Tohoku Math. J. 68 (2016), 29–45

ON THE HOLOMORPHIC AUTOMORPHISM GROUP OF A GENERALIZED HARTOGS TRIANGLE

AKIO KODAMA

(Received May 23, 2014, revised August 12, 2014)

Abstract. In this paper, we completely determine the structure of the holomorphic automorphism group of a generalized Hartogs triangle and obtain natural generalizations of some results due to Landucci and Chen-Xu. These give affirmative answers to some open problems posed by Jarnicki and Pflug.

1. Introduction. For any positive integers ℓ_i , m_j and any positive real numbers p_i , q_j with $1 \le i \le I$, $1 \le j \le J$, we set

$$\ell = (\ell_1, \dots, \ell_I), \ m = (m_1, \dots, m_J), \ p = (p_1, \dots, p_I), \ q = (q_1, \dots, q_J)$$

and define a generalized Hartogs triangle $\mathcal{H}^{p,q}_{\ell m}$ in \mathbb{C}^N by

$$\mathcal{H}_{\ell,m}^{p,q} = \left\{ (z,w) \in \mathbb{C}^N \; ; \; \sum_{i=1}^{I} \|z_i\|^{2p_i} < \sum_{j=1}^{J} \|w_j\|^{2q_j} < 1 \right\},\$$

where

$$z = (z_1, \dots, z_I) \in \mathbf{C}^{\ell_1} \times \dots \times \mathbf{C}^{\ell_I} = \mathbf{C}^{|\ell|}, \quad |\ell| = \ell_1 + \dots + \ell_I,$$

$$w = (w_1, \dots, w_J) \in \mathbf{C}^{m_1} \times \dots \times \mathbf{C}^{m_J} = \mathbf{C}^{|m|}, \quad |m| = m_1 + \dots + m_J,$$

and $\mathbf{C}^N = \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}, \quad N = |\ell| + |m|.$

For convenience and no loss of generality, in this paper we always assume that

$$p_2,\ldots,p_I\neq 1, \quad q_2,\ldots,q_J\neq 1$$

if $I \ge 2$ or $J \ge 2$. Clearly, this domain is not geometrically convex and its boundary is not smooth and contains the origin 0 = (0, 0) of $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} = \mathbf{C}^N$. In the special case where all the $\ell_i = m_j = 1$ and all the p_i, q_j are positive integers, the structure of the holomorphic automorphism group $\operatorname{Aut}(\mathcal{H}_{\ell,m}^{p,q})$ of $\mathcal{H}_{\ell,m}^{p,q}$ was already clarified by Landucci [8] and Chen-Xu [3], [4]. Here we would like to remark that these papers contain the following crucial fact: Let $\Phi \in \operatorname{Aut}(\mathcal{H}_{\ell,m}^{p,q})$ and express $\Phi = (f, g)$ with respect to the coordinate system (z, w) in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} = \mathbf{C}^N$. Then the *w*-component mapping $g : \mathcal{H}_{\ell,m}^{p,q} \to \mathbf{C}^{|m|}$ does not depend on the variables *z*; and hence, it has the form g(z, w) = g(w). And, a glance at their proofs of this fact tells us that the assumptions $\ell_i, m_j = 1$ and $p_i, q_j \in \mathbf{N}$ cannot be avoided with their

²⁰¹⁰ Mathematics Subject Classification. Primary 32A07; Secondary 32M05.

Key words and phrases. Generalized Hartogs triangles, Holomorphic automorphisms.

The author is partially supported by the Grant-in-Aid for Scientific Research (C) No. 24540166, the Ministry of Education, Science, Sports and Culture, Japan.

techniques. This raises new difficulties to analyze the structure of Aut($\mathcal{H}_{\ell,m}^{p,q}$) in our general case.

The purpose of this paper is to overcome these difficulties and obtain more general results for arbitrary generalized Hartogs triangles $\mathcal{H}_{\ell,m}^{p,q}$. In fact, employing some group-theoretic method, we can avoid their hard part and prove that g is always independent on the variables z for every element $\Phi = (f, g) \in \operatorname{Aut}(\mathcal{H}_{\ell,m}^{p,q})$. Once this is accomplished, our previous results in [6] can be applied to establish the following theorems:

THEOREM 1. Let $\mathcal{H}_{\ell,m}^{p,q}$ be a generalized Hartogs triangle in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|}$ with |m| = 1. Then the holomorphic automorphism group $\operatorname{Aut}(\mathcal{H}_{\ell,m}^{p,q})$ consists of all transformations

 $\Phi:(z_1,\ldots,z_I,w)\longmapsto(\tilde{z}_1,\ldots,\tilde{z}_I,\tilde{w})$

of the following form:

(I) $p_1 = 1, q \in \mathbf{N}$: In this case, we have

$$\tilde{z}_1 = w^q H(z_1/w^q), \quad \tilde{z}_i = \gamma_i(z_1/w^q) A_i z_{\sigma(i)} \quad (2 \le i \le I), \quad \tilde{w} = B u$$

(think of z_i as column vectors), where

- (1) $H \in \operatorname{Aut}(B^{\ell_1})$, where B^{ℓ_1} denotes the unit ball in \mathbb{C}^{ℓ_1} ;
- (2) γ_i are nowhere vanishing holomorphic functions on B^{ℓ_1} defined by

$$\gamma_i(z_1) = \left(\frac{1 - \|a\|^2}{\left(1 - \langle z_1, a \rangle\right)^2}\right)^{1/2p_i}, \quad a = H^{-1}(o) \in B^{\ell_1}.$$

where $\langle \cdot, \cdot \rangle$ denotes the standard Hermitian inner product on \mathbb{C}^{ℓ_1} and $o \in B^{\ell_1}$ is the origin of \mathbb{C}^{ℓ_1} ;

(3) $A_i \in U(\ell_i)$, the unitary group of degree ℓ_i , and $B \in \mathbb{C}$ with |B| = 1;

(4) σ is a permutation of $\{2, ..., I\}$ satisfying the following: $\sigma(i) = s$ can only happen when $(\ell_i, p_i) = (\ell_s, p_s)$.

(II) $p_1 \neq 1 \text{ or } q \notin \mathbf{N}$: In this case, we have

$$\tilde{z}_i = A_i z_{\sigma(i)} \quad (1 \le i \le I), \quad \tilde{w} = Bw,$$

where $A_i \in U(\ell_i)$, $B \in \mathbb{C}$ with |B| = 1, and σ is a permutation of $\{1, \ldots, I\}$ satisfying the condition: $\sigma(i) = s$ can only happen when $(\ell_i, p_i) = (\ell_s, p_s)$.

THEOREM 2. Let $\mathcal{H}_{\ell,m}^{p,q}$ be a generalized Hartogs triangle in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|}$ with $|m| \ge 2$. Then the holomorphic automorphism group $\operatorname{Aut}(\mathcal{H}_{\ell,m}^{p,q})$ consists of all transformations

$$\Phi: (z_1, \ldots, z_I, w_1, \ldots, w_J) \longmapsto (\tilde{z}_1, \ldots, \tilde{z}_I, \tilde{w}_1, \ldots, \tilde{w}_J)$$

of the form

$$\tilde{z}_i = A_i z_{\sigma(i)} \quad (1 \le i \le I), \quad \tilde{w}_j = B_j w_{\tau(j)} \quad (1 \le j \le J)$$

(think of z_i , w_j as column vectors), where $A_i \in U(\ell_i)$, $B_j \in U(m_j)$ and σ , τ are permutations of $\{1, \ldots, I\}$, $\{1, \ldots, J\}$ respectively, satisfying the condition: $\sigma(i) = s$, $\tau(j) = t$ can only happen when $(\ell_i, p_i) = (\ell_s, p_s)$, $(m_j, q_j) = (m_t, q_t)$. Considering the special case where all the ℓ_i , $m_j = 1$ in this paper, we obtain natural generalizations of some results due to Landucci [8] and Chen-Xu [3], [4]. In particular, our Theorems 1 and 2 give affirmative answers to some open problems posed in Jarnicki and Pflug [5; Remarks 2.5.15 and 2.5.17].

After some preparations in the next Section 2, we prove our Theorems 1 and 2 in Sections 3 and 4, respectively.

