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ON THE HOLOMORPHIC AUTOMORPHISM GROUP
OF A GENERALIZED HARTOGS TRIANGLE
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Abstract. In this paper, we completely determine the structure of the holomorphic
automorphism group of a generalized Hartogs triangle and obtain natural generalizations of
some results due to Landucci and Chen-Xu. These give affirmative answers to some open
problems posed by Jarnicki and Pflug.

1. Introduction. For any positive integers £;, m ; and any positive real numbers p;, g
withl <i<I,1<j<J,weset

C=U,....¢D, m=@my,....my), p=(p1,....P0)> q=1(q1,....47)

and define a generalized Hartogs triangle Hf”;’l in CN by

1 J
Hym = {(z,w)eCN; D PP < > w2 < 1},
i=1 j=1
where
=21 ...,21) € Cl x ... x Cl =¥, 0| =€14+---+¢;,
wz(wls-u,'lUJ)EleX”'XCmJ:Clm‘, |m|:m1_|-..._|_mj’
and CN =Cllx "l N =]+ |m|.

For convenience and no loss of generality, in this paper we always assume that

P21 #EL, g, qr #1

if I > 2 or J > 2. Clearly, this domain is not geometrically convex and its boundary is not
smooth and contains the origin 0 = (0, 0) of C/! x C"l = CV. In the special case where
all the {; = m; = 1 and all the p;, q; are positive integers, the structure of the holomorphic
automorphism group Aut(#,"1) of H " was already clarified by Landucci [8] and Chen-Xu
[3], [4]. Here we would like to remark that these papers contain the following crucial fact:
Let @ € Aut(H,’,) and express @ = (f, g) with respect to the coordinate system (z, w) in
Cltl x CIml = CV. Then the w-component mapping g : H} i — C™! does not depend on
the variables z; and hence, it has the form g(z, w) = g(w). And, a glance at their proofs of
this fact tells us that the assumptions £;, mj = 1 and p;, g; € N cannot be avoided with their
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techniques. This raises new difficulties to analyze the structure of Aut(?—lé7 }Z) in our general
case.

The purpose of this paper is to overcome these difficulties and obtain more general results

for arbitrary generalized Hartogs triangles Hf ’n'i. In fact, employing some group-theoretic

method, we can avoid their hard part and prove that g is always independent on the variables

z for every element @ = (f, g) € Aut(?—[fﬁ). Once this is accomplished, our previous results

in [6] can be applied to establish the following theorems:

THEOREM 1. Let Hffl be a generalized Hartogs triangle in C'! x C"! with |m| = 1.
Then the holomorphic automorphism group Aut(?—[f ’rZ) consists of all transformations

D:(z1,...,21, W) —> (Z1,...,21, W)
of the following form:
(D p1 =1, g € N: Inthis case, we have
z1=wlHzi/w?), Zi=vyi@@/w)Aizeq) @<i<I), w=Bw
(think of z; as column vectors), where

(1) H € Aut(BY), where B'' denotes the unit ball in C*1;
(2) y; are nowhere vanishing holomorphic functions on B defined by

o\ V2
Pz = (%) a—H) e B

- (1.a)’
where (-, -) denotes the standard Hermitian inner product on C*' and o € BY! is the
origin of C1;
(3) A; € U¥;), the unitary group of degree £;, and B € C with |B| = 1;
(4) o is a permutation of {2, ..., I} satisfying the following: o (i) = s can only hap-

pen when (€;, pi) = (Ls, ps).
(D) p1 # 1o0orq ¢ N : Inthis case, we have
Zi=Aizoq) 1<i<I), w=Bw,
where A; € U({;), B € Cwith |B| = 1, and o is a permutation of {1, ..., I} satisfying the
condition: o (i) = s can only happen when ({;, p;) = ({s, ps).

THEOREM 2. Let ’Hf’;ﬁ be a generalized Hartogs triangle in C'*! x C/" with |m| > 2.

Then the holomorphic automorphism group Aut(?—[f ’rZ) consists of all transformations

D (2l ey 2 WLy ey W) > (21, ee ey, 2, WYy e e, Wy)
of the form

Zi =Aizgq) 1 <i <), lf)szju)r(j) a=<j<J)
(think of z;, w; as column vectors), where A; € U({;), Bj € U(m;) and o, T are permuta-
tions of {1, ..., 1},{1, ..., J} respectively, satisfying the condition: o (i) = s, t(j) =t can
only happen when (¢;, pi) = (€5, ps), (mj, q;) = (my, qr).
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Considering the special case where all the £;, m; = 1 in this paper, we obtain natural
generalizations of some results due to Landucci [8] and Chen-Xu [3], [4]. In particular, our
Theorems 1 and 2 give affirmative answers to some open problems posed in Jarnicki and Pflug
[5; Remarks 2.5.15 and 2.5.17].

After some preparations in the next Section 2, we prove our Theorems 1 and 2 in Sections
3 and 4, respectively.

2. Preliminaries and several Lemmas. Throughout this paper, we write H = ’Hf ’,Z
for the sake of simplicity. Also, we often use the following notation: For the given points z =
1.z € O w = (wi,...,w)) e C™and p = (p1,.... p1), ¢ = (q1, ..., q)) as
in the Introduction, we set

g-:(;ls7CN):(Z,w)€C|£|XC|m‘=CN7
! J
@.1) pP(@) = Nzl pf(w) =) [lw;**, and
i=1 j=1

& =|ze cll pP(2) < 1}, &={we cml: pd(w) < 1}.

