicial toric variety, 

which is a suitable notion to generalize smooth complete intersection subvarieties 

in the toric environment, and in particular quasi-smooth hypersurfaces. We show 

that under appropriate conditions, the Hodge conjecture holds for a very general 

quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hyper-

surfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 

28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptoti-

cally for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where 

“asymptotically” means that the degree of the hypersurface is big enough, under 

the assumption that the ambient variety ℙ2k+1

Σ
 has Picard group ℤ . This extends to 

a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–

320, 2003).
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1 Introduction

A projective simplicial toric variety ℙd

Σ
 satisfies the Hodge Conjecture, i.e., every 

cohomology class in Hp,p(ℙd
Σ
,ℚ) is a linear combination of algebraic cycles. On the 

one hand, by the Lefschetz hyperplane theorem, the Hodge conjecture holds true for 

every hypersurface and p <
d−1

2
 and by the hard Lefschetz theorem also for p >

d−1

2
 . 

Moreover, by Theorem  1.1 in [3], when p =
d−1

2
 , d = 2k + 1 and ℙ2k+1

Σ
 is an Oda 

variety with an ample class � such that k� − �
0
 is nef, where �

0
 is the anticanonical 

class, the Hodge conjecture with rational coefficients holds for a very general hyper-

surface in the linear system |�|.

The notion of Oda varieties was introduced in [2]. Let us recall that the Cox ring 

of a toric variety ℙ
Σ
 is graded over the class group Cl(ℙΣ) , and that one has an injec-

tion Pic(ℙΣ) → Cl(ℙΣ).

De�nition 1.1 Let ℙ
Σ
 be a toric variety with Cox ring S. ℙ

Σ
 is said to be an Oda 

variety if the multiplication morphism S�
1 ⊗ S

�
2 → S

�
1
+�

2 is surjective whenever the 

classes �
1
 and �

2
 in Pic(ℙΣ) are ample and nef, respectively.

In [15] Mavlyutov proved a Lefschetz type theorem for quasi-smooth intersection 

subvarieties, and moreover using the “Cayley trick” he related the cohomology of 

a quasi-smooth subavariety X = Xf
1

∩⋯ ∩ Xfs
⊂ ℙ

d
Σ
 to the cohomology of a quasi-

smooth hypersurface Y ⊂ ℙ
d+s−1

Σ
 . This allows us to prove a Noether–Lefschetz type 

theorem, namely:

Theorem 2.5. Let ℙd

Σ
 be an Oda projective simplicial toric variety. For a very 

general quasi-smooth intersection subvariety X cut off by f1,… fs such that 

d + s = 2(� + 1) and

is nef, one has

From this one obtains the following result about the Hodge conjecture for quasi-

smooth intersections.

Corollary 2.7. If ℙd

Σ
 is an Oda projective simplicial toric variety, the Hodge Con-

jecture holds for a very general quasi-smooth intersection subvariety X cut off by 

f1,… fs such that d + s is even and 
∑s

i=1
deg(fi) − �0 is nef.

Let T be the open subset of |�| corresponding to quasi-smooth hypersurfaces, 

and let H2k
= R

2k�
∗
ℂ⊗

ℂ
O

T
 be the Hodge bundle on T; here � ∶ X → T  is the 

s
∑

i=1

deg(fi) − �0

H
�+1−s,�+1−s(X,ℚ) = i

∗
(

H
�+1−s,�+1−s(ℙd

Σ
,ℚ)

)

.
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tautological family on T, and d = 2k + 1 . We restrict H2k to a contractible open sub-

set U ⊂ T  . The bundle H2k has a Hodge decomposition

but this is not holomorphic. On the other hand, the bundles that make up the Hodge 

filtration

are holomorphic; to see this one can use the period map (which in particular we 

write for p = k)

where b
k
= dim F

k
H

2k(X
u0

,ℂ) for a fixed point u
0
∈ U ; this map sends f ∈ U to 

the subspace FkH2k(Xf ,ℂ) ⊂ H2k(Xf ,ℂ) = H2k(Xu0
,ℂ) . This map is holomorphic 

(see [14] and [5, Prop. 3.4]). But, by the very definition of the period map (see also 

[17], Section 10.2.1 for the smooth case)

where U
k
 is the tautological bundle on the Grassmannian Grass(b

k
, H

2k(X
u0

,ℂ)) , so 

that the bundles FkH
2k are indeed holomorphic.