2. Preliminaries and several Lemmas. Throughout this paper, we write $\mathcal{H} = \mathcal{H}_{\ell,m}^{p,q}$ for the sake of simplicity. Also, we often use the following notation: For the given points $z = (z_1, \ldots, z_I) \in \mathbb{C}^{|\ell|}$, $w = (w_1, \ldots, w_J) \in \mathbb{C}^{|m|}$ and $p = (p_1, \ldots, p_I)$, $q = (q_1, \ldots, q_J)$ as in the Introduction, we set

(2.1)
$$\begin{aligned} \zeta &= (\zeta_1, \dots, \zeta_N) = (z, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} = \mathbf{C}^N ,\\ \rho^p(z) &= \sum_{i=1}^I \|z_i\|^{2p_i}, \quad \rho^q(w) = \sum_{j=1}^J \|w_j\|^{2q_j} , \text{ and}\\ \mathcal{E}^p &= \left\{ z \in \mathbf{C}^{|\ell|} ; \ \rho^p(z) < 1 \right\}, \quad \mathcal{E}^q = \left\{ w \in \mathbf{C}^{|m|} ; \ \rho^q(w) < 1 \right\} \end{aligned}$$

We denote by $B(\zeta_o, \delta)$ the Euclidean open ball of radius $\delta > 0$ and center $\zeta_o \in \mathbb{C}^N$. For a subset *S* of \mathbb{C}^N , the boundary (resp. closure) of *S* in \mathbb{C}^N will be denoted by ∂S (resp. \overline{S}). Also, we write as usual

$$\zeta^{\alpha} = \zeta_1^{\alpha_1} \cdots \zeta_N^{\alpha_N}$$
 for $\zeta = (\zeta_1, \dots, \zeta_N) \in \mathbf{C}^N$, $\alpha = (\alpha_1, \dots, \alpha_N) \in \mathbf{Z}^N$

Let $S_{\mathcal{H}} = \{ \alpha \in \mathbb{Z}^N ; \zeta^{\alpha} \in \mathcal{O}(\mathcal{H}), \|\zeta^{\alpha}\|_{A^2(\mathcal{H})} < \infty \}$, where $\mathcal{O}(\mathcal{H})$ denotes the set of all holomorphic functions on \mathcal{H} and $A^2(\mathcal{H})$ is the Bergman space of \mathcal{H} with the norm $\|\cdot\|_{A^2(\mathcal{H})}$. Then it is known [1] that the Bergman kernel function $K = K_{\mathcal{H}}$ for \mathcal{H} can be expressed as

(2.2)
$$K(\zeta,\eta) = \sum_{\alpha \in S_{\mathcal{H}}} c_{\alpha} \zeta^{\alpha} \bar{\eta}^{\alpha}, \quad \zeta, \eta \in \mathcal{H}.$$

with $c_{\alpha} > 0$ for each $\alpha \in S_{\mathcal{H}}$. Let $r = (r_1, \ldots, r_N) \in \mathbf{R}^N_+$, $\zeta = (\zeta_1, \ldots, \zeta_N) \in \mathbf{C}^N$ and set

$$r \cdot \zeta := (r_1 \zeta_1, \dots, r_N \zeta_N), \quad 1/r := (1/r_1, \dots, 1/r_N).$$

It then follows from (2.2) that, for $r, s \in \mathbf{R}^N_+$ and $\zeta, \eta \in \mathbf{C}^N$,

(2.3)
$$K(r \cdot \zeta, (1/r) \cdot \eta) = K(s \cdot \zeta, (1/s) \cdot \eta)$$

whenever $r \cdot \zeta$, $s \cdot \zeta$, $(1/r) \cdot \eta$, $(1/s) \cdot \eta \in \mathcal{H}$; hence, for any points ζ , $\eta \in \mathcal{H}$,

(2.4)
$$K(r \cdot \zeta, (1/r) \cdot \eta) = K(\zeta, \eta) \quad \text{if } r \cdot \zeta, (1/r) \cdot \eta \in \mathcal{H}.$$

Although, in the proofs of Lemmas 1 and 2 below, there are some overlaps with the papers by Barrett [1], Landucci [8] and Chen-Xu [3], we carry out the proofs in details for the sake of completeness and self-containedness.

LEMMA 1. The Bergman kernel function $K(\zeta, \eta)$ extends holomorphically in ζ and anti-holomorphically in η to an open neighborhood of $(\overline{\mathcal{H}} \setminus \{0\}) \times \mathcal{H}$ in \mathbb{C}^{2N} .

PROOF. First of all, let us take two points $\zeta_o \in \partial \mathcal{H} \setminus \{0\}, \eta_o \in \mathcal{H}$ arbitrarily and represent $\zeta_o = (z_o, w_o)$ by the (z, w)-coordinates in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|} = \mathbb{C}^N$. Since $\zeta_o = (z_o, w_o) \neq$ (0, 0), one can choose two constants r_o, s_o with $0 < r_o < s_o < 1$ in such a way that $\hat{\zeta}_o :=$ $(r_o z_o, s_o w_o) \in \mathcal{H}$. Now we fix small balls $B_{\hat{\zeta}_o}, B_{\eta_o}$ in \mathbb{C}^N with centers $\hat{\zeta}_o, \eta_o$, respectively, such that $\overline{B_{\hat{\zeta}_o}} \cup \overline{B_{\eta_o}} \subset \mathcal{H}$. Set

$$A_{\zeta_o} := \left\{ (z, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} ; \ (r_o z, s_o w) \in B_{\hat{\zeta}_o} \right\}.$$

Then $O_{\zeta_o\eta_o} := A_{\zeta_o} \times B_{\eta_o}$ is a geometrically convex open neighborhood of (ζ_o, η_o) in \mathbb{C}^{2N} . We may assume that r_o, s_o are selected so close to 1 that

$$\left\{ (u/r_o, v/s_o) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} ; (u, v) \in B_{\eta_o} \right\} \subset \mathcal{H}$$

Accordingly we can define a real-analytic function $\widehat{K} = \widehat{K}_{\zeta_o \eta_o}$ on $O_{\zeta_o \eta_o}$ by

$$\widetilde{K}((z,w),(u,v)) = K((r_o z, s_o w), (u/r_o, v/s_o)), \ ((z,w),(u,v)) \in O_{\zeta_o \eta_o}$$

In this way, we obtain a collection

$$\mathcal{K} = \left\{ (O_{\zeta_o \eta_o}, \widehat{K}_{\zeta_o \eta_o}); \ (\zeta_o, \eta_o) \in (\partial \mathcal{H} \setminus \{0\}) \times \mathcal{H} \right\}$$

satisfying the following: For any elements $(O_{\zeta\eta}, \widehat{K}_{\zeta\eta}), (O_{\zeta'\eta'}, \widehat{K}_{\zeta'\eta'}) \in \mathcal{K}$, we have that

$$\widehat{K}_{\zeta\eta} = K \text{ on } O_{\zeta\eta} \cap (\mathcal{H} \times \mathcal{H}) \text{ and } \widehat{K}_{\zeta\eta} = \widehat{K}_{\zeta'\eta'} \text{ on } O_{\zeta\eta} \cap O_{\zeta'\eta}$$

by (2.4) and (2.3). Therefore these local extensions $\widehat{K}_{\zeta\eta}$ together provide a global extension of *K* required in Lemma 1.

Here let us recall the structure of the holomorphic automorphism group Aut(\mathcal{H}) (cf. [9]). Since \mathcal{H} is a bounded domain in \mathbb{C}^N , it has the structure of a real Lie group with respect to the compact-open topology by a well-known theorem of H. Cartan. Note that Aut(\mathcal{H}) has a countable basis for the open sets and a sequence $\{\Phi^{\nu}\}$ in Aut(\mathcal{H}) converges if and only if $\{\Phi^{\nu}\}$ converges uniformly on compact subsets of \mathcal{H} to an element $\Phi \in Aut(\mathcal{H})$. From now on, we denote by

 $G(\mathcal{H})$ the identity component of $Aut(\mathcal{H})$ with Lie algebra $\mathfrak{g}(\mathcal{H})$.

As is well-known, $\mathfrak{g}(\mathcal{H})$ can be canonically identified with the real Lie algebra of all complete holomorphic vector fields on \mathcal{H} . With this notation, we prove the following:

LEMMA 2. Let ζ_o be an arbitrary point of $\partial \mathcal{H} \setminus \{0\}$. Then there exist a connected open neighborhood U_{ζ_o} of ζ_o in $\mathbb{C}^N \setminus \{0\}$ and a connected open neighborhood W_{ζ_o} of the identity element $\mathrm{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in W_{\zeta_o}$ extends to a holomorphic mapping $\widehat{\Phi} : \mathcal{H} \cup U_{\zeta_o} \to \mathbb{C}^N$.

PROOF. Let $P: L^2(\mathcal{H}) \to A^2(\mathcal{H})$ be the Bergman projection defined by

$$Pf(\zeta) = \int_{\mathcal{H}} K(\zeta, \eta) f(\eta) \, dV_{\eta} \,, \quad f \in L^{2}(\mathcal{H}) \,.$$

It then follows from Lemma 1 that Pf can be extended to a holomorphic function, say $\widehat{P}f$, defined on some domain $\mathcal{H} \cup U_{\zeta_o}$, where U_{ζ_o} is a connected open neighborhood of ζ_o contained in $\mathbb{C}^N \setminus \{0\}$.