We denote by B(,, 8) the Euclidean open ball of radius § > 0 and center ¢, € CV. For a
subset S of CV, the boundary (resp. closure) of S in CV will be denoted by 3 (resp. S).
Also, we write as usual

=gy for =Gy, tn) €CY a= (o, ... an) € ZV .

Let Sy = {a € ZV; % € O(H), 1181l 2(34) < 00}, where O(H) denotes the set of all
holomorphic functions on H and A2(#) is the Bergman space of # with the norm || - || A2(H)-
Then it is known [1] that the Bergman kernel function K = K4, for H can be expressed as

22) K@m= ) cat®i*, ¢ neH,
aeSy
with ¢cq > O foreach o € Sy. Letr = (r1,...,ry) € RY, ¢ = (&1, ..., ty) € CV and set

r-¢:=0<e¢,....rnen), l1/ri={0/r,...,1/ry).
It then follows from (2.2) that, for r, s € Rf and ¢, n € CV,

(2.3) K@-¢, A/r)y-m)=K(s-¢&, (1/s)-n)
wheneverr - ¢, s - ¢, (1/r)-n, (1/s)-n € H; hence, for any points ¢, € H,
(2.4) K(@r-¢, (/r)-n)=K(¢,n) if r-¢, A/r)-n eH.

Although, in the proofs of Lemmas 1 and 2 below, there are some overlaps with the
papers by Barrett [1], Landucci [8] and Chen-Xu [3], we carry out the proofs in details for the
sake of completeness and self-containedness.

LEMMA 1. The Bergman kernel function K (¢, n) extends holomorphically in ¢ and
anti-holomorphically in n to an open neighborhood of(ﬂ \ {0}) x H in C2N,
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PROOF. First of all, let us take two points ¢, € dH \ {0}, n, € H arbitrarily and
represent £, = (z,, w,) by the (z, w)-coordinates in C!! x CI""l = CV . Since ¢, = (20, w,) #
(0, 0), one can choose two constants r,, s, with 0 < r, < s, < 1 in such a way that Z‘,, =
(YozZo, Sowy) € H. Now we fix small balls BZO’ By, in CV with centers ;:,,, 1o, respectively,

such that B; U By, C H. Set

Ag, = [z, w) € T x C™5 (ryz, s,w) € B; }.
Then O,,, := A¢, X By, is a geometrically convex open neighborhood of (¢,, 1,) in C2V.
We may assume that r,, s, are selected so close to 1 that

{/ro,v/s0) € C¥' x C™s (u,v) € B, } C H.
Accordingly we can define a real-analytic function K = K, tono 0N O, p, by
K((z, ), (u, v)) = K((roz, Sow), /70, /50)) , ((z, w), (u,v)) € Oc¢,no -

In this way, we obtain a collection
K = {0ty Keuny)s Cos10) € BH\ {O)) x H)
satisfying the following: For any elements (O, K, en)s (Ocry K, ¢y) € K, we have that
Key=K on Oy N(HxH) and Key= Ky on Ogy 0 Opryy

by (2.4) and (2.3). Therefore these local extensions K, ¢y together provide a global extension
of K required in Lemma 1. O

Here let us recall the structure of the holomorphic automorphism group Aut(#) (cf. [9]).
Since H is a bounded domain in CV, it has the structure of a real Lie group with respect to
the compact-open topology by a well-known theorem of H. Cartan. Note that Aut(?{) has
a countable basis for the open sets and a sequence {@"} in Aut(#) converges if and only if
{®V} converges uniformly on compact subsets of  to an element @ € Aut(H). From now
on, we denote by

G (H) the identity component of Aut(#) with Lie algebra g(H) .

As is well-known, g(#) can be canonically identified with the real Lie algebra of all complete
holomorphic vector fields on H. With this notation, we prove the following:

LEMMA 2. Let ¢, be an arbitrary point of 9H \ {0}. Then there exist a connected open
neighborhood U¢, of ¢, in CN\ {0} and a connected open neighborhood We, of the identity
element idy in G(H) such that every element ® € W, extends to a holomorphic mapping
6 THU U;a g CN.

PROOF. Let P : L?>(H) — A?(H) be the Bergman projection defined by

H@=ﬁ}mmﬂwm,feﬁmy
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It then follows from Lemma 1 that Pf can be extended to a holomorphic function, say P f,
defined on some domain HUU,, where Uy, is a connected open neighborhood of ¢, contained
in CN \ {0}.

Let ¢ € C5°(H) be a non-negative function such that ¢ (¢1, ..., ¢n) = ¢ (1], ..., [En D)
and fHd)(;)dV; =1.Foranya = (a1, ...,an) € ZV witha; >0, 1 < j < N, we set

$a(¢) = (o)) (=D lp ) ag - agnY, ¢ eH,

where ¢, is the same constant appearing in (2.2) and o! = 1! - - -ay!, o] = a1 + - - + an.
Then, thanks to the concrete description of the expansion of K as in (2.2), we can compute
explicitly P¢y as Poo () = ¢%, ¢ € H. Consequently, by analytic continuation

(2.5) Pou(t)=¢% CeHUU.