Pushing ahead the ideas developed in [5] and [4], let �f  be a nonzero class in the 

primitive cohomology Hk,k(Xf ,ℚ)∕Hk,k(ℙ2k+1

Σ
,ℚ) , and let U be a contractible open 

subset of T around f, so that H2k

|U
 is constant. Moreover, let � ∈ H

2k(U) be the sec-

tion defined by �f  and let �̄ be its image in (H2k∕FkH
2k)(U) . One has

Proposition 1.2 The local Noether–Lefschetz loci can be defined as

where � = deg(f ).

The following result is Theorem 1.2 in [4].

Theorem. Let ℙ2k+1

Σ
 be an Oda variety with an ample class � such that 

k� − �
0
= n� , where �

0
 is the anticanonical class, � is a primitive ample class, and 

n ∈ ℕ . Let

For every positive � there is a positive � such that for every m ≥ max(
1

�
, m�) and 

d̂ ∈ [1, m�] , and every nontrivial Hodge class � ∈ FkH
2k(U) such that

H
2k

=

⨁

p+q=2k

H
p,q

Fp
H

2k
=

2k
⨁

p=0

H
2k−p,p

P
k,2k ∶ U → Grass(b

k
, H

2k(X
u0

,ℂ))

F
k
H

2k ≃ (Pk,2k)∗U
k
,

N
k,�

�,U
∶= {G ∈ U ∣ �̄

G
= 0}

(1)m� = max{i ∈ ℕ | i� ≤ �}.
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for every f ∈ N
k,�

�,U
 , there exists a k-dimensional variety V ⊂ Xf  with 

deg V ≤ (1 + �)d̂ . Here deg V  is taken with respect to the ample divisor � , i.e.,

Based on this, in this paper we obtain the following result.

Theorem 4.2. Under the same hypotheses of the previous theorem, assume also 

that Pic(ℙ2k+1

Σ
) = ℤ . Then, if V ⊂ Xf  is a nonempty quasi-smooth intersection subva-

riety of ℙ2k+1

Σ
 for some f ∈ N

k,�

�,U
 , there exists c ∈ ℚ∗ such that �f = c�V , where �

V
 is 

the class of V in H
k,k

prim
(Xf ,ℚ).

In other words, �f  is algebraic.

In his paper [11] A. Dan proves a form of our Theorem 4.2 for smooth hypersur-

faces in odd-dimensional projective spaces ℙ2k+1 which is not asymptotic. Although 

our result is more general in two ways, as we consider quasi-smooth intersections in 

toric varieties with hk,k
= 1 (for instance, weighted or fake projective spaces); how-

ever, our result is asymptotic.

In Sect. 3 we give an extension of the notion of Gorenstein ideal to Cox rings; 

this may have some interest on its own.

2  Very general quasi-smooth intersections

Let f1,… , fs be homogeneous polynomials in the Cox ring S = ℂ[x1,… , x
n
] 

of ℙd

Σ
 . Their zero locus V(f1,… , fs) defines a closed subvariety X ⊂ ℙ

d

Σ
 . Let 

U(Σ) = �
n − Z(Σ) , where Z(Σ) is the irrelevant locus, i.e., Z(Σ) = SpecB , where B 

is the irrelevant ideal.

De�nition 2.1 [15] X is a codimension s quasi-smooth intersection if 

V(f1,… , fs) ∩ U(Σ) is either empty or a smooth intersection subvariety of codimen-

sion s in U(Σ).

This notion generalizes that of smooth complete intersection in a projective space. 