Let $\phi \in C_0^{\infty}(\mathcal{H})$ be a non-negative function such that $\phi(\zeta_1, \ldots, \zeta_N) = \phi(|\zeta_1|, \ldots, |\zeta_N|)$ and $\int_{\mathcal{H}} \phi(\zeta) dV_{\zeta} = 1$. For any $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{Z}^N$ with $\alpha_j \ge 0, 1 \le j \le N$, we set

$$\phi_{\alpha}(\zeta) = (c_{\alpha}\alpha!)^{-1} (-1)^{|\alpha|} \partial^{|\alpha|} \phi(\zeta) / \partial \bar{\zeta}_{1}^{\alpha_{1}} \cdots \partial \bar{\zeta}_{N}^{\alpha_{N}}, \quad \zeta \in \mathcal{H},$$

where c_{α} is the same constant appearing in (2.2) and $\alpha! = \alpha_1! \cdots \alpha_N!$, $|\alpha| = \alpha_1 + \cdots + \alpha_N$. Then, thanks to the concrete description of the expansion of *K* as in (2.2), we can compute explicitly $P\phi_{\alpha}$ as $P\phi_{\alpha}(\zeta) = \zeta^{\alpha}$, $\zeta \in \mathcal{H}$. Consequently, by analytic continuation

(2.5)
$$\widehat{P}\phi_{\alpha}(\zeta) = \zeta^{\alpha}, \quad \zeta \in \mathcal{H} \cup U_{\zeta_{\alpha}}.$$

Now, let us take a sequence $\{\Phi^{\nu}\}$ in $G(\mathcal{H})$ converging to the identity element $\mathrm{id}_{\mathcal{H}}$ and express $\Phi^{\nu} = (\Phi_1^{\nu}, \dots, \Phi_N^{\nu})$ with respect to the ζ -coordinate system in \mathbb{C}^N . Let $J_{\Phi^{\nu}}(\zeta)$ be the Jacobian determinant of Φ^{ν} at $\zeta \in \mathcal{H}$. Then, applying the transformation law by the Bergman projection under proper holomorphic mapping (cf. [2]) and using the fact (2.5), we have that

(2.6)
$$\begin{pmatrix} J_{\phi^{\nu}} \cdot (\phi_{1}^{\nu})^{\alpha_{1}} \cdots (\phi_{N}^{\nu})^{\alpha_{N}} \end{pmatrix} (\zeta) = (J_{\phi^{\nu}} \cdot P\phi_{\alpha} \circ \phi^{\nu})(\zeta) \\ = P(J_{\phi^{\nu}} \cdot \phi_{\alpha} \circ \phi^{\nu})(\zeta) = \int_{\mathcal{H}} K(\zeta, \eta) (J_{\phi^{\nu}} \cdot \phi_{\alpha} \circ \phi^{\nu})(\eta) \, dV_{\eta}$$

for $\zeta \in \mathcal{H}$. Here, since the last term extends holomorphically to the function $\widehat{P}(J_{\Phi^{\nu}} \cdot \phi_{\alpha} \circ \Phi^{\nu})$ on $\mathcal{H} \cup U_{\zeta_{0}}$, we may assume that $J_{\Phi^{\nu}} \cdot (\Phi_{1}^{\nu})^{\alpha_{1}} \cdots (\Phi_{N}^{\nu})^{\alpha_{N}}$ is also a holomorphic function defined on $\mathcal{H} \cup U_{\zeta_{0}}$ and satisfies the same equalities there. Moreover, since $\{\Phi^{\nu}\}$ converges to $\mathrm{id}_{\mathcal{H}}$ uniformly on compact subsets of \mathcal{H} , we obtain by the Cauchy estimates that

$$\lim_{\nu \to \infty} J_{\Phi^{\nu}}(\eta) = 1 \quad \text{and} \quad \lim_{\nu \to \infty} (\phi_{\alpha} \circ \Phi^{\nu})(\eta) = \phi_{\alpha}(\eta)$$

uniformly on compact subsets of \mathcal{H} and supp $(\phi_{\alpha} \circ \Phi^{\nu})$ are contained in some compact subset of \mathcal{H} for all ν . Hence, the fact (2.5) immediately yields that

$$\lim_{\nu\to\infty} \left(J_{\Phi^{\nu}} \cdot (\Phi_1^{\nu})^{\alpha_1} \cdots (\Phi_N^{\nu})^{\alpha_N} \right)(\zeta) = \int_{\mathcal{H}} K(\zeta,\eta) \phi_{\alpha}(\eta) \, dV_{\eta} = \zeta^{\alpha} \,, \quad \zeta \in \mathcal{H} \cup U_{\zeta_o} \,,$$

uniformly on compact subsets of $\mathcal{H} \cup U_{\zeta_0}$. Thus, considering the special cases where $\alpha = 0$ and $\alpha_j = 1$, $\alpha_k = 0$ $(1 \le j, k \le N, j \ne k)$, we obtain that

(2.7)
$$\lim_{\nu \to \infty} J_{\Phi^{\nu}}(\zeta) = 1 \text{ and } \lim_{\nu \to \infty} \left(J_{\Phi^{\nu}} \cdot \Phi^{\nu}_{j} \right)(\zeta) = \zeta_{j}, \quad 1 \le j \le N,$$

uniformly on compact subsets of the domain $\mathcal{H} \cup U_{\zeta_o}$. Clearly this says that, after shrinking U_{ζ_o} and passing to a subsequence if necessary, $J_{\Phi^{\nu}}$ are nowhere vanishing holomorphic functions on $\mathcal{H} \cup U_{\zeta_o}$ and so $\Phi^{\nu} : \mathcal{H} \cup U_{\zeta_o} \to \mathbb{C}^N$ are holomorphic mappings for all $\nu = 1, 2, \ldots$.

Since the conclusion of the preceding paragraph is valid for any sequence $\{\Phi^{\nu}\}$ converging to $\mathrm{id}_{\mathcal{H}}$, it is obvious that there exist an open neighborhood U_{ζ_o} of ζ_o and an open neighborhood W_{ζ_o} of $\mathrm{id}_{\mathcal{H}}$ satisfying the requirement of the lemma.

We now define compact subsets $\partial_r \mathcal{H}$ of $\partial \mathcal{H} \setminus \{0\}$ by setting

$$\partial_r \mathcal{H} = \{ \zeta \in \partial \mathcal{H} ; \| \zeta \| \ge r \}, \quad 0 < r < 1.$$

Then we can prove the following:

LEMMA 3. For any compact subset $\partial_r \mathcal{H}$ of $\partial \mathcal{H} \setminus \{0\}$ defined as above, there exist a bounded Reinhardt domain D_r in $\mathbb{C}^N \setminus \{0\}$ and a connected open neighborhood O_r of $\mathrm{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ satisfying the following:

- (1) $\mathcal{H} \cup \partial_r \mathcal{H} \subset D_r$;
- (2) every element $\Phi \in O_r$ extends to a holomorphic mapping $\widehat{\Phi} : D_r \to \mathbb{C}^N$.

PROOF. For each point $\zeta_o \in \partial \mathcal{H} \setminus \{0\}$, we take a connected open neighborhood U_{ζ_o} of ζ_o and a connected open neighborhood W_{ζ_o} of $id_{\mathcal{H}}$ satisfying the condition in Lemma 2. Then, by the compactness of $\partial_r \mathcal{H}$ there are finitely many points $\zeta^i \in \partial_r \mathcal{H}$, $1 \le i \le n_0$, such that $\partial_r \mathcal{H} \subset \bigcup_{i=1}^{n_0} U_{\zeta^i}$. Since $\partial_r \mathcal{H}$ is invariant under the standard action of the *N*-dimensional torus T^N on \mathbb{C}^N as well as \mathcal{H} , we can now find a Reinhardt domain D_r satisying

(2.8)
$$\mathcal{H} \cup \partial_r \mathcal{H} \subset D_r \subset \mathcal{H} \cup \left(\bigcup_{i=1}^{n_0} U_{\zeta^i}\right).$$

Let O_r be the connected component of $\bigcap_{i=1}^{n_0} W_{\zeta^i}$ containing the identity $\mathrm{id}_{\mathcal{H}}$. Then it is clear that the pair (D_r, O_r) satisfies the requirement of Lemma 3.

LEMMA 4. For any compact subset $\partial_r \mathcal{H}$ of $\partial \mathcal{H} \setminus \{0\}$, there exists a bounded Reinhardt domain \widehat{D}_r in $\mathbb{C}^N \setminus \{0\}$ satisfying the following:

- (1) $\mathcal{H} \cup \partial_r \mathcal{H} \subset \widehat{D}_r$;
- (2) every element $X \in \mathfrak{g}(\mathcal{H})$ extends to a holomorphic vector field \widehat{X} on \widehat{D}_r .

PROOF. By Lemma 3 there exist a bounded Reinhardt domain D_r in \mathbb{C}^N and a connected open neighborhood O_r of $\mathrm{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in O_r$ extends to a holomorphic mapping $\widehat{\Phi} : D_r \to \mathbb{C}^N$. Moreover, for any $\varepsilon > 0$ and any compact set $L \subset D_r$, it follows from (2.7) and (2.8) that

(2.9)
$$\|\widehat{\Phi}(\zeta) - \zeta\| < \varepsilon \text{ for all } \zeta \in L, \ \Phi \in O_r,$$

provided that O_r is sufficiently small.

Now, let $X \in \mathfrak{g}(\mathcal{H})$ and $\{\Phi_t = \exp tX\}_{t \in \mathbb{R}}$ the one-parameter subgroup of $G(\mathcal{H})$ generated by X. Then, thanks to the fact (2.9), one can choose a constant $\varepsilon_o > 0$ satisfying the following conditions: Let $\zeta_o \in \partial_r \mathcal{H}$ and let $B(\zeta_o, \delta(\zeta_o))$ be a small ball such that $B(\zeta_o, 2\delta(\zeta_o)) \subset D_r$. Then

(2.10) Φ_t extends to a holomorphic mapping $\widehat{\Phi}_t : D_r \to \mathbb{C}^N$; and

(2.11) $\widehat{\Phi}_t(B(\zeta_o, \delta(\zeta_o))) \subset B(\zeta_o, 2\delta(\zeta_o))$

34

for every $t \in \mathbf{R}$ with $|t| < \varepsilon_o$. Under this situation, since $\{\Phi_t\}_{t \in \mathbf{R}}$ is a global one-parameter subgroup of $G(\mathcal{H})$, we obtain by analytic continuation that

$$\widehat{\Phi}_{s}(\widehat{\Phi}_{t}(\zeta)) = \widehat{\Phi}_{s+t}(\zeta), \ \zeta \in B(\zeta_{o}, \delta(\zeta_{o})), \ \text{whenever } |s|, |t|, |s+t| < \varepsilon_{o};$$

accordingly $\{\widehat{\Phi}_t\}_{|t|<\varepsilon_o}$ is a one-parameter local group of local holomorphic transformations. Let \widehat{X} be the holomorphic vector field on $B(\zeta_o, \delta(\zeta_o))$ induced by $\{\widehat{\Phi}_t\}_{|t|<\varepsilon_o}$. Then it is obvious that \widehat{X} is a unique holomorphic extension of X to $B(\zeta_o, \delta(\zeta_o))$. Since $\zeta_o \in \partial_r \mathcal{H}$ is arbitrary and $\partial_r \mathcal{H}$ is compact, by repeating the same argument as in the proof of Lemma 3, we can find a Reinhardt domain \widehat{D}_r satisfying the requirement of Lemma 4.