Now, let us take a sequence {@"} in G(#) converging to the identity element idy; and
express ¥ = (@}, ..., @y) with respect to the {-coordinate system in CN. Let Jpv(2)
be the Jacobian determinant of @" at { € H. Then, applying the transformation law by the
Bergman projection under proper holomorphic mapping (cf. [2]) and using the fact (2.5), we
have that

(Jov - (@)1 (@)™) (£) = (Jov - Po 0 P”)(§)

(2.6)
= P - a0 ")) = /HK@, DU - b 0 D)) dV,

for ¢ € ‘H. Here, since the last term extends holomorphically to the function P (Jopv - g 0 DY)
on H U Ug,, we may assume that Jov - (@])* ---(PR)*V is also a holomorphic function
defined on H U U, and satisfies the same equalities there. Moreover, since {®"} converges
to idyy uniformly on compact subsets of H, we obtain by the Cauchy estimates that

lim Jou(n) =1 and  lim ($o o @) (1) = o (1)

uniformly on compact subsets of H and supp(¢y o @") are contained in some compact subset
of H for all v. Hence, the fact (2.5) immediately yields that

lim_ (Jor - (@) -+ (@})™) (¢) = /HK@, Méa(mdVy =¢*, ¢ eHUU,,

uniformly on compact subsets of H U U,,. Thus, considering the special cases where o = 0
andaj =1,04, =0(1 < j,k <N, j# k), we obtain that

2.7 lim Jev(¢) =1 and lim (J@.q);)(;) =¢, 1<j<N,
V—00 V—00

uniformly on compact subsets of the domain H U Uy, . Clearly this says that, after shrinking
U;, and passing to a subsequence if necessary, Jov are nowhere vanishing holomorphic func-
tionson HU U, andso @ : HUU;, — C" are holomorphic mappings forallv = 1,2, ....

Since the conclusion of the preceding paragraph is valid for any sequence {®"} con-
verging to idy, it is obvious that there exist an open neighborhood U, of ¢, and an open
neighborhood W, of idy satisfying the requirement of the lemma. O
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We now define compact subsets d,H of 0H \ {0} by setting
H={tecdH; |cll=r}, O<r<l.

Then we can prove the following:

LEMMA 3. For any compact subset o, H of 0H \ {0} defined as above, there exist a
bounded Reinhardt domain D, in CN \ {0} and a connected open neighborhood O, of idyy in
G (H) satisfying the following:

(1) HUOH C Dy,
(2) every element ® € O, extends to a holomorphic mapping @ : D, — CN .

PROOF. For each point {, € 9H \ {0}, we take a connected open neighborhood Uy,
of ¢, and a connected open neighborhood W;, of idy satisfying the condition in Lemma 2.
Then, by the compactness of d,H there are finitely many points ¢ T e9,H, 1<i<ng,such
that 0, H C U:’il U,i. Since 9, H is invariant under the standard action of the N-dimensional
torus 7" on CV as well as H, we can now find a Reinhardt domain D, satisying

no
2.8) Hu@%cD,cHu(UU;i) :

i=1

Let O, be the connected component of ﬂl"il W,i containing the identity idy;. Then it is clear
that the pair (D,, O,) satisfies the requirement of Lemma 3. O

LEMMA 4. For any compact subset 9, H of 9H \ {0}, there exists a bounded Reinhardt
domain D, in CN \ {0} satisfying the following:

(1) HUH C D,;
(2) every element X € g(H) extends to a holomorphic vector field X on D, .

PROOF. By Lemma 3 there exist a bounded Reinhardt domain D, in CV and a con-
nected open neighborhood O, of idy in G(H) such that every element @ € O, extends to a
holomorphic mapping @ : D, — CN. Moreover, for any ¢ > 0 and any compactset L C D,,
it follows from (2.7) and (2.8) that

(2.9) &) —¢| <e forall ceL, @€ O,,

provided that O, is sufficiently small.

Now, let X € g(#H) and {®; = exptX};cr the one-parameter subgroup of G(H) gen-
erated by X. Then, thanks to the fact (2.9), one can choose a constant &, > 0 satisfy-
ing the following conditions: Let ¢, € 9,H and let B(¢,, §({,)) be a small ball such that
B(¢y,28(%,)) C Dy. Then

(2.10) &, extends to a holomorphic mapping &; : D, — CV; and
(2.11) D1(B(%0, 8(20))) C B(Lo, 28(20))
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for every t € R with |f| < &,. Under this situation, since {®;};cR is a global one-parameter
subgroup of G(H), we obtain by analytic continuation that

By(P1(2)) = Pyr1(8) . ¢ € B(5o,8(55)), whenever [s], |], s +1] < &,

accordingly {@}MQO is a one-parameter local group of local holomorphic transformations.
Let X be the holomorphic vector field on B(&,, §(¢,)) induced by {@}MQO. Then it is ob-
vious that X is a unique holomorphic extension of X to B(&,, 8(,)). Since ¢, € 0,H is
arbitrary and d,H is compact, by repeating the same argument as in the proof of Lemma 3,
we can find a Reinhardt domain D, satisfying the requirement of Lemma 4. O

Before proceeding, we need to introduce some terminology. Let TV = v (1))N be the
N-dimensional torus. Then TV acts as a group of holomorphic automorphisms on CV by the
standard rule

a-¢=(dl,...,aney) for a= () eTV, ¢=() eCV.