For s = 1 it reduces to the notion of quasi-smoooth hypersurface, see Def. 3.1 in [1]. 

If we regard ℙd

Σ
 as an orbifold, then an intersection of hypersurfaces Xf

1

∩⋯ ∩ Xfs
 is 

quasi-smooth when it is a sub-orbifold of ℙd

Σ
 , see Prop 1.3 [15]; heuristically, “X has 

only singularities coming from the ambient variety.”

We also have a Lefschetz type theorem in this context.

Proposition 2.2 ( [15] Proposition 1.4) Let X ⊂ ℙ
d

Σ
 be a closed subset, defined by 

homogeneous polynomials f1,… fs ∈ B . Then the natural map i∗ ∶ H
i(ℙd

Σ
) → H

i(X) 

is an isomorphism for i < d − s and an injection for i = d − s . In particular, this is 

true if the hypersurfaces cut by the polynomials fi are ample.

codimN
k,�

�,U
≤ d̂

m
k

�

k!
,

deg V = [V] ⋅ �k.
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Hence if p ≠
d−s

2
 every cohomology class in Hp,p(X) is a linear combination of 

algebraic cycles. So let us see what happens when p =
d−s

2
 . The idea is to relate the 

Hodge structure of a quasi-smooth intersection variety X = Xf
1

∩⋯ ∩ Xfs
 in ℙd

Σ
 with 

the Hodge structure of a quasi-smooth hypersurface Y in a toric variety ℙd+s−1

X,Σ
 whose 

fan depends on X and Σ.

Proposition 2.3 Let X = Xf
1

∩⋯ ∩ Xfs
 be quasi-smooth intersection subvariety in 

ℙ
d

Σ
 cut off by homogeneous polynomials f

1
… fs . There exists a projective simpli-

cial toric variety ℙd+s−1

X,Σ
 and a quasi-smooth hypersurface Y ⊂ ℙ

d+s−1

X,Σ
 such that for 

p ≠
d+s−1

2
,

d+s−3

2

Proof One constructs ℙd+s−1

X,Σ
 via the so-called “Cayley trick”. Let L1,… , L

s
 be the 

line bundles associated to the quasi-smooth hypersurfaces X1,…X
s
 , and so let ℙ(E) 

be the projective bundle of E = L
1
⊕⋯⊕ L

s
 . It turns out that ℙ(E) is a d + s − 1 - 

dimensional projective simplicial toric variety whose Cox ring is

where S = ℂ[x1,… , x
n
] is the Cox ring of ℙd

Σ
 . The hypersurface Y is cut off by the 

polynomial F = y
1
f
1
+⋯ + ysfs and is quasi-smooth by Lemma 2.2 in [15]. Moreo-

ver, combining Theorem 10.13 in [1] and Theorem 3.6 in [15], we have that

for p ≠
d+s−1

2
,

d+s−3

2
 as desired.   ◻

Here R(F) is the Jacobian ring of Y, i.e., the quotient of the Cox ring

where J(F) is the ideal generated by the derivatives of F, see [1].

Remark 2.4 With the same notation of Proposition 2.3, note that we have a well 

defined map

Moreover, by the Noether-Lefschetz theorem NL� is a countable union of closed sets 
⋃

i
C

i
 and hence 

⋃

�−1(C
i
) is too.

We have a Noether-Lefschetz type theorem, namely,

H
p−1,d+s−1−p

prim
(Y) ≃ H

p−s,d−p

prim
(X).

ℂ[x1,… , x
n
, y1,… y

s
]

H
p−1,d+s−1−p

prim
(Y) ≃ R(F)(d+s−p)�−�0

≃ H
p−s,d−p

prim
(X)

R(F) = ℂ[x1,… , xn, y1,… ys]∕J(F),

� ∶ |�1| ×⋯ × |�s| → |�|

(f1,… , fs) ↦ f1y1 +⋯ + fsys.
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Theorem  2.5 Let ℙd

Σ
 be an Oda projective simplicial toric variety. Then for a 

very general quasi-smooth intersection subvariety X cut off by f1,… fs such that 

d + s = 2(l + 1) and 
∑s

i=1
deg(fi) − �0 is nef, one has that

So we get a natural generalization of the Noether-Lefschetz loci.