Before proceeding, we need to introduce some terminology. Let $T^N = (U(1))^N$ be the *N*-dimensional torus. Then T^N acts as a group of holomorphic automorphisms on \mathbb{C}^N by the standard rule

$$\alpha \cdot \zeta = (\alpha_1 \zeta_1, \dots, \alpha_N \zeta_N) \text{ for } \alpha = (\alpha_i) \in T^N, \ \zeta = (\zeta_i) \in \mathbb{C}^N$$

Let *D* be an arbitrary Reinhardt domain in \mathbb{C}^N . Then, just by the definition, *D* is invariant under this action of T^N . Each element $\alpha \in T^N$ then induces an automorphism π_α of *D* given by $\pi_\alpha(\zeta) = \alpha \cdot \zeta$, and the mapping ρ_D sending α to π_α is an injective continuous group homomorphism of T^N into Aut(*D*). The subgroup $\rho_D(T^N)$ of Aut(*D*) is denoted by T(D). Analogously, the multiplicative group $(\mathbb{C}^*)^N$ acts as a group of automorphisms on \mathbb{C}^N . So, denoting by $\Pi(D) = \{\alpha \in (\mathbb{C}^*)^N; \alpha \cdot D \subset D\}$, we obtain the topological subgroup $\Pi(D)$ of Aut(*D*). We have one more important topological subgroup Aut_{alg}(*D*) of Aut(*D*) consisting of all elements Φ of Aut(*D*) such that the *i*-th component function Φ_i of Φ is given by a Laurent monomial having the form

(2.12)
$$\Phi_i(\zeta) = \lambda_i \zeta_1^{a_{i1}} \cdots \zeta_N^{a_{iN}}, \quad 1 \le i \le N \,,$$

where $(a_{ij}) \in GL(N, \mathbb{Z})$ and $(\lambda_i) \in (\mathbb{C}^*)^N$. We call $\operatorname{Aut}_{\operatorname{alg}}(D)$ the algebraic automorphism group of D and each element of $\operatorname{Aut}_{\operatorname{alg}}(D)$ is called an algebraic automorphism of D. It is known [7] that these groups are related in the following manner: The centralizer of the torus T(D) in $\operatorname{Aut}(D)$ is given by $\Pi(D)$, while the normalizer of T(D) in $\operatorname{Aut}(D)$ is given by $\operatorname{Aut}_{\operatorname{alg}}(D)$. Here we consider the mapping ϖ : $\operatorname{Aut}_{\operatorname{alg}}(D) \to GL(N, \mathbb{Z})$ that sends an element Φ of $\operatorname{Aut}_{\operatorname{alg}}(D)$ whose *i*-th component is given by (2.12) into the element $(a_{ij}) \in GL(N, \mathbb{Z})$. Then it is easy to see that ϖ is a group homomorphism with ker $\varpi = \Pi(D)$; and hence it induces a group isomorphism

$$\operatorname{Aut}_{\operatorname{alg}}(D)/\Pi(D) \xrightarrow{\cong} \mathcal{G}(D) := \varpi(\operatorname{Aut}_{\operatorname{alg}}(D)) \subset GL(N, \mathbb{Z}).$$

Let G(D) be the identity component of Aut(D). Then we know the following fundamental result due to Shimizu [11]:

(2.13) Every element $\Phi \in \operatorname{Aut}(D)$ can be written in the form $\Phi = \Phi' \Phi''$, where $\Phi' \in G(D)$ and $\Phi'' \in \operatorname{Aut}_{alg}(D)$.

Now let us consider the special case where D is our generalized Hartogs triangle \mathcal{H} . Then we have the following:

LEMMA 5. Every element
$$\Phi \in \operatorname{Aut}_{\operatorname{alg}}(\mathcal{H})$$
 can be written in the form

$$\Phi(\zeta) = \left(\lambda_1 \zeta_{\sigma(1)} \zeta_N^{b_1}, \dots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)} \zeta_N^{b_{|\ell|}}, \lambda_N \zeta_N\right) \text{ or }$$

$$\Phi(\zeta) = \left(\lambda_1 \zeta_{\sigma(1)}, \dots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)}, \lambda_{|\ell|+1} \zeta_{\tau(|\ell|+1)}, \dots, \lambda_N \zeta_{\tau(N)}\right)$$

according as |m| = 1 or $|m| \ge 2$, where $(\lambda_i) \in T^N$, $(b_i) \in \mathbf{Z}^{|\ell|}$, and σ , τ are permutations of $\{1, \ldots, |\ell|\}$, $\{|\ell| + 1, \ldots, N\}$ respectively.

PROOF. We assume that the *i*-th component function Φ_i of Φ is given by (2.12).

We first consider the case |m| = 1. Since every point of the form $(0, w) \in \mathbb{C}^{|\ell|} \times \mathbb{C}$ with $w \in \Delta^* = \Delta \setminus \{0\}$, the punctured disc, belongs to \mathcal{H} , it is easily seen that Φ_N has the form $\Phi_N(\zeta) = \lambda_N \zeta_N$, $|\lambda_N| = 1$, and the matrix $\varpi(\Phi) \in GL(N, \mathbb{Z})$ can be written as

$$\varpi(\Phi) = \begin{pmatrix} a_{11} & \cdots & a_{1|\ell|} & a_{1N} \\ \vdots & \ddots & \vdots & \vdots \\ a_{|\ell|1} & \cdots & a_{|\ell||\ell|} & a_{|\ell|N} \\ 0 & \cdots & 0 & 1 \end{pmatrix} \text{ with } a_{ij} \ge 0 \text{ for } 1 \le i, j \le |\ell|.$$

We claim here that the submatrix $A := (a_{ij})_{1 \le i, j \le |\ell|}$ is a permutation matrix, that is, there exists a permutation σ of $\{1, \ldots, |\ell|\}$ such that $a_{ij} = \delta_{\sigma(i)j}$ for all $1 \le i, j \le |\ell|$. Indeed, notice that the mapping $\zeta \mapsto (\zeta_1, \ldots, \zeta_{|\ell|}, \lambda_N^{-1}\zeta_N)$, $\zeta \in \mathcal{H}$, belongs to $\operatorname{Aut}_{\operatorname{alg}}(\mathcal{H})$; and hence one may assume that $\Phi_N(\zeta) = \zeta_N$. Then, for any given point $\zeta_N \in \Delta^*$, the mapping $\widetilde{\Phi}(z) := (\Phi_1(z, \zeta_N), \ldots, \Phi_{|\ell|}(z, \zeta_N))$ gives rise to a holomorphic automorphism of the bounded Reinhardt domain $\{z \in \mathbb{C}^{|\ell|} : \rho^p(z) < |\zeta_N|^{2q}\}$ containing the origin of $\mathbb{C}^{|\ell|}$ and, in particular, it maps the complex analytic subset $\mathcal{H} \cap \{\zeta \in \mathbb{C}^N : \zeta_i = 0\}$ of \mathcal{H} onto some equidimensional complex analytic subset of \mathcal{H} for each $1 \le i \le |\ell|$. This yields at once that A is a permutation matrix, as claimed. Therefore, putting $b_i = a_{iN}$, $1 \le i \le |\ell|$, we have seen that Φ has the form

(2.14)
$$\Phi(\zeta) = \left(\lambda_1 \zeta_{\sigma(1)} \zeta_N^{b_1}, \dots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)} \zeta_N^{b_{|\ell|}}, \lambda_N \zeta_N\right).$$

In particular, this says that Φ extends to a holomorphic automorphism of $\mathbb{C}^{|\ell|} \times \mathbb{C}^*$ with $\Phi(\partial \mathcal{H} \setminus \{0\}) \subset \partial \mathcal{H} \setminus \{0\}$. Using this fact, we would like to check that $|\lambda_i| = 1$ for every $1 \le i \le |\ell|$. To this end, let $\sigma(i) = s$ and choose an arbitrary element

$$\zeta[s] := (0, \ldots, 0, \zeta_s, 0, \ldots, 0, \zeta_N) \in \partial \mathcal{H} \text{ with } \zeta_N \in \Delta^*$$

Then, by (2.14), $\Phi(\zeta[s]) = (0, \ldots, 0, \lambda_i \zeta_s \zeta_N^{b_i}, 0, \ldots, 0, \lambda_N \zeta_N) \in \partial \mathcal{H}$. Thus we have

$$|\lambda_i \zeta_s \zeta_N^{b_i}|^{2p_a} = |\zeta_N|^{2q}$$
 whenever $|\zeta_s|^{2p_b} = |\zeta_N|^{2q} < 1$

where p_a , p_b are some positive constants appearing in the definition of $\mathcal{H} = \mathcal{H}_{\ell,m}^{p,q}$. Therefore, letting $|\zeta_N| \to 1$, we conclude that $|\lambda_i| = 1$, as desired.