Let D be an arbitrary Reinhardt domain in CV. Then, just by the definition, D is invariant
under this action of V. Each element « € TV then induces an automorphism 7, of D
given by m4(¢) = « - ¢, and the mapping pp sending « to m, is an injective continuous
group homomorphism of TV into Aut(D). The subgroup pp(T") of Aut(D) is denoted
by T (D). Analogously, the multiplicative group (C*)" acts as a group of automorphisms on
CV. So, denoting by IT(D) = {a € (C*)¥; - D C D}, we obtain the topological subgroup
IT1(D) of Aut(D). We have one more important topological subgroup Autye (D) of Aut(D)
consisting of all elements @ of Aut(D) such that the i-th component function @; of @ is given
by a Laurent monomial having the form

(2.12) Pi(0) = 25" gyY, 1=i=N,
where (a;;) € GL(N,Z) and (4;) € (C*HN. We call Autyg(D) the algebraic automorphism
group of D and each element of Autyg(D) is called an algebraic automorphism of D. It
is known [7] that these groups are related in the following manner: The centralizer of the
torus 7' (D) in Aut(D) is given by I1(D), while the normalizer of 7 (D) in Aut(D) is given by
Autyg(D). Here we consider the mapping @ : Autyg(D) — GL(N, Z) that sends an element
@ of Autye (D) whose i-th component is given by (2.12) into the element (a;;) € GL(N, Z).
Then it is easy to see that @ is a group homomorphism with kerzo = IT(D); and hence it
induces a group isomorphism
Autye(D)/IT(D) —> G(D) := @ (Autye(D)) C GL(N,Z).

Let G(D) be the identity component of Aut(D). Then we know the following fundamental
result due to Shimizu [11]:

Every element @ € Aut(D) can be written in the form @ = @'®”,

2.13) , y
where @ € G(D) and @ € Auty (D).

Now let us consider the special case where D is our generalized Hartogs triangle .
Then we have the following:
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LEMMA 5. Every element @ € Autye(H) can be written in the form
D) = (1150(1)41@', ,)\\Z\fa(\é\)gf/‘ela)\NCN) or
D) = (MLo(1)s - » Merloqens Mel+18e(el41) s - - s ANz (W)
according as |m| = 1 or |m| > 2, where (A;) € TV, (b;) € 7% and o, T are permutations

of {1,..., 14|}, {l€] + 1, ..., N} respectively.

PROOF. We assume that the i-th component function @; of @ is given by (2.12).

We first consider the case |m| = 1. Since every point of the form (0, w) € C/! x C with
w € A* = A\ {0}, the punctured disc, belongs to H, it is easily seen that @y has the form
DN () = AnCN, |An| = 1, and the matrix @ (@) € GL(N, Z) can be written as

ay -+ aiyg 4N
o (D) = : - : : with g;; >0 for 1 <i,j < |{].
apee e aeliel AN
o .- 0 1
We claim here that the submatrix A := (a;j)1<i,j<|¢| 18 a permutation matrix, that is, there
exists a permutation o of {1, ..., ||} such that a;; = §5(); forall 1 < i,j < |[£|. In-

deed, notice that the mapping ¢ +—> (;“1, Qe )\X,lgN), ¢ € H, belongs to Autye(H); and
hence one may assume that @y (¢) = ¢n. Then, for any given point {y € A*, the map-
ping 5(z) = (q)1 (Z,¢N), .., D (z, ;N)) gives rise to a holomorphic automorphism of the
bounded Reinhardt domain {z € C*!; p?(z) < |¢y|*7} containing the origin of C‘l and, in
particular, it maps the complex analytic subset % N {¢ € CV ; ¢ = 0} of H onto some equi-
dimensional complex analytic subset of H for each 1 < i < |£|. This yields at once that A
is a permutation matrix, as claimed. Therefore, putting b; = a;y, 1 < i < |£|, we have seen
that @ has the form

(2.14) D(¢) = ()»14“0(1){1}\);1, ,)~|l|§a(|z|)é“1}:;m, ANCN) -

In particular, this says that & extends to a holomorphic automorphism of CIl x C* with
@ (OH \ {0}) C 9H \ {0}. Using this fact, we would like to check that |1;| = 1 for every
1 <i < |£|. To this end, let o (i) = s and choose an arbitrary element

¢ls1:=1(0,...,0,4,0,...,0,¢n) € 01 with ¢y € A*.
Then, by (2.14), ®(¢[s]) = (0, ..., 0, A £¢0, 0, ..., 0, AxCx) € dH. Thus we have

bi 2 2 2 2
IAigsEy 177 = 1en1™ whenever [¢|°7 = [¢n]™ < 1,

where p,, pp are some positive constants appearing in the definition of H = ’Hf ’,Z. Therefore,

letting |¢n| — 1, we conclude that |1;| = 1, as desired.

