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ON THE HOLOMORPHIC CLOSURE DIMENSION

OF REAL ANALYTIC SETS

JANUSZ ADAMUS AND RASUL SHAFIKOV

Abstract. Given a real analytic (or, more generally, semianalytic) set R in Cn

(viewed as R2n), there is, for every p ∈ R̄, a unique smallest complex analytic
germ Xp that contains the germ Rp. We call dimC Xp the holomorphic closure
dimension of R at p. We show that the holomorphic closure dimension of an
irreducible R is constant on the complement of a closed proper analytic subset
of R, and we discuss the relationship between this dimension and the CR
dimension of R.

1. Main results

Given a real analytic set R in Cn (we may identify Cn with R2n), we consider the
germ Rp at a point p ∈ R and define Xp to be the unique smallest complex analytic
germ at p that contains Rp. We will call dimC Xp the holomorphic closure dimension
of R at p (denoted by dimHC Rp). It is natural to ask how this dimension varies
with p ∈ R. In [15, Thm. 1.1] the second author showed that, if R is irreducible
of pure dimension, then dimHC Rp is constant on a dense open subset of R, which
allows us to speak of the generic holomorphic closure dimension of R in this case.
Upper semicontinuity implies that the generic value of dimHC Rp is the smallest
value of the holomorphic closure dimension on R. It remained an open problem as
to whether the jump in the holomorphic closure dimension actually occurs. In the
present paper we construct real analytic sets with non-constant holomorphic closure
dimension and study the structure of the locus of points where this dimension is
not generic.

Theorem 1.1. Let R be an irreducible real analytic set in Cn, of dimension d > 0.
Then there exists a closed real analytic subset S ⊂ R of dimension less than d such
that the holomorphic closure dimension of R is constant on R \ S.

We note that the holomorphic closure dimension is well defined on all of R,
including its singular locus. If R is not of pure dimension, then (see, e.g., [5]) the
locus of smaller dimension is contained in a proper real analytic subset of dimension
less than d, which can be included into S. In particular, S may have a non-empty
interior in R (see Example 6.4). We also note that unless additional conditions are
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5762 JANUSZ ADAMUS AND RASUL SHAFIKOV

imposed on R, the germs Xp realizing the holomorphic closure dimension of R at
p cannot be glued together to form a global complex analytic set containing R.

It should be stressed that the discontinuity in the holomorphic closure dimension
is by no means related to (real) singularities of R. As shown in Section 6, the
exceptional set S may be non-empty, even in the case when R is a smooth real
analytic submanifold of Cn. Instead, the holomorphic closure dimension should
be viewed as a measure of how badly a real analytic set is locally twisted with
respect to the complex structure of its ambient space. Thus, one can interpret this
dimension as a generalization of the concept of a uniqueness set. Indeed, a real
analytic set R in Cn is a local, at a point p ∈ R, uniqueness set for holomorphic
functions in C

n if and only if dimHC Rp = n.
The notion of the holomorphic closure dimension can be extended to the class

of semianalytic sets. Recall that a set R ⊂ Rn is semianalytic if, for every point
p ∈ Rn, there exist a neighbourhood U and a finite collection of functions fjk and
gjk real analytic in U such that

R ∩ U =
⋃
j

{x ∈ U : fjk(x) = 0, gjk(x) > 0, k = 1, . . . , l}.

If R is a semianalytic set in C
n ∼= R

2n, of dimension d > 0 at a point p ∈ R̄, then
there are an open neighbourhood U of p and a real analytic set Z ⊂ U of dimension
d such that R ∩ U ⊂ Z and R \ {interior of R in Z} is semianalytic of dimension
at most d − 1 (see [2, Thm. 2.13]). Then we may define the holomorphic closure
dimension of R at p as dimHC Zp. Theorem 1.1 then implies a similar statement
for semianalytic sets.

Corollary 1.2. Let R be a semianalytic set of dimension d > 0 in Cn. Suppose
one of the following conditions holds:

(a) R is contained in an irreducible real analytic set of the same dimension;
(b) R is connected, pure-dimensional and is locally contained in a locally irre-

ducible real analytic set of the same dimension.

Then there exists a closed semianalytic subset S ⊂ R, of dimension less than d and
such that the holomorphic closure dimension of R is constant on R \ S.

Curiously enough, the discontinuity of the holomorphic closure dimension is a
purely transcendental phenomenon. This is a direct consequence of the funda-
mental connection between the holomorphic closure dimension and the Gabrielov
irregularity (see below), which is established in the proof of Theorem 1.1.