Next we consider the case $|m| \ge 2$. In this case, notice that the Reinhardt domain \mathcal{H} satisfies the condition that $\mathcal{H} \cap \{\zeta \in \mathbb{C}^N ; \zeta_i = 0\} \neq \emptyset$ for each $1 \le i \le N$. Hence every component function Φ_i of Φ extends to a holomorphic function on $\mathcal{E}^p \times \mathcal{E}^q$, where \mathcal{E}^p and \mathcal{E}^q are the generalized complex ellipsoids defined in (2.1) (cf. [9; p.15]). Consequently, since $\mathcal{E}^p \times \mathcal{E}^q$ contains the origin $(0, 0) \in \mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|}$, every component a_{ij} of $\varpi(\Phi) =$

36

 $(a_{ij}) \in GL(N, \mathbb{Z})$ has to be non-negative. Hence $\varpi(\Phi)$ reduces to a permutation matrix, because Φ is a holomorphic automorphism of \mathcal{H} and so it maps the complex hypersurface $\mathcal{H} \cap \{\zeta \in \mathbb{C}^N ; \zeta_i = 0\}$ of \mathcal{H} onto another one for every $1 \leq i \leq N$. This, combined with the fact that \mathcal{H} contains the points having the form (0, w), yields at once that the mapping $g := (\Phi_{|\ell|+1}, \ldots, \Phi_N)$ does not depend on the variables *z*. From these facts, we deduce that there exist permutations σ of $\{1, \ldots, |\ell|\}$ and τ of $\{|\ell| + 1, \ldots, N\}$ with respect to which Φ can be written in the form

$$\Phi(\zeta) = \left(\lambda_1 \zeta_{\sigma(1)}, \ldots, \lambda_{|\ell|} \zeta_{\sigma(|\ell|)}, \lambda_{|\ell|+1} \zeta_{\tau(|\ell|+1)}, \ldots, \lambda_N \zeta_{\tau(N)}\right),\,$$

where $(\lambda_i) \in (\mathbb{C}^*)^N$. In particular, if we express $\Phi = (f, g)$ by coordinates (z, w) in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|} = \mathbb{C}^N$, then f and g may be regarded as the linear automorphisms of $\mathbb{C}^{|\ell|}$ and of $\mathbb{C}^{|m|}$, respectively, such that $f(\partial \mathcal{E}^p) \subset \partial \mathcal{E}^p$ and $g(\partial \mathcal{E}^q) \subset \partial \mathcal{E}^q$. These inclusions immediately yield that $|\lambda_i| = 1$ for every $1 \le i \le N$. Therefore we have completed the proof of Lemma 5.

LEMMA 6. Let $\Psi \in \operatorname{Aut}(\mathcal{H})$ and write $\Psi = (h, k)$ with respect to the coordinate system (z, w) in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|} = \mathbb{C}^N$. Then $k : \mathcal{H} \to \mathbb{C}^{|m|}$ does not depend on the variables z; accordingly it has the form k(z, w) = k(w) on \mathcal{H} .

PROOF. Once it is shown that g does not depend on z for every $\Phi = (f, g) \in G(\mathcal{H})$, then our conclusion immediately follows from the fact (2.13) and Lemma 5. Thus we have only to show the lemma when $\Psi \in G(\mathcal{H})$.

To this end, pick a point $\zeta_o = (0, w_o) = (0, \dots, 0, w_1^o, \dots, w_J^o) \in \partial \mathcal{H}$ with

$$||w_1^o|| \cdots ||w_I^o|| \neq 0$$
 and $\rho^q(w_o) = 1$,

where ρ^q is the function appearing in (2.1), and fix an $r \in \mathbf{R}$ with $0 < r < \|\zeta_o\|$. Then $\zeta_o \in \partial_r \mathcal{H}$ and by Lemma 3 there exist a bounded Reinhardt domain $D := D_r$ in \mathbf{C}^N containing $\mathcal{H} \cup \partial_r \mathcal{H}$ and an open neighborhood $O := O_r$ of $\mathrm{id}_{\mathcal{H}}$ in $G(\mathcal{H})$ such that every element $\Phi \in O$ extends to a holomorphic mapping, say again, $\Phi : D \to \mathbf{C}^N$. Here we choose sufficiently small constants δ_1, δ_2 with $0 < \delta_1 < \delta_2 < 1$ and set

$$U_{i} = \left\{ z \in \mathbf{C}^{|\ell|}; \ \rho^{p}(z) < \delta_{i} \right\},\$$

$$V_{i} = \left\{ w \in \mathbf{C}^{|m|}; \ 1 - \delta_{i} < \rho^{q}(w) < 1 + \delta_{i}, \ \|w_{1}\| \cdots \|w_{J}\| \neq 0 \right\}$$

for i = 1, 2. Then $U_i \times V_i$ (i = 1, 2) are bounded Reinhardt domains in $\mathbb{C}^{|\ell|} \times \mathbb{C}^{|m|} = \mathbb{C}^N$ satisfying the condition

$$\zeta_o \in U_1 \times V_1 \subset \overline{U_1 \times V_1} \subset U_2 \times V_2 \subset \overline{U_2 \times V_2} \subset D$$

and the restriction of ρ^q to V_2 gives a C^{ω} -smooth strictly plurisubharmonic function on V_2 . Moreover, after shrinking O if necessary, we may assume by (2.9) that $\Phi(U_1 \times V_1) \subset U_2 \times V_2$ for every $\Phi \in O$.

Now, taking an element $\Phi = (f, g) \in O$ and a point $w \in V_1$ with $\rho^q(w) = 1$ arbitrarily, we set $g_w(z) = g(z, w), z \in U_1$, for a while. Then, since $g_w(U_1) \subset V_2$, we can define a

 C^{ω} -smooth plurisubharmonic function $\hat{\rho}$ on U_1 by setting $\hat{\rho}(z) := \rho^q(g_w(z)), z \in U_1$. It then follows that $\hat{\rho}(z) = 1$ on U_1 , since

$$\Phi(U_1 \times \{w\}) \subset \partial \mathcal{H} \cap (U_2 \times V_2) \subset \left\{ (u, v) \in U_2 \times V_2; \ \rho^q(v) = 1 \right\}.$$

This combined with the strictly plurisubharmonicity of ρ^q on V_2 implies that $g_w(z)$ is a constant mapping on U_1 . As a result, defining the real-analytic hypersurface of V_1 by setting $H := \{w \in V_1; \rho^q(w) = 1\}$, we have shown that

(2.15) for any
$$w \in H$$
, $g_w(z) = g(z, w)$ is constant on U_1 .

Now, being a holomorphic mapping on the Reinhardt domain *D* containing $\mathcal{H} \cup \partial_r \mathcal{H}$, *g* can be expanded uniquely as

(2.16)
$$g(z,w) = g(\zeta',\zeta'') = \sum_{\nu'} a_{\nu'}(\zeta'')(\zeta')^{\nu'}, \quad \zeta = (\zeta',\zeta'') \in D,$$

which converges uniformly on compact subsets of D, where

$$\zeta' = (\zeta_1, \ldots, \zeta_{|\ell|}) = z \in \mathbf{C}^{|\ell|}, \quad \zeta'' = (\zeta_{|\ell|+1}, \ldots, \zeta_N) = w \in \mathbf{C}^{|m|}$$

 $a_{\nu'}(\zeta'') = (a_{\nu'}^1(\zeta''), \ldots, a_{\nu'}^{|m|}(\zeta''))$ are |m|-tuples of holomorphic functions, and the summation is taken over all $\nu' = (\nu_1, \ldots, \nu_{|\ell|}) \in \mathbf{Z}^{|\ell|}$ with $\nu_1, \ldots, \nu_{|\ell|} \ge 0$ (cf. [9]). In particular, the expansion of g in (2.16) converges uniformly on the domain $U_1 \times V_1$ and every $a_{\nu'}(\zeta'')$ is holomorphic on V_1 . Then the assertion (2.15) tells us that

$$a_{\nu'}(\zeta'') = 0, \ \zeta'' \in H, \text{ for } \nu' \neq 0.$$

Since $a_{\nu'}(\zeta'')$ are holomorphic on V_1 and H is a real-analytic hypersurface of V_1 , it is obvious that $a_{\nu'}(\zeta'') = 0$ on V_1 for $\nu' \neq 0$; and hence, by analytic continuation $g(z, w) = a_0(\zeta'')$ does not depend on $z = \zeta'$ globally; proving our lemma for every element $\Phi = (f, g)$ contained in the open neighborhood O of id_H in $G(\mathcal{H})$.

Finally, recall that a connected topological group is always generated by any neighborhood of the identity id. Hence, replacing O by the open neighborhood $O \cap \{\Phi^{-1}; \Phi \in O\}$ of $id_{\mathcal{H}}$ if necessary, we may assume that the given element $\Psi = (h, k) \in G(\mathcal{H})$ can be represented as a finite product $\Psi = \Phi_1 \cdots \Phi_s$ of elements $\Phi_i \in O$. This together with the result of the preceding paragraph guarantees that k(z, w) does not depend on the variables z; completing the proof of Lemma 6.