Next we consider the case [m| > 2. In this case, notice that the Reinhardt domain
H satisfies the condition that % N {¢ € CV; ; =0} # @ foreach 1 < i < N. Hence
every component function @; of @ extends to a holomorphic function on £7 x £4, where £7
and &7 are the generalized complex ellipsoids defined in (2.1) (cf. [9; p.15]). Consequently,
since £P x &4 contains the origin (0, 0) € Cltl % Clml, every component a;; of w(®) =
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(aij) € GL(N,Z) has to be non-negative. Hence @ (&) reduces to a permutation matrix,
because @ is a holomorphic automorphism of A and so it maps the complex hypersurface
H N {r €CN; g =0} of H onto another one for every 1 < i < N. This, combined with
the fact that H contains the points having the form (0, w), yields at once that the mapping
g:= (¢|/g|+ Ty vnns ¢N) does not depend on the variables z. From these facts, we deduce that
there exist permutations o of {1, ..., [¢|} and T of {|£| 4+ 1, ..., N} with respect to which @
can be written in the form

D) = (MLo(1)s - -+ Merloqe)ys Me+18e(el41)s - - - ANCe (V)

where (1;) € (C*)V. In particular, if we express @ = (f, g) by coordinates (z, w) in CI¢! x
Clml = CN, then f and g may be regarded as the linear automorphisms of C!¢! and of C!"!,
respectively, such that f(0€P) C dEP and g(0€9) C 9EY. These inclusions immediately
yield that |A;| = 1 for every 1 <i < N. Therefore we have completed the proof of Lemma
5. O

LEMMA 6. Let ¥ € Aut(H) and write ¥ = (h, k) with respect to the coordinate
system (z, w) in Cltl x Cl"ml = CN, Then k : H — C"™! does not depend on the variables z;
accordingly it has the form k(z, w) = k(w) on H.

PROOF. Once it is shown that g does not depend on z for every @ = (f, 9) € G(H),
then our conclusion immediately follows from the fact (2.13) and Lemma 5. Thus we have
only to show the lemma when ¥ € G(H).

To this end, pick a point £, = (0, we) = (0, ..., 0, w{, ..., w9) € IH with

[wll - wSl #0 and p?(w,) =1,

where p? is the function appearing in (2.1), and fix an r € R with 0 < r < ||{||. Then ¢, €
drH and by Lemma 3 there exist a bounded Reinhardt domain D := D, in cN containing
‘H U9, H and an open neighborhood O := O, of idy; in G(H) such that every element @ € O
extends to a holomorphic mapping, say again, @ : D — CV. Here we choose sufficiently
small constants 81, § with 0 < §; < 8, < 1 and set

Ui ={zeC; pP(x) <8},

Vi={weC": 1-68 < pfw) <1+8, [wi]--llws] 50}

fori = 1,2. Then U; x V; (i = 1,2) are bounded Reinhardt domains in C/! x CI"l = CV
satisfying the condition

o eUyxVicUx Vi cUxVy, cUyxV, CD

and the restriction of p? to V; gives a C”-smooth strictly plurisubharmonic function on V.
Moreover, after shrinking O if necessary, we may assume by (2.9) that @ (U1 x V7)) C Uz x V
forevery @ € O.

Now, taking an element @ = (f, g) € O and a point w € V; with p?(w) = 1 arbitrarily,
we set gyw(z) = g(z, w), z € Uy, for a while. Then, since ¢, (U;) C V», we can define a
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C“-smooth plurisubharmonic function ¢ on U by setting 5(z) := p9(gw(z)), z € Uj. It then
follows that 6(z) = 1 on Uy, since

DUy x {w}) COHN(Uz x V2) C {(u,v) € Uz x Va5 p?(v) =1} .

This combined with the strictly plurisubharmonicity of p? on V; implies that g, (z) is a con-
stant mapping on U;. As a result, defining the real-analytic hypersurface of V; by setting
H :={w € Vi; p?(w) = 1}, we have shown that

(2.15) forany w € H, gy(z) = g(z, w) is constant on Uj.

Now, being a holomorphic mapping on the Reinhardt domain D containing H U 9,H, g
can be expanded uniquely as

(2.16) 9@ w) =g’ ¢ = ay@H). ¢=.¢)eD,

which converges uniformly on compact subsets of D, where
=) =2 C " =G, o) =w e O

ay (") = (alf,(;“”), e allf,"‘ (¢”)) are |m|-tuples of holomorphic functions, and the summa-
tion is taken over all v/ = (vy, ..., vg) € Z¥ with vy, ..., vjg > 0 (cf. [9]). In particular,
the expansion of ¢ in (2.16) converges uniformly on the domain U; x V| and every a,/(¢”) is
holomorphic on V;. Then the assertion (2.15) tells us that

ay (") =0, ¢"eH, forv #£0.

Since a,/(¢"") are holomorphic on V; and H is a real-analytic hypersurface of Vi, it is obvious
that a,/(¢”") = 0 on V| for v/ # 0; and hence, by analytic continuation g(z, w) = ag(¢”) does
not depend on z = ¢’ globally; proving our lemma for every element @ = (f, g) contained
in the open neighborhood O of idy; in G(H).

Finally, recall that a connected topological group is always generated by any neighbor-
hood of the identity id. Hence, replacing O by the open neighborhood O N {®~!; @ € 0}
of idy if necessary, we may assume that the given element ¥ = (h,k) € G(H) can be
represented as a finite product ¥ = @1 --- @, of elements @; € O. This together with the
result of the preceding paragraph guarantees that k(z, w) does not depend on the variables z;
completing the proof of Lemma 6. g

We finish this section by the following:

LEMMA 7. Let 2 be a domain in C" and let A : 2 — U(L) be a mapping from
§2 into the unitary group U (L) of degree L. Assume that all the ij-components a;; of A are
holomorphic functions on $2. Then A is a constant mapping.