Theorem 1.3. Let R be a connected semianalytic set of pure dimension d > 0 in
Cn, contained (resp. locally contained) in an irreducible (resp. locally irreducible)
real analytic set of the same dimension. Suppose further that R is semialgebraic or
that n < 3. Then the holomorphic closure dimension is constant on R.

The holomorphic closure dimension is a natural biholomorphic invariant associ-
ated with the germ at p of a real analytic set R. It follows from Theorem 1.3 that if
R has a jump in the holomorphic closure dimension at a point p ∈ R, then R is not
algebraizable at this point; i.e., there does not exist a local biholomorphic change
of coordinates sending the germ of R at p into the germ of an algebraic variety of
the same dimension.

If R is a CR manifold, then the holomorphic closure dimension is constant on R
and its value is uniquely determined by the CR dimension of R.
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THE HOLOMORPHIC CLOSURE DIMENSION OF REAL ANALYTIC SETS 5763

Proposition 1.4 (cf. [8, Lemma 9.3]). Suppose M is a real analytic CR manifold of
dimension d and CR dimension m ≥ 0. Then for any p ∈ M , dimHC Mp = d−m.

The above proposition is well known. The proof that we provide here for the sake
of completeness essentially repeats the argument of [8, Lemma 9.3], where the result
is proved for CR manifolds M of hypersurface type (i.e., dimCR M = (d − 1)/2).
On the other hand, if M is a real analytic manifold which is not CR, then at
CR singularities, the number d−m can be different from the holomorphic closure
dimension of M . In fact, at CR singularities of M there does not seem to be any
relationship between the two invariants. Indeed, the holomorphic closure dimension
in general is bounded only by the dimension of the ambient space (see Remark 6.2).

Theorem 1.5. Let R be an irreducible real analytic set of pure dimension d and
generic holomorphic closure dimension h. Then there exists a semianalytic subset
Y of R, dimY < d, such that R \Y is a CR manifold of CR dimension m = d−h.

In particular, the above theorem implies that similar to real analytic manifolds,
the generic CR dimension is also correctly defined for real analytic sets of pure
dimension.

Since most of the arguments involved in the proofs are local, all of the above
results can be easily extended to the case when R is a real analytic or semianalytic
subset of an arbitrary connected complex manifold. For the sake of simplicity of
the statements we chose to work in Cn.

In the next section we give some background material. Theorem 1.1 is proved in
Section 3, and the proofs of Theorem 1.3 and Corollary 1.2 are given in Section 4.
Proposition 1.4 and Theorem 1.5 are proved in Section 5. Finally, the last section
contains relevant explicit examples.

2. Background

Given a real linear subspace L in Cn of dimension d, we define the CR dimension
of L to be the largestm such that L contains a complex linear subspace of (complex)
dimension m. Clearly, 0 ≤ m ≤

[
d
2

]
. A real submanifold M in C

n of real dimension
d is called a CR manifold of CR dimension m if the tangent space TpM contains
a complex linear subspace of dimension m, where m is independent of the point
p ∈ M . We write dimCR M = m. In particular, if m = 0, then M is called a totally
real submanifold.

A real (resp. complex) analytic set X in an open set Ω ⊂ Rn (resp. Ω ⊂ Cn) is
a closed subset of Ω, locally (i.e., in a neighbourhood of each point in Ω) defined
as the zero locus of finitely many real analytic (resp. holomorphic) functions. X
is called irreducible (in Ω) if it cannot be represented as a union of two non-empty
real (resp. complex) analytic sets in Ω properly contained in X. Any germ of a real
or complex analytic set X admits decomposition into a finite union of irreducible
germs, while a global decomposition into irreducible components in general exists
only for complex analytic sets (see, e.g., [12]).

Throughout this article, the dimension of a set X is understood in the following
sense: if X is a subset of a K-manifold M (K = R or C), then

dimK X = max{dimK N : N ⊂ X, N a closed submanifold

of an open subset of M} .
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The dimension of the germ Xp of a set X at a point p ∈ M is then defined as

dimK Xp = min{dimK(X ∩ U) : U an open neighbourhood of p in M} .
Let p be a point in R

n viewed as a subset of Cn = R
n+ iRn. For the germ Rp of

a real analytic set R ⊂ Rn, there is a unique germ Rc
p of a complex analytic set at p

such that Rp ⊂ Rc
p and any germ of a holomorphic function at p which vanishes on

Rp also vanishes on Rc
p (see, e.g., [5] or [12]). Rc

p is called the complexification of Rp.