We finish this section by the following:

LEMMA 7. Let Ω be a domain in \mathbb{C}^n and let $A : \Omega \to U(L)$ be a mapping from Ω into the unitary group U(L) of degree L. Assume that all the *ij*-components a_{ij} of A are holomorphic functions on Ω . Then A is a constant mapping.

PROOF. By our assumption we have

$$\sum_{j=1}^{L} |a_{ij}(z)|^2 = 1, \ z \in \Omega, \quad \text{for every } 1 \le i \le L.$$

38

Then, since all the a_{ij} are holomorphic on Ω , it is easily seen that $\partial a_{ij}(z)/\partial z_k \equiv 0$ on Ω for all *i*, *j* and *k*. Clearly this implies that *A* is a constant mapping, as desired.

3. Proof of Theorem 1. The proof will be carried out in the following two Subsections.

3.1. CASE (I). $p_1 = 1, q_1 = q \in \mathbb{N}$: When I = 1, that is, for the case $\mathcal{H} = \{(z, w) \in \mathbb{C}^{\ell_1} \times \mathbb{C}; \|z\|^2 < |w|^{2q} < 1\}$, we consider the mapping $\Lambda_1 : \mathcal{H} \to \mathbb{C}^{\ell_1+1}$ defined by

$$\Lambda_1(z,w) = \left(z/w^q, w \right), \quad (z,w) \in \mathcal{H}.$$

Then Λ_1 gives rise to a biholomorphic mapping from \mathcal{H} onto $B^{\ell_1} \times \Delta^*$. On the other hand, if we denote by G(D) the identity component of $\operatorname{Aut}(D)$ for a given domain D, we have that $G(B^{\ell_1} \times \Delta^*) = G(B^{\ell_1}) \times G(\Delta^*)$ by a well-known theorem of H. Cartan. Moreover, with exactly the same argument as in the proof of Lemma 5, one can see that every element $\Phi \in$ $\operatorname{Aut}_{\operatorname{alg}}(B^{\ell_1} \times \Delta^*)$ can be written as in (2.14) with $|\ell| = \ell_1$, $\zeta = (\zeta_1, \ldots, \zeta_{\ell_1}, \zeta_N) \in B^{\ell_1} \times \Delta^*$ and $|\lambda_N| = 1$. More precisely, we assert here that $|\lambda_i| = 1$, $b_i = 0$ for every $1 \le i \le \ell_1$. To verify this, notice that Φ is now regarded as a holomorphic automorphism of $\mathbb{C}^{\ell_1} \times \mathbb{C}^*$; accordingly, it leaves the boundary of $B^{\ell_1} \times \Delta^*$ invariant. Thus

$$\sum_{i=1}^{\ell_1} |\lambda_i \zeta_{\sigma(i)} \zeta_N^{b_i}|^2 = 1 \quad \text{whenever} \quad \sum_{i=1}^{\ell_1} |\zeta_i|^2 = 1, \quad \zeta_N \in \Delta^*.$$

Clearly, this says that $|\lambda_i| = 1$, $b_i = 0$ for every $1 \le i \le \ell_1$, as asserted. As a result, we have shown that $\operatorname{Aut}_{\operatorname{alg}}(B^{\ell_1} \times \Delta^*) = \operatorname{Aut}_{\operatorname{alg}}(B^{\ell_1}) \times \operatorname{Aut}_{\operatorname{alg}}(\Delta^*)$ and hence $\operatorname{Aut}(B^{\ell_1} \times \Delta^*) = \operatorname{Aut}(B^{\ell_1}) \times \operatorname{Aut}(\Delta^*)$ by (2.13). Therefore we conclude that every element $\Phi \in \operatorname{Aut}(\mathcal{H})$ can be described as

(3.1)
$$\Phi(z,w) = \left(w^q H(z/w^q), Bw\right), \quad (z,w) \in \mathcal{H},$$

where $H \in Aut(B^{\ell_1})$ and $B \in \mathbb{C}$ with |B| = 1; proving Theorem 1, (I), in the case of I = 1.

Next, consider the case where $I \ge 2$. By the identity in [10; Theorem 2.2.5, (2)], it is easy to check that the mapping Φ having the form as in Theorem 1, (I), belongs to Aut(\mathcal{H}). So, taking an arbitrary element $\Phi \in Aut(\mathcal{H})$, we would like to show that Φ can be described as in the theorem. To this end, write $\Phi = (f, g)$ with respect to the coordinate system (z, w)in $\mathbf{C}^{|\ell|} \times \mathbf{C}$. Then g does not depend on the variables z by Lemma 6. Hence g induces a holomorphic automorphism of Δ^* ; so that g has the form g(w) = Bw with |B| = 1. Let us define a holomorphic automorphism Φ_B of \mathcal{H} by $\Phi_B(z, w) = (z, B^{-1}w)$. Replacing Φ by $\Phi_B \Phi$ if necessary, we may now assume that Φ has the form $\Phi(z, w) = (f(z, w), w)$ on \mathcal{H} . Therefore, if we set

(3.2)
$$\mathcal{E}_w^p = \left\{ z \in \mathbf{C}^{|\ell|} ; \ \rho^p(z) < |w|^{2q} \right\}, \quad f_w(z) = f(z, w), \ z \in \mathcal{E}_w^p,$$

for an arbitrarily given point $w \in \Delta^*$, then f_w is a holomorphic automorphism of \mathcal{E}_w^p . On the other hand, putting

(3.3)
$$\mathcal{E}^p = \left\{ \xi \in \mathbf{C}^{|\ell|} ; \sum_{i=1}^{I} \|\xi_i\|^{2p_i} < 1 \right\} \text{ and } r_i = \frac{1}{|w|^{q/p_i}}, \ 1 \le i \le I,$$

where $\xi = (\xi_1, \dots, \xi_I) \in \mathbb{C}^{\ell_1} \times \dots \times \mathbb{C}^{\ell_I} = \mathbb{C}^{|\ell|}$, and noting the facts that $p_1 = 1$ and $q \in \mathbb{N}$, we have the biholomorphic mapping $\Lambda : \mathcal{E}^p_w \to \mathcal{E}^p$ defined by

$$\Lambda(z) = \left(z_1/w^q, r_2 z_2, \dots, r_I z_I\right), \quad z = (z_1, \dots, z_I) \in \mathcal{E}_w^p.$$

Recall here our previous result in [6]: When $p_1 = 1$, every holomorphic automorphism Ψ of \mathcal{E}^p has the form

$$\Psi(\xi) = \left(H(\xi_1), \gamma_2(\xi_1)A_2\xi_{\sigma(2)}, \dots, \gamma_I(\xi_1)A_I\xi_{\sigma(I)}\right)$$

where $H \in \operatorname{Aut}(B^{\ell_1})$, $A_i \in U(\ell_i)$ and γ_i are nowhere vanishing holomorphic functions on B^{ℓ_1} given as in Theorem 1, (I), with $z_1 = \xi_1$, and σ is a permutation of $\{2, \ldots, I\}$ having the property: $\sigma(i) = s$ can only happen when $(\ell_i, p_i) = (\ell_s, p_s)$. Then, applying this result to the holomorphic automorphism $\Lambda \circ f_w \circ \Lambda^{-1}$ of \mathcal{E}^p and noting the fact that $r_i = r_s$ if $\sigma(i) = s$, one can see that f_w has the form

(3.4)
$$f_w(z) = \left(w^q H(z_1/w^q), \gamma_2(z_1/w^q) A_2 z_{\sigma(2)}, \dots, \gamma_I(z_1/w^q) A_I z_{\sigma(I)} \right),$$

where $H \in \operatorname{Aut}(B^{\ell_1})$, $A_i \in U(\ell_i)$ and γ_i are nowhere vanishing holomorphic functions on B^{ℓ_1} determined uniquely by H, and σ is a permutation of $\{2, \ldots, I\}$ having the property: $\sigma(i) = s$ occurs only when $(\ell_i, p_i) = (\ell_s, p_s)$. Of course, all the H, A_i , γ_i and σ are determined by the given point $w \in \Delta^*$; accordingly, expressing them as H^w , A_i^w , γ_i^w and σ^w , we obtain a family $\mathcal{F} = \{(H^w, A_i^w, \gamma_i^w, \sigma^w)\}_{w \in \Delta^*}$. The only thing which has to be proved now is that all the members $(H^w, A_i^w, \gamma_i^w, \sigma^w)$ of \mathcal{F} are independent on the parameter w. To prove this, put