De�nition 2.6 The Noether-Lefschetz locus NL�1,…,�
s

 of quasi-smooth intersection 

varieties is the locus of s−tuples (f1,… , fs) such that X = Xf
1

∩…Xfs
 is quasi-smooth 

intersection with fi ∈ |�i| and Hl+1−s,l+1−s(X,ℚ) ≠ i
∗
(

H
l+1−s,l+1−s(ℙd

Σ
,ℚ)

)

.

Now we consider the Hodge conjecture for very general quasi-smooth intersec-

tion subvarieties in ℙd

Σ
.

Corollary 2.7 If ℙd

Σ
 is a Oda projective simplicial toric variety, the Hodge Con-

jecture holds for a very general quasi-smooth intersection subvariety X cut off by 

f1,… fs such that d + s = 2(l + 1) and 
∑s

i=1
deg(fi) − �0 is nef.

Proof First note that by Thereom 4.1 in [12] the projective simplicial toric variety 

ℙ
2l+1

X,Σ
 is Oda and since X is very general the quasi-smooth hypersurface Y is very 

general as well. So applying the Noether-Lefschetz theorem one has that 

h
l,l

prim
(Y) = 0 = h

l+1−s,l+1−s

prim
(X) or equivalently every (l + 1 − s,+1 − s) cohomology 

class is a linear combination of algebraic cycles.   ◻

3  Cox-Gorenstein ideals

We shall need a partial generalization of Macaulay’s theorem (see e.g. Thm. 6.19 in 

[18] for the classical theorem). This generalization is basically contained in the work 

of Cox and Cattani-Cox-Dickenstein [7, 9].

Let S be the Cox ring of a complete simplicial toric variety ℙ
Σ
 . This is graded 

over the effective classes in the class group Cl(ℙΣ) and [8]

As O
ℙΣ
(�) is coherent and ℙ

Σ
 is complete, each S� is finite-dimensional over ℂ ; in 

particular, S0
≃ ℂ.

Lemma 3.1 For every effective N ∈ Cl(ℙΣ) , the set of classes � ∈ Cl(ℙΣ) such that 

N − � is effective is finite.

Proof Since the torsion submodule of Cl(ℙΣ) is finite, we may assume that Cl(ℙΣ) is 

free. Then the exact sequence

H
l+1−s,l+1−s(X,ℚ) = i

∗
(

H
l+1−s,l+1−s(ℙd

Σ
,ℚ)

)

S
� ≃ H

0(ℙΣ, O
ℙΣ
(�)).
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splits, and we may identify Cl(ℙΣ) with a free subgroup of Div
�
(ℙΣ) , generated by a 

subset {D1,… , D
r
} of �-invariant divisors. A class in Cl(ℙΣ) is effective if and only 

its coefficients on this basis are nonnegative, whence the claim follows.   ◻

We shall give a definition of Cox-Gorenstein ideal of the Cox rings which general-

izes to toric varieties the definition given by Otwinowska in [16] for projective spaces. 

Let B ⊂ S be the irrelevant ideal, and for a graded ideal I ⊂ B , denote by V
�
(I) the cor-

responding closed subscheme of ℙ
Σ
.

De�nition 3.2 A graded ideal I of S contained in B is said to be a Cox-Gorentstein 

ideal of socle degree N ∈ Cl(ℙΣ) if 

1. there exists a ℂ-linear form Λ ∈ (SN)∨ such that for all � ∈ Cl(ℙΣ)

2. V
�
(I) = �.

Remark 3.3 Cox-Gorenstein ideals need not be Artinian. Property 2 in this definition 

replaces that condition.

Proposition 3.4 Let R = S∕I . If I is Cox-Gorenstein then

1. dim
ℂ

R
N
= 1;

2. the natural bilinear morphism

is nondegenerate whenever � and N − � are effective.