PROOF. By our assumption we have

L
Zla[]‘(Z)lzzl, ze€ £, forevery 1l <i<L.
j=1
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Then, since all the a;; are holomorphic on £2, it is easily seen that da;;(z)/dzx = 0 on £2 for
all i, j and k. Clearly this implies that A is a constant mapping, as desired. O

3. Proof of Theorem 1. The proof will be carried out in the following two Subsec-
tions.

3.1. CASse(I). p1 =1, q1 = q € N: When I = 1, that is, for the case H = {(z, w) €
ClxC; zlI> < w < 1 }, we consider the mapping A : H — CH+! defined by

Al(va):(Z/quw)s (Z,UJ)GH.

Then A gives rise to a biholomorphic mapping from # onto B‘1 x A*. On the other hand,
if we denote by G (D) the identity component of Aut(D) for a given domain D, we have that
G(BY x A*) = G(BY) x G(A*) by a well-known theorem of H. Cartan. Moreover, with
exactly the same argument as in the proof of Lemma 5, one can see that every element @ €
Autyg(BY x A¥) can be written as in (2.14) with [€] = €1, ¢ = ({1, ..., Loy, En) € BY x A*
and |[Ay| = 1. More precisely, we assert here that [1;| = 1, b; = O forevery | <i < ¢;.
To verify this, notice that & is now regarded as a holomorphic automorphism of C’ x C*;
accordingly, it leaves the boundary of B‘! x A* invariant. Thus

a1 3]

b;
§ hilomly I>=1 whenever § > =1, ¢ty e A*.
i=1 i=1

Clearly, this says that |A;| = 1, b; = O forevery 1 < i < {1, as asserted. As a result, we
have shown that Autyg(B*! x A*) = Autaig(B"') x Autye(A*) and hence Aut(B%! x A¥) =
Aut(BY) x Aut(A*) by (2.13). Therefore we conclude that every element @ € Aut(H) can
be described as

(3.1 @ (z,w) = (wH(z/w?), Bw), (z,w)eH,

where H € Aut(Be') and B € C with |B| = 1; proving Theorem 1, (I), in the case of = 1.

Next, consider the case where I > 2. By the identity in [10; Theorem 2.2.5, (2)], it is
easy to check that the mapping @ having the form as in Theorem 1, (I), belongs to Aut(H).
So, taking an arbitrary element @ € Aut(H), we would like to show that @ can be described
as in the theorem. To this end, write @ = (f, g) with respect to the coordinate system (z, w)
in Cl‘l x C. Then g does not depend on the variables z by Lemma 6. Hence ¢ induces a
holomorphic automorphism of A*; so that ¢ has the form g(w) = Bw with |B| = 1. Let us
define a holomorphic automorphism ®p of H by @5 (z, w) = (z, B~'w). Replacing & by
@p P if necessary, we may now assume that @ has the form @ (z, w) = (f(z, w), w) on H.
Therefore, if we set

(3.2) Eh={zeC; pP(2) < W}, fu@ = f(z.w), z€&L,
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for an arbitrarily given point w € A*, then f,, is a holomorphic automorphism of £}. On the
other hand, putting

1

- <]
|w|a/pi’ ’

I
(33) & =1geC: > |1 <1t and 1 =
i=1
where £ = (£1,...,&7) € Ct' x ... x CY = CMl and noting the facts that p; = 1 andg € N,
we have the biholomorphic mapping A : £ — £ defined by

A@) = (z/w? 2o, .. rzr), 2= (21,...,21) €ED.

Recall here our previous result in [6]: When p; = 1, every holomorphic automorphism ¥ of
EP has the form

(€)= (HED, n2(ED A% ), - vIEDAE (1))

where H € Aut(BY1), A; € U(¢;) and y; are nowhere vanishing holomorphic functions on
BY given as in Theorem 1, (I), with z; = &;, and o is a permutation of {2, ..., I} having
the property: o (i) = s can only happen when (¢;, p;) = (€s, ps). Then, applying this result
to the holomorphic automorphism A o f,, o A~™! of £” and noting the fact that r; = ry if
o (i) = s, one can see that f;, has the form

(3.4) fw@ = (W H (1 /w?), v2(z1/w) Arz62), - - ., vi@1 /W) ArZ0(1)) s

where H € Aut(BY), A; € U(¢;) and y; are nowhere vanishing holomorphic functions on
B*! determined uniquely by H, and o is a permutation of {2, ..., I'} having the property:
o (i) = s occurs only when (¢;, p;) = ({s, ps). Of course, all the H, A;, y; and o are
determined by the given point w € A*; accordingly, expressing them as H*, A, y;” and
o, we obtain a family F = {(Hw, AY, v, a“’)}wem. The only thing which has to be
proved now is that all the members (H VLAY, Y, o “’) of F are independent on the parameter
w. To prove this, put

H' = {1 w) € Cl x C; |zl < [w* < 1} and

3.5)
£ = {z1eC: fzl? < w}, wea*,

and regard these as complex submanifolds of H and of £}, respectively, in the canonical
manner. It then follows from (3.4) that f,, (SIL) = SIL and @ (H') = H'. Therefore, denot-
ing by fulj, ®! the restrictions of fw, @ to 55), HL, respectively, we see that @! defines a
holomorphic automorphism of ! having the form