(3.5)
$$\mathcal{H}^{1} = \left\{ (z_{1}, w) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ; \|z_{1}\|^{2} < |w|^{2q} < 1 \right\} \text{ and} \\ \mathcal{E}^{1}_{w} = \left\{ z_{1} \in \mathbf{C}^{\ell_{1}} ; \|z_{1}\|^{2} < |w|^{2q} \right\}, \quad w \in \Delta^{*},$$

and regard these as complex submanifolds of \mathcal{H} and of \mathcal{E}_w^p , respectively, in the canonical manner. It then follows from (3.4) that $f_w(\mathcal{E}_w^1) = \mathcal{E}_w^1$ and $\Phi(\mathcal{H}^1) = \mathcal{H}^1$. Therefore, denoting by f_w^1 , Φ^1 the restrictions of f_w , Φ to \mathcal{E}_w^1 , \mathcal{H}^1 , respectively, we see that Φ^1 defines a holomorphic automorphism of \mathcal{H}^1 having the form

$$\Phi^{1}(z_{1},w) = \left(w^{q}H^{w}(z_{1}/w^{q}),w\right) = \left(f_{w}^{1}(z_{1}),w\right), \quad (z_{1},w) \in \mathcal{H}^{1},$$

and the same situation as in the case I = 1 above occurs for the domain \mathcal{H}^1 and its automorphism Φ^1 of \mathcal{H}^1 . Consequently, by (3.1) we conclude that the automorphism H^w of B^{ℓ_1} is, in fact, independent on $w \in \Delta^*$; and so is γ_i^w . This combined with the fact that $f_w(z) = f(z, w)$ is holomorphic on \mathcal{H} implies that every component of A_i^w is holomorphic in $w \in \Delta^*$. Thus

$$\Phi_o(z, w) = \left(w^q H(z_1/w^q), \gamma_2(z_1/w^q) A_2 z_2, \dots, \gamma_I(z_1/w^q) A_I z_I, w \right), \quad (z, w) \in \mathcal{H}$$

is now a holomorphic automorphism of \mathcal{H} . Then $\Phi_o^{-1}\Phi$ is also a holomorphic automorphism of \mathcal{H} and it has the form

$$\Phi_o^{-1}\Phi(z,w) = \left(z_1, z_{\sigma^w(2)}, \dots, z_{\sigma^w(I)}, w\right), \quad (z,w) \in \mathcal{H},$$

from which it follows at once that σ^w is actually independent on $w \in \Delta^*$. Therefore we have completed the proof of Theorem 1, (I).

3.2. CASE (II). $p_1 \neq 1$ or $q_1 = q \notin N$: Clearly we have only to show that every element $\Phi \in Aut(\mathcal{H})$ can be described as in Theorem 1, (II).

First, consider the case $p_1 \neq 1$. By the same reasoning as in the previous Subsection, we may assume that Φ has the form $\Phi(z, w) = (f(z, w), w)$ on \mathcal{H} . Therefore, if we define the domain \mathcal{E}_w^p and the mapping f_w by (3.2) for any given point $w \in \Delta^*$, then f_w is a holomorphic automorphism of \mathcal{E}_w^p . Moreover, letting \mathcal{E}^p and r_i be the same objects appearing in (3.3), we obtain the biholomorphic mapping $\Lambda : \mathcal{E}_w^p \to \mathcal{E}^p$ defined by

(3.6)
$$\Lambda(z) = (r_1 z_1, \dots, r_I z_I), \quad z = (z_1, \dots, z_I) \in \mathcal{E}_w^p.$$

Then, by recalling the result of [6] in the case $p_1 \neq 1$ and by repeating exactly the same argument as in Subsection 3.1, it can be shown that f_w has the form

(3.7)
$$f_w(z) = \left(A_1 z_{\sigma(1)}, \dots, A_I z_{\sigma(I)}\right), \quad z = (z_1, \dots, z_I) \in \mathcal{E}_w^p,$$

where $A_i \in U(\ell_i)$ and σ is a permutation of $\{1, \ldots, I\}$ satisfying the following: $\sigma(i) = s$ can only happen when $(\ell_i, p_i) = (\ell_s, p_s)$. Therefore we have completed the proof of Theorem 1, (II), in the case $p_1 \neq 1$.

Next, consider the case $q \notin N$. Of course, it suffices to consider the case $q \notin N$ and $p_1 = 1$. Take an element $\Phi \in Aut(\mathcal{H})$ arbitrarily. Again we may assume that Φ has the form $\Phi(z, w) = (f(z, w), w)$ on \mathcal{H} . For an arbitrarily given point $w \in \Delta^*$, let \mathcal{E}_w^p , f_w (resp. \mathcal{E}^p , r_i) be the same objects appearing in (3.2) (resp. in (3.3)) and let $\Lambda : \mathcal{E}_w^p \to \mathcal{E}^p$ be the biholomorphic mapping defined in (3.6). Then, by the same reasoning as above, f_w is a holomorphic automorphism of \mathcal{E}_w^p . Once it is shown that f_w is linear, that is, it is the restriction to \mathcal{E}_w^p of some linear transformation of $\mathbf{C}^{|\ell|}$, then the method used in the preceding paragraph can be applied to prove that f_w is linear. For this purpose, recall the following fact in Lemma 5: Let Ψ be an element of Aut_{alg}(\mathcal{H}) having the form $\Psi(z, w) = (h(z, w), w)$ on \mathcal{H} . Then, for any point $w \in \Delta^*$, $h_w(z) = h(z, w)$ is a linear mapping of z. This together with the fact Aut(\mathcal{H}) = $G(\mathcal{H})$ Aut_{alg}(\mathcal{H}) by (2.13) immediately yields that it suffices to show the linearity of f_w for every $\Phi = (f, g) \in G(\mathcal{H})$ with g(w) = w.

Now consider again the domain $\mathcal{E}_w^1 \subset \mathbf{C}^{|\ell|}$ defined in (3.5) and the holomorphic automorphism $\Lambda \circ f_w \circ \Lambda^{-1}$ of \mathcal{E}^p . Then, in exactly the same way as in Subsection 3.1, one can see that $f_w(\mathcal{E}_w^1) = \mathcal{E}_w^1$ and f_w is a linear automorphism of \mathcal{E}_w^p if and only if the restriction

 f_w^1 of f_w to \mathcal{E}_w^1 is a linear automorphism of \mathcal{E}_w^1 . Consequently, the proof is now reduced to showing that f_w^1 is a linear automorphism of \mathcal{E}_w^1 . Now, assume to the contrary that there exists an element $\Phi = (f, g) \in G(\mathcal{H}), g(w) = w$, such that f_w^1 is not a linear automorphism of \mathcal{E}_w^1 . Then, since Φ leaves all slices $\mathcal{E}_w^p \times \{w\}, w \in \Delta^*$, invariant and $f_w(\mathcal{E}_w^1) = \mathcal{E}_w^1$, one can find a complete holomorphic vector field X on \mathcal{H} satisfying the following two conditions: For any point $w \in \Delta^*$,

(3.8) X is tangent to the complex submanifold $\mathcal{E}_w^1 \times \{w\}$ of \mathcal{H} ; and

(3.9) the restriction of X to $\mathcal{E}_w^1 \times \{w\}$, say again X, is a non-zero complete holomorphic vector field having the form

$$X = \sum_{k=1}^{\ell_1} \left(\alpha_k(w) + \sum_{\mu,\nu=1}^{\ell_1} \beta_{\mu\nu}^k(w) \zeta_\mu \zeta_\nu \right) \frac{\partial}{\partial \zeta_k},$$

where α_k , $\beta_{\mu\nu}^k$ are holomorphic functions on Δ^* (cf. [12; Proposition 2]).

Here we know that $X \neq 0$ if and only if $\alpha_k(w) \neq 0$ for some k. Moreover, we may assume by Lemma 4 that X extends holomorphically across the set $\partial \mathcal{H} \setminus \{0\}$.

From now on, for any given point $w \in \Delta^*$, we identify naturally $\mathcal{E}^1_w \times \{w\}$ with \mathcal{E}^1_w ; so that X is regarded as a complete holomorphic vector field on \mathcal{E}^1_w and

$$\rho_w(z_1) = \rho_w(\zeta_1, \dots, \zeta_{\ell_1}) := \sum_{j=1}^{\ell_1} |\zeta_j|^2 - |w|^{2q}$$

is a defining function of \mathcal{E}_w^1 in \mathbf{C}^{ℓ_1} . Note that *X* is now defined on some domain in \mathbf{C}^{ℓ_1} containing the closure $\overline{\mathcal{E}}_w^1$ of \mathcal{E}_w^1 . It then follows from the tangency condition $\operatorname{Re}(X\rho_w) = 0$ on the boundary $\partial \mathcal{E}_w^1$ that

(3.10) Re
$$\left\{ \sum_{k=1}^{\ell_1} \left(\alpha_k(w) + \sum_{\mu,\nu=1}^{\ell_1} \beta_{\mu\nu}^k(w) \zeta_{\mu} \zeta_{\nu} \right) \bar{\zeta}_k \right\} = 0 \text{ whenever } \rho_w(\zeta_1, \dots, \zeta_{\ell_1}) = 0.$$

Fix an index k with $\alpha_k(w) \neq 0$ and consider the points $(0, \dots, 0, \zeta_k, 0, \dots, 0) \in \mathbb{C}^{\ell_1}$ with $|\zeta_k|^2 = |w|^{2q}$. Then, by routine computations it follows from (3.10) that

$$\alpha_k(w) + \overline{\beta_{kk}^k(w)} |w|^{2q} = 0, \quad w \in \Delta^*.$$

Hence we have

$$\left(\frac{d\beta_{kk}^k(w)}{dw}\right) \cdot |w|^{2q} + \overline{\beta_{kk}^k(w)} \cdot qw|w|^{2(q-1)} = 0$$

or equivalently

$$\frac{d\beta_{kk}^k(w)}{dw}w + q\beta_{kk}^k(w) = 0\,.$$

Let $\beta_{kk}^k(w) = \sum_{\nu} A_{\nu} w^{\nu}$ be the Laurent expansion of β_{kk}^k on Δ^* , where $\nu \in \mathbb{Z}$. Inserting this into the equation above, we then obtain that

$$(q + v)A_v = 0$$
 for all $v \in \mathbf{Z}$

Since $0 < q \notin \mathbf{N}$ by our assumption, this implies that $A_v = 0$ for all $v \in \mathbf{Z}$. Thus $\beta_{kk}^k(w) = 0$ and so $\alpha_k(w) = 0$ on Δ^* , a contradiction. Eventually we have shown that every automorphism f_w is linear; and accordingly, Aut(\mathcal{H}) consists only of linear automorphisms having the description as in Theorem 1, (II), as desired.