Proof 

1. From eq. (2) we see that the sequence 

 is exact.

2. Define Φ ∶ R
�
× R

N−�
→ ℂ as Φ(x, y) = Λ(x̄ȳ) , where x̄ , ȳ are pre-images of x, 

y in S. One easily checks that this is well defined and that via the isomorphism 

R
N
≃ k it coincides with the pairing (3). Now if x ∈ R

� and Φ(x, y) = 0 for all 

y ∈ RN−� then Λ(x̄ȳ) = 0 for all ȳ ∈ SN−� so that x̄ ∈ I
� , i.e., x = 0 .   ◻

0 → M → Div
�
(ℙΣ) → Cl(ℙΣ) → 0

(2)I� = {f ∈ S� |Λ(fg) = 0 for all g ∈ SN−�};

(3)R
�

× R
N−�

→ R
N
≃ ℂ

0 → I
N
→ S

N
Λ

�������→ ℂ → 0
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Let f0,… , fd be homogeneous polynomials, fi ∈ S�i , where d = dimℙ
Σ
 and each �

i
 

is ample, and let N =

∑

i
�

i
− �

0
 , where �

0
 is the anticanonical class of ℙ

Σ
 . Assume that 

the fi have no common zeroes in ℙ
Σ
 , i.e., V

�
(I) = � if I = (f0,… , fd).

In [1, 7, 9] it is shown that for each G ∈ S
N one can define a meromorphic d-form �

G
 

on ℙ
Σ
 by letting

where Ω is a Euler form on ℙ
Σ
 . The form �

G
 determines a class in Hd(ℙΣ,�) , where 

� is the canonical sheaf of ℙ
Σ
 (the sheaf of Zariski d-forms on ℙ

Σ
 ), and in turn the 

trace morphism Tr
ℙΣ

∶ H
d(ℙΣ,�) → ℂ associates a complex number to G, so we 

can define Λ ∈ (SN)∨ as

Finally, we can prove a toric version of Macaulay’s theorem.

Theorem 3.5 The linear map defined in Eq. (4) satisfies the condition in Definition 

3.2. Therefore, the ideal I = (f0,… , fd) is a Cox-Gorenstein ideal of socle degree N.

Proof By Theorem 6 in [7] the map Λ establishes an isomorphism RN
≃ ℂ . Hence, 

if f ∈ S� is such that Λ(fg) = 0 for all g ∈ SN−� , then fg ∈ IN , which implies f ∈ I� . 

On the other hand, it is clear that Λ(fg) = 0 if f ∈ I� and g ∈ SN−� .   ◻

Another example is given in terms of toric Jacobian ideals. For every ray 

� ∈ Σ(1) we shall denote by v
�
 its rational generator, and by x

�
 the corresponding 

variable in the Cox ring. Recall that d is the dimension of the toric variety ℙ
Σ
 , 

while we denote by r = #Σ(1) the number of rays. Given f ∈ S� one defines its 

toric Jacobian ideal as

We recall from [1] the definition of nondegenerate hypersurface and some properties 

(Def. 4.13 and Prop. 4.15).

De�nition 3.6 Let f ∈ S(Σ)� , with � an ample Cartier class. The associated hyper-

surface Xf  is nondegenerate if for all � ∈ Σ the affine hypersurface Xf ∩ O(�) is a 

smooth codimension one subvariety of the orbit O(�) of the action of the torus � d.

Proposition 3.7 

1. Every nondegenerate hypersurface is quasi-smooth.

2. If f is generic then Xf  is nondegenerate.

The following is part of Prop. 5.3 in [9], with some changes in the terminology.

�G =
GΩ

f
0
⋯ fd

(4)Λ(G) = Tr
ℙΣ
([�

G
]) ∈ ℂ.

J0(f ) =

(

x�1

�f

�x�1

,… , x�r

�f

�x�r

)

.
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Proposition 3.8 Let f ∈ S(Σ)� , and let {�1,… , �
d
} ⊂ Σ(1) be such that v

�1
,… , v

�
d
 

are linearly independent.