! (z1,w) = (W H(z1/wD), w) = (fazD), w), (21, w) e H',

and the same situation as in the case I = 1 above occurs for the domain ' and its automor-
phism @' of #!. Consequently, by (3.1) we conclude that the automorphism H" of B! is, in
fact, independenton w € A*; and so is V. This combined with the fact that f,,(z) = f(z, w)
is holomorphic on A implies that every component of A is holomorphic in w € A*. Thus



AUTOMORPHISM GROUP OF A GENERALIZED HARTOGS TRIANGLE 41

A is a unitary matrix independent on w by Lemma 7. Notice that the mapping &, defined
by

Do(z, w) = (W H(z1/w?), ya(z1/wh) Asza, ..., vi@i/wD Az, w),  (z,w) €H,

is now a holomorphic automorphism of . Then @ 1 is also a holomorphic automorphism
of H and it has the form

<DO_1<D(Z, w) = (Zl, ZgW(2)s + -+ Lo ()5 w) , (z,w)eH,

from which it follows at once that o™ is actually independent on w € A*. Therefore we have
completed the proof of Theorem 1, (I). O

3.2. CASE (D). p1 # lorgq; = q ¢ N: Clearly we have only to show that every
element @ € Aut(#H) can be described as in Theorem 1, (II).

First, consider the case p; # 1. By the same reasoning as in the previous Subsection, we
may assume that @ has the form @ (z, w) = (f(z, w), w) on H. Therefore, if we define the
domain &£} and the mapping f,, by (3.2) for any given point w € A*, then f,, is a holomorphic
automorphism of £}. Moreover, letting £7 and r; be the same objects appearing in (3.3), we
obtain the biholomorphic mapping A : £} — £P defined by

(3.6) AiR) =Nz, rizr), z2=(1,...,21) €ED.

Then, by recalling the result of [6] in the case p; # 1 and by repeating exactly the same
argument as in Subsection 3.1, it can be shown that f, has the form

(3.7) fw@ = (A1ze()s -, ArZon)) » 2=(21,....21) € ED,

where A; € U(¢;) and o is a permutation of {1, ..., I'} satisfying the following: o (i) = s can
only happen when (¢;, p;) = ({5, ps). Therefore we have completed the proof of Theorem 1,
(ID), in the case p; # 1.

Next, consider the case ¢ ¢ N. Of course, it suffices to consider the case ¢ ¢ N and
p1 = 1. Take an element @ € Aut(H) arbitrarily. Again we may assume that @ has the
form @(z,w) = (f(z, w), w) on H. For an arbitrarily given point w € A*, let er, Sfw
(resp. £, r;) be the same objects appearing in (3.2) (resp. in (3.3)) and let A : £ — &P
be the biholomorphic mapping defined in (3.6). Then, by the same reasoning as above, f,
is a holomorphic automorphism of EP. Once it is shown that fw 1s linear, that is, it is the
restriction to £ of some linear transformation of C!*/, then the method used in the preceding
paragraph can be applied to prove that f, is independent on w and, in fact, it has the form as in
(3.7). Therefore we have only to verify that f,, is linear. For this purpose, recall the following
factin Lemma 5: Let ¥ be an element of Aut,ig(#H) having the form ¥ (z, w) = (h(z, w), w)
on H. Then, for any point w € A*, hy,(z) = h(z, w) is a linear mapping of z. This together
with the fact Aut(H) = G(H)Autag(H) by (2.13) immediately yields that it suffices to show
the linearity of f;, forevery @ = (f, g) € G(H) with g(w) = w.

Now consider again the domain 511; C C!*l defined in (3.5) and the holomorphic auto-
morphism A o f,, o A™! of £P. Then, in exactly the same way as in Subsection 3.1, one can
see that fy, (51})) = SIL and f, is a linear automorphism of £} if and only if the restriction
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£l of fi, to SIL is a linear automorphism of 511;- Consequently, the proof is now reduced to
showing that ful) is a linear automorphism of £} . Now, assume to the contrary that there exists
an element @ = (f, g9) € G(H), g(w) = w, such that ful) is not a linear automorphism of
). Then, since & leaves all slices £ x {w}, w € A*, invariant and f,,(£]) = £, one can
find a complete holomorphic vector field X on H satisfying the following two conditions: For
any point w € A*,

(3.8) X is tangent to the complex submanifold 55] x {w} of H; and

(3.9) the restriction of X to 511) x {w}, say again X, is a non-zero complete holomorphic vector
field having the form

0 0
a
X = Z(Olk(UJ) + Y ﬁﬁv(w)gg)—a;k :
k=1

n,v=1
where oy, ,Bl]iv are holomorphic functions on A* (cf. [12; Proposition 2]).

Here we know that X # 0 if and only if o (w) # O for some k. Moreover, we may assume
by Lemma 4 that X extends holomorphically across the set 9H \ {0}.