If I(Rp) ⊂ OR
p (resp. I(Rc

p) ⊂ OC
p ) is the ideal of real analytic (resp. holomorphic)

germs vanishing on Rp (resp. on Rc
p), then I(Rc

p) = I(Rp) ⊗R C. It follows that
dimR Rp = dimC Rc

p (= 2·dimR Rc
p), and if Rp is irreducible, then so is Rc

p.
For our purposes, it is convenient to realize complexification by means of the

following construction. Let d : Cn
ζ → C2n

(z,w) be the map defined by d(ζ) = (ζ, ζ̄).

Then D = d(Cn) is a totally real embedding of Cn into C2n. Suppose R is a real
analytic set in Cn, and p ∈ R. Then the complexification Rc

p of Rp can be identified

with the complexification of the germ of d(R) at d(p) in C2n, that is, the smallest
germ of a complex analytic set in C

2n which contains the germ of d(R) at d(p).
Now let X be a complex analytic set in an open neighbourhood U of p in Cn,

defined by g1, . . . , gt ∈ O(U). We set

Xz = {(z, w) ∈ U ′ : gk(z) =
∑
|ν|≥0

ckνz
ν = 0, k = 1, . . . , t},

Xw = {(z, w) ∈ U ′ : ḡk(w) =
∑
|ν|≥0

ckνw
ν = 0, k = 1, . . . , t} ,

(2.1)

where U ′ is some small open neighbourhood of d(p) in C
2n. Let πz : C2n

(z,w) → C
n
z

and πw : C2n
(z,w) → Cn

w be the coordinate projections. Then Xz = πz(Xz)×Cn and

Xw = C
n × πw(Xw), as the defining equations of Xz (resp. Xw) do not involve

variables w (resp. z). Therefore, the set

(2.2) X̂ := Xz ∩Xw = πz(Xz)× πw(Xw)

is complex analytic (in U ′) of dimension equal to twice the dimension of X. If Xp

is irreducible, then the complexification Xc
p of Xp (viewed as a real analytic germ)

coincides with X̂d(p). Indeed, clearly d(X) ⊂ X̂; hence Xc
p ⊂ X̂d(p). However,

the irreducibility of Xp implies that of X̂d(p) (by (2.1) and (2.2)), and dimXc
p =

2dimXp = dim X̂d(p), so Xc
p = X̂d(p).

A subset R of Rn is called semianalytic if for any point p ∈ Rn there exist a
neighbourhood U and a finite number of functions fjk and gjk real analytic in U
such that

R ∩ U =
⋃
j

{ζ ∈ U : fjk(ζ) = 0, gjk(ζ) > 0, k = 1, . . . , l}.

In particular, a real analytic set is semianalytic. A point p of a semianalytic set R
is called regular if near p the set R is just a real analytic manifold. The complement
of the set Rreg of regular points is called the singular locus of R and will be denoted
by Rsng. The singular locus of a semianalytic set is itself a (closed) semianalytic set
([9]). For more details on real analytic sets see, e.g., [5] or [12]. For an exposition of
semianalytic sets we refer the reader to [2] (and its bibliography), since the classical
monograph [9] is difficult to access.
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The other main technique used in the proof of Theorem 1.1 is Gabrielov regu-
larity, which we will now briefly recall. The notion of regularity, introduced in the
seminal paper [6] of Gabrielov, plays an important role in subanalytic geometry,
where it is responsible for certain “tameness” properties of subanalytic sets (see,
e.g., [4] or [1] for details). For our purposes though, it suffices to consider regularity
in the complex analytic context. Let ϕ : M → N be a holomorphic mapping of
complex manifolds, and let a ∈ M . Then ϕ induces a pull-back homomorphism
of local rings ϕ∗

a : ON,ϕ(a) → OM,a and, further, a homomorphism of their com-

pletions ϕ̂∗
a : ÔN,ϕ(a) → ÔM,a. Consider the following three kinds of rank of ϕ at

a:

r1a(ϕ) = the generic rank of ϕ near a ,

r2a(ϕ) = the Krull dimension of ÔN,ϕ(a)/ ker ϕ̂
∗
a ,

r3a(ϕ) = the Krull dimension of ON,ϕ(a)/ kerϕ
∗
a .