1. The toric Jacobian ideal of f coincides with the ideal 

2. The following conditions are equivalent: 

(a) f is nondegenerate;

(b) the polynomials x�i

�f

�x�i

 , i = 1,… , r, do not vanish simultaneously on Xf ;

(c) the polynomials f and x�i

�f

�x�i

 , i = 1,… , d,do not vanish simultaneously on Xf .

3. If moreover �is ample and f is nondegenerate, then J
0
(f ) is a Cox-Gorenstein ideal 

of socle degree N = (d + 1)� − �
0
 , where �

0
is the anticanonical class of ℙd

Σ
.

4  Asymptotic Hodge conjecture

In this section we prove Theorem 4.2. Let us recall part of the notation and assump-

tions of [4]. Let ℙ2k+1

Σ
 be an Oda variety with an ample Cartier class � such that 

k� − �
0
= n� , where �

0
 is the anticanonical class, � is a primitive ample class and 

n ∈ ℕ.

We need to define a pre-order in the group

by letting � < �
′ if ��

− � is an effective class.

Let Xf ∈ |�| be a quasi-smooth hypersurface in the Noether-Lefschetz locus asso-

ciated to a nontrival Hodge class � ∈ FkH
2k(U) . Again, its degree is computed by 

intersecting with the ample class � , i.e., deg Xf = [Xf ] ⋅ � . Let r be number of rays of 

Σ , so that r ≥ 2(k + 1) . Assuming that n is big enough, it follows from Proposition 

4.7 or Theorem 6.1 in [4] that there exists a k-dimensional subvariety V of Xf  satis-

fying the following conditions:

• deg V ≤ 2�m� with 0 < � <
1

4(r−(k+1))
 (the number m� was defined in Eq. (1));

• the graded ideals I
V
 and 

(

f , x�1

�f

�x�1

,… , x�d

�f

�x�d

)

.

N
1(ℙ2k+1

Σ
) = Pic(ℙ2k+1

Σ
)⊗ℚ∕numerical equivalence,

(5)E = {g ∈ S∙ ∣

b
∑

i=1

�i ∫
Tub�i

ghΩ0

f k+1
= 0 for all h ∈ SN−∙},
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 coincide in degree less than or equal to 
(

m� − 2 − (r − j) deg V
)

� for some j, with 

0 < j < r . Here Tub(−) is the adjoint of the residue map, and N = (k + 1)� − �
0
 

is the socle degre of the Cox-Gorenstein ideal E, while 

 is the Poincaré dual of some rational combination of the homology cycles �
i
 gen-

erating H2k(Xf ,ℚ) . Moreover, via the isomorphism Tf U ≃ S� , the degree � sum-

mand E� of E is identified with the tangent space Tf N
k,�

�,U
 to the Noether-Lefschetz 

locus, so that E� contains the degree � part J(f )� the Jacobian ideal of f.

Lemma 4.1 The toric Jacobian ideal J
0
(f ) is contained in E.

Proof J
0
(f ) ⊂ J(f ) , so that J

0
(f )� ⊂ J(f )� ⊂ E� , and since J

0
(f ) is generated in 

degree � , one has J
0
(f ) ⊂ E .   ◻

We denote by �
V
 the class of V in H

k,k

prim
(Xf ,ℚ) . In the following theorem we 

assume that Pic(ℙ2k+1

Σ
) = 1 , i.e., that ℙ2k+1

Σ
 is a (possibly fake) weighted projective 

space [6, 13] (cf. [10] Exer. 5.1.13). This implies that hp,p(ℙ2k+1

Σ
) = 1 for all p.

Theorem  4.2 If V is a quasi-smooth intersection subvariety, there exists c ∈ ℚ∗ 

such that �f = c�V.

Proof We divide the proof in three steps.