From now on, for any given point w € A*, we identify naturally EIL x {w} with S&); NYJ
that X is regarded as a complete holomorphic vector field on SIL and

£
pu(@1) = Pl ... Ge) = Y 151* = [w[*
j=1
is a defining function of £! in C*1. Note that X is now defined on some domain in C*!

containing the closure £} of E,'&). It then follows from the tangency condition Re(Xp,,) = 0
on the boundary 3£, that

0 0
(3.10) Re Z(ak(w)+ > ﬁ,’;v(w)g;v)zk = 0 whenever py(¢1, ..., &) =0.

k=1 n,v=1

Fix an index k with o4 (w) # 0 and consider the points (0, ...,0, ¢, 0,...,0) € ctY with
|Zk|> = |w|?4. Then, by routine computations it follows from (3.10) that

ar(w) + 5 ) w1 =0, we A*.

Hence we have

T
(—ﬁ’j(w)) Jwl + Bl w) - qulwY =0
w

or equivalently

dBf, (w)
dw

w + B (w) = 0.
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Let ,Bfk(w) =Y, Ayw” be the Laurent expansion of ,3,’{‘,( on A*, where v € Z. Inserting this
into the equation above, we then obtain that

(gq+v)A, =0 forall veZ.

Since 0 < g ¢ N by our assumption, this implies that A, = 0 for all v € Z. Thus ,Bfk(w) =0
and so ax(w) = 0 on A*, a contradiction. Eventually we have shown that every automor-
phism f, is linear; and accordingly, Aut(#) consists only of linear automorphisms having
the description as in Theorem 1, (II), as desired. O

4. Proof of Theorem 2. Clearly the mapping @ having the form as in Theorem 2
belongs to Aut(#). Conversely, take an arbitrary element @ € Aut(#H) and write @ =
(@1, ..., Py) with respect to the coordinate system ¢ = ({1,...,¢n) in C¥. Then, since
|m| > 2, by the same reasoning as in the proof of Lemma 5 every component function @;
extends to a unique holomorphlc function ®; defined on £7 x &4. Accordingly, we obtain

a holomorphlc extension @ := (<D1, R ) Dy) : EP x E1 — CN of @. We first assert that
DEPxET) C EPxEI. To prove this, represent again ® = (f, g) and f = (f1,..., f1), g =
(g1, ..., g) by coordinates (z, w) = (z1, ..., 27, wi, ..., wy)in C¥IxC" = CV . Let f, §

be the holomorphic extensions of f, g to £F x £9, respectively. Since g(z, w) does not de-
pend on the variables z by Lemma 6, g gives now a holomorphic automorphism of £9 with
g(0) = 0; consequently it follows from our result of [6] that g can be written in the form

4.1) gw) = (Biwrqy, ..., Bjwrpy) . w=(wi,...,wy) €&,

where B; € U(m;), 1 < j < J, and 7 is a permutation of {1, ..., J} such that 7(j) = ¢
if and only if (mj,q;) = (m;,q;). On the other hand, picking a point z, € &P arbi-
trarily, we have (z,, w) € H for all points w € C"™l with p?(z,) < p?(w) < 1; and
hence p”(f (20, w)) < p9(g(w)) < 1 for such points. So, taking account of the maximum
principle for the continuous plurisubharmonic function p? ( f (2o, w)) on £1, we obtain that
pf’(f(zo, w)) < 1 forall w € £4. Thus f(é"’ x £1) C £P and so 5(51’ x 1) C EP x &19.
Also, repeating exactly the same argument for the holomorphic extension ¥ of the inverse
W := @~ ! of @, we obtain the same conclusion @(51’ x E1) C EP x £4. Then

Pol(z,w)=Pod(z,w)=(z.w), (w) e xE,

by analytic continuation. Hence disa holomorphic automorphism of the bounded Reinhardt
domain £P x £4. Moreover, since

I J J

Yo fi@wIPP <Y g )IPY =Y w2, ow) e H,

i=1 j=1 =

by (4.1), it follows that 5(0, 0) = (0, 0) by taking the limit (z, w) — (0, 0) through H. Then,

as an immediate consequence of a well-known theorem of H. Cartan, it follows that Disa
linear automorphism of £7 x £9.

Let us define the mapping fo &P — Cll by setting fo@) :== f(z,0), z € EP. Then

it is easily seen that fo is a holomorphic automorphism of £7. So, our previous result [6]
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implies that it can be expressed as

4.2) folz) = (A1zo(tys -  AlZon) » 2= (21,...,21) €EP,

where A; e U({;), 1 <i <1, ando is a permutation of {1, ..., I} such that o (i) = s occurs
only when (¢;, p;) = ({5, ps). Now define the linear automorphism @, of £ x £7 by

Doz, w) = (fo(2), fw)). (z.w) € EP x €7,
and consider the holomorphic automorphism

4.3) F'zw) =0 'od(z,w), (z,w)el x&,

o

of EP x £49. Then I' can be written in the form
F'z,w)=GZ+Mw,w), (z,w) el xE&,

(think of z, w as column vectors), where M is a certain |¢| x |m| matrix. Thus, denoting by
I'" the n-th iteration of I", we have

I''Gz,w)=G+nMw,w), Ew)eEP xE1, n=1,2,....

Hence M has to be the zero matrix, that is, I is the identity transformation of £7 x £9, since
{I'"}>2 | is contained in the isotropy subgroup Ko of Aut(E7 x £7) at the origin 0 = (0, 0) €
EP x &1 and Ky is compact, as is well-known. Therefore we have shown that b = 50 has
the form described in Theorem 2; thereby completing the proof. O
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