4. Proof of Theorem 2. Clearly the mapping Φ having the form as in Theorem 2 belongs to Aut(\mathcal{H}). Conversely, take an arbitrary element $\Phi \in Aut(\mathcal{H})$ and write $\Phi = (\Phi_1, \ldots, \Phi_N)$ with respect to the coordinate system $\zeta = (\zeta_1, \ldots, \zeta_N)$ in \mathbb{C}^N . Then, since $|m| \ge 2$, by the same reasoning as in the proof of Lemma 5 every component function Φ_i extends to a unique holomorphic function $\widehat{\Phi}_i$ defined on $\mathcal{E}^p \times \mathcal{E}^q$. Accordingly, we obtain a holomorphic extension $\widehat{\Phi} := (\widehat{\Phi}_1, \ldots, \widehat{\Phi}_N) : \mathcal{E}^p \times \mathcal{E}^q \to \mathbb{C}^N$ of Φ . We first assert that $\widehat{\Phi}(\mathcal{E}^p \times \mathcal{E}^q) \subset \mathcal{E}^p \times \mathcal{E}^q$. To prove this, represent again $\Phi = (f, g)$ and $f = (f_1, \ldots, f_I)$, $g = (g_1, \ldots, g_J)$ by coordinates $(z, w) = (z_1, \ldots, z_I, w_1, \ldots, w_J)$ in $\mathbb{C}^{|\mathcal{E}|} \times \mathbb{C}^{|m|} = \mathbb{C}^N$. Let \widehat{f}, \widehat{g} be the holomorphic extensions of f, g to $\mathcal{E}^p \times \mathcal{E}^q$, respectively. Since g(z, w) does not depend on the variables z by Lemma 6, \widehat{g} gives now a holomorphic automorphism of \mathcal{E}^q with $\widehat{g}(0) = 0$; consequently it follows from our result of [6] that \widehat{g} can be written in the form

(4.1)
$$\hat{g}(w) = (B_1 w_{\tau(1)}, \dots, B_J w_{\tau(J)}), \quad w = (w_1, \dots, w_J) \in \mathcal{E}^q,$$

where $B_j \in U(m_j)$, $1 \le j \le J$, and τ is a permutation of $\{1, \ldots, J\}$ such that $\tau(j) = t$ if and only if $(m_j, q_j) = (m_t, q_t)$. On the other hand, picking a point $z_o \in \mathcal{E}^p$ arbitrarily, we have $(z_o, w) \in \mathcal{H}$ for all points $w \in \mathbb{C}^{|m|}$ with $\rho^p(z_o) < \rho^q(w) < 1$; and hence $\rho^p(f(z_o, w)) < \rho^q(g(w)) < 1$ for such points. So, taking account of the maximum principle for the continuous plurisubharmonic function $\rho^p(\hat{f}(z_o, w))$ on \mathcal{E}^q , we obtain that $\rho^p(\hat{f}(z_o, w)) < 1$ for all $w \in \mathcal{E}^q$. Thus $\hat{f}(\mathcal{E}^p \times \mathcal{E}^q) \subset \mathcal{E}^p$ and so $\widehat{\Phi}(\mathcal{E}^p \times \mathcal{E}^q) \subset \mathcal{E}^p \times \mathcal{E}^q$. Also, repeating exactly the same argument for the holomorphic extension $\widehat{\Psi}$ of the inverse $\Psi := \Phi^{-1}$ of Φ , we obtain the same conclusion $\widehat{\Psi}(\mathcal{E}^p \times \mathcal{E}^q) \subset \mathcal{E}^p \times \mathcal{E}^q$. Then

$$\widehat{\Phi} \circ \widehat{\Psi}(z, w) = \widehat{\Psi} \circ \widehat{\Phi}(z, w) = (z, w), \quad (z, w) \in \mathcal{E}^p \times \mathcal{E}^q,$$

by analytic continuation. Hence $\widehat{\phi}$ is a holomorphic automorphism of the bounded Reinhardt domain $\mathcal{E}^p \times \mathcal{E}^q$. Moreover, since

$$\sum_{i=1}^{I} \|f_i(z,w)\|^{2p_i} < \sum_{j=1}^{J} \|g_j(w)\|^{2q_j} = \sum_{j=1}^{J} \|w_j\|^{2q_j}, \quad (z,w) \in \mathcal{H},$$

by (4.1), it follows that $\widehat{\Phi}(0,0) = (0,0)$ by taking the limit $(z,w) \to (0,0)$ through \mathcal{H} . Then, as an immediate consequence of a well-known theorem of H. Cartan, it follows that $\widehat{\Phi}$ is a linear automorphism of $\mathcal{E}^p \times \mathcal{E}^q$.

Let us define the mapping $\hat{f}_o: \mathcal{E}^p \to \mathbb{C}^{|\ell|}$ by setting $\hat{f}_o(z) := \hat{f}(z, 0), z \in \mathcal{E}^p$. Then it is easily seen that \hat{f}_o is a holomorphic automorphism of \mathcal{E}^p . So, our previous result [6] implies that it can be expressed as

(4.2)
$$\hat{f}_o(z) = (A_1 z_{\sigma(1)}, \dots, A_I z_{\sigma(I)}), \quad z = (z_1, \dots, z_I) \in \mathcal{E}^p,$$

where $A_i \in U(\ell_i)$, $1 \le i \le I$, and σ is a permutation of $\{1, \ldots, I\}$ such that $\sigma(i) = s$ occurs only when $(\ell_i, p_i) = (\ell_s, p_s)$. Now define the linear automorphism $\widehat{\Phi}_o$ of $\mathcal{E}^p \times \mathcal{E}^q$ by

$$\widehat{\Phi}_o(z,w) = \left(\widehat{f}_o(z), \widehat{g}(w)\right), \quad (z,w) \in \mathcal{E}^p \times \mathcal{E}^q ,$$

and consider the holomorphic automorphism

(4.3)
$$\Gamma(z,w) = \widehat{\Phi}_o^{-1} \circ \widehat{\Phi}(z,w), \quad (z,w) \in \mathcal{E}^p \times \mathcal{E}^q,$$

of $\mathcal{E}^p \times \mathcal{E}^q$. Then Γ can be written in the form

$$\Gamma(z, w) = (z + Mw, w), \quad (z, w) \in \mathcal{E}^p \times \mathcal{E}^q,$$

(think of z, w as column vectors), where M is a certain $|\ell| \times |m|$ matrix. Thus, denoting by Γ^n the *n*-th iteration of Γ , we have

$$\Gamma^n(z,w) = (z + nMw, w), \quad (z,w) \in \mathcal{E}^p \times \mathcal{E}^q, \ n = 1, 2, \dots$$

Hence *M* has to be the zero matrix, that is, Γ is the identity transformation of $\mathcal{E}^p \times \mathcal{E}^q$, since $\{\Gamma^n\}_{n=1}^{\infty}$ is contained in the isotropy subgroup K_0 of Aut $(\mathcal{E}^p \times \mathcal{E}^q)$ at the origin $0 = (0, 0) \in \mathcal{E}^p \times \mathcal{E}^q$ and K_0 is compact, as is well-known. Therefore we have shown that $\widehat{\Phi} = \widehat{\Phi}_o$ has the form described in Theorem 2; thereby completing the proof. \Box

REFERENCES

- D. E. BARRETT, Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin, Comment. Math. Helvetici 59 (1984), 550–564.
- S. BELL, Analytic hypoellipticity of the a-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), 109–116.
- [3] Z. H. CHEN AND D. K. XU, Proper holomorphic mappings between some nonsmooth domains, Chin. Ann. of Math. Ser. B 22 (2001), 177–182.
- [4] Z. H. CHEN AND D. K. XU, Rigidity of proper self-mapping on some kinds of generalized Hartogs triangle, Acta Math. Sin. (Engl. Ser.) 18 (2002), 357–362.
- [5] M. JARNICKI AND P. PFLUG, First steps in several complex variables: Reinhardt domains, EMS Textbooks in Math., Euro. Math. Soc., Zürich, 2008.
- [6] A. KODAMA, On the holomorphic automorphism group of a generalized complex ellipsoid, Complex Var. Elliptic Equ. 59 (2014), 1342–1349.
- [7] A. KODAMA AND S. SHIMIZU, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, Osaka J. Math. 41 (2004), 85–95.
- [8] M. LANDUCCI, Proper holomorphic mappings between some nonsmooth domains, Ann. Mat. Pura Appl. CLV (1989), 193–203.
- [9] R. NARASIMHAN, Several complex variables, Univ. Chicago Press, Chicago and London, 1971.
- [10] W. RUDIN, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [11] S. SHIMIZU, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152.
- [12] T. SUNADA, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111–128.

Faculty of Mathematics and Physics Institute of Science and Engineering Kanazawa University Kanazawa 920–1192 Japan

E-mail address: kodama@staff.kanazawa-u.ac.jp