Step I: �
V
≠ 0 . For clarity, for every cohomology class of a subvariety we denote 

in the cohomology of which ambient variety we consider it (so we write [V]Xf
 and 

[V]
ℙ

2k+1

Σ

 ). Since V ⊂ Xf  is a regular embedding we have

where Ξ
k
 is the component in Hk,k(ℙ2k+1

Σ
) of

here A1,… , A
k+1 are the classes in Cl(ℙ2k+1

Σ
) of the hypersurfaces that cut the quasi-

smooth intersection subvariety V. The claim is proved by contradiction: if [V]Xf
 is 

the restriction of a class in Hk,k(ℙ2k+1

Σ
) , i.e.,

for some b, then comparing this with (6) we obtain

�f =

(

b
∑

i=1

�i�i

)pd

(6)
[V]2

Xf
= ∫

V
ck(NV∕Xf

) = ∫
V

[
c(NV∕ℙ2k+1

Σ
)∕c(NXf ∕ℙ

2k+1

Σ
|V )

]

k

[8pt] = ∫
ℙ

2k+1

Σ

[V]
ℙ

2k+1

Σ
∪ Ξk

Ξ =

∏

i(1 + Ai)

1 + [Xf ]ℙ2k+1

Σ

;

[V]Xf
= b �k

|Xf
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where m
k
 is defined by Ξ

k
= m

k
�

k . But (7) cannot be true when deg Xf  is big enough.

Step II. Let Ealg and E be the Cox-Gorenstein ideals associated to �
V
 and �f  , 

respectively, as in Eq. (5). To prove the theorem it is enough to show that E = Ealg . 

Note that IV + J
0
(f ) is contained in E and Ealg . Moreover, since V ⊂ Xf  , and f is 

quasi-smooth, there exist K1,…K
k+1 ∈ B such that f = A

1
K

1
+…Ak+1

Kk+1
 and 

(A1,… , A
k+1, K1,…K

k+1) is a Cox-Gorenstein ideal with socle degree N; this will 

follow from the next step, which concludes the proof.

Step III. It is enough to show that every Cox-Gorenstein ideal I  of socle degree 

N containing IV + J
0
(f ) also contains (A1,… , A

k+1, K1,…K
k+1) . By assumption

Let us see that Kj ∈ I  for every j ∈ {1,… , k + 1} . Let M ∈ Mat(r × (k + 1)) be the 

matrix [xi

�Aj

�xi

] and K the column (Kj)j∈{1,…,k+1} . Let I ⊂ {1,… r} with cardinality 

k + 1 and let M
I
 be the matrix obtained extracting the i ∈ I-arrows of M. We have 

that 
∑k+1

j=1
xi

�Aj

�xi

Kj = (MK)i = (MIK)i ; multiplying by the adjoint of M
I
 we get that 

det(MI)Kj ∈ I  for all j ∈ {1,… k + 1} . On one hand the ideal (I ∶ Kj) contains the 

ideal

Since V is a smooth complete intersection subvariety, it follows that J  is base point 

free, and therefore it contains a complete intersection Cox-Gorenstein ideal J′ by the 

toric Macaulay theorem, Theorem 3.5. Since J  is generated in degree less than or 

equal to (deg V)� , we can take J′ with the same property. It follows that

On the other hand if Kj ∉ I  then (I ∶ Kj) contains a Cox-Gorenstein ideal with socle 

degree

then comparing the above two inequalities and keeping in mind that r ≥ 2(k + 1) , we 

get

which is absurd.   ◻

On behalf of all authors, the corresponding author states that there is no con-

flict of interest.

(7)deg V = mk deg Xf ,

(

Aj, j ∈ {1,… , k + 1},

k+1
∑

j=1

xi

�Aj

�xi

Kj, i ∈ 1,… , r

)

⊂ I.

J = I
V
+ ⟨det M

I
� I ⊂ {1,… , r}, #I = k + 1⟩.

soc(J�) ≤ 2(k + 1)(deg V)� − �0 ≤ 2rm��� − �0.

N − deg Kj ≥ N − � = k� − �0;

� ≥
1

2r
≥

1

4(r − (k + 1))
,
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