It is easy to see that r1a(ϕ) ≤ r2a(ϕ) ≤ r3a(ϕ) (both inequalities can be strict; see
Example 6.3). Gabrielov [6] proved that if r1a(ϕ) = r2a(ϕ), then r2a(ϕ) = r3a(ϕ).

Definition 2.1. The map ϕ is called (Gabrielov) regular at a if r1a(ϕ) = r3a(ϕ).
Equivalently, there exists an open neighbourhood U of a in M such that the image
ϕ(U) is contained in a locally analytic subset of N of dimension r1a(ϕ).

Let NR(ϕ) denote the locus in M of points at which ϕ is not regular. We have:

Theorem 2.2 ([14, Thm. 1]). The non-regular locus NR(ϕ) is a nowhere dense
complex analytic subset of M .

Now let A be an irreducible complex analytic subset of M . We will say that
ϕ|A is (Gabrielov) regular at a point a ∈ A if there exists an open neighbourhood

U of a such that dimϕ(a) ϕ(A ∩U) = dimϕ(a) ϕ(A ∩ U)
Zar

, where ϕ(W )
Zar

denotes
the Zariski closure, that is, the smallest locally analytic subset of N containing
ϕ(W ). Let NR(ϕ|A) denote the non-regular locus of ϕ|A. By composing ϕ|A
with desingularization of A, Theorem 2.2 implies that NR(ϕ|A) is a nowhere dense
analytic subset of A. This is well known, but we include the following lemma for
completeness.

Lemma 2.3. The non-regular locus NR(ϕ|A) is a nowhere dense analytic subset
of A.

Proof. For any relatively compact open set Ω ⊂ M , there exist a complex manifold
Ã and a proper modification σ : Ã → Ω ∩ A centred at the singular locus of Ω ∩A
(that is, σ is a proper analytic mapping, dim Ã = dimA, σ−1(Ω∩Asng) is nowhere

dense in Ã, and σ restricted to Ã \ σ−1(Ω∩Asng) is an isomorphism); see, e.g., [3].
Fix a ∈ Ω∩A. Suppose first that the germ Aa is reducible. Then, after shrinking

Ω, we can assume that Ω ∩ A = A1 ∪ · · · ∪ As is a decomposition into irreducible
analytic sets, each irreducible at a. Then, for an open neighbourhood U of a in Ω,

we have dimϕ(a) ϕ(U ∩ A)
Zar

= maxj=1,...,s dimϕ(a) ϕ(U ∩ Aj)
Zar

, and hence ϕ|A is
regular at a if and only if ϕ|Aj

is regular at a for all j. Moreover, for any j = 1, . . . , s,

the inverse image σ−1(Aj) is an analytic subset of Ã = σ−1(Ω ∩ A), of dimension

dim Ã, and hence it is a union of some connected components of Ã. Thus, σ−1(Aj)
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is a neighbourhood of ã, for every ã ∈ σ−1(a) to which it is adherent, and it suffices
to consider the case when Aa is irreducible.

Since the generic fibres of σ are zero-dimensional, the generic rank of ϕ near
a equals that of ϕ ◦ σ near ã for every ã ∈ σ−1(a) (as they are both equal to
the difference between dimA and the generic fibre dimension of ϕ, by [11, Ch. V,
§ 3.3]). Hence r1ã(ϕ|Ω∩A ◦σ) = r1a(ϕ|Ω∩A) for every ã ∈ σ−1(a). On the other hand,
for every ã ∈ σ−1(a) we have kerσ∗

ã = (0) (by irreducibility of Aa), and hence
kerϕ∗

a = ker(ϕ ◦ σ)∗ã. It follows that r3ã(ϕ|Ω∩A ◦ σ) = r3a(ϕ|Ω∩A) for all ã ∈ σ−1(a)
and, consequently, that ϕ|Ω∩A is regular at a if and only if ϕ|Ω∩A ◦ σ is regular
at ã for every ã ∈ σ−1(a). Therefore NR(ϕ|Ω∩A) = σ(NR(ϕ|Ω∩A ◦ σ)), which is a
nowhere dense analytic subset of Ω ∩ A, by properness of σ. �

For a holomorphic mapping ϕ : A → B of complex analytic sets, we will denote
by fbdaϕ the dimension of the germ at a ∈ A of the fibre ϕ−1(ϕ(a)). If A is
irreducible, the minimal fibre dimension is attained on a dense Zariski open subset
of A and is then called the generic fibre dimension of ϕ and is denoted by λ(ϕ) (see,
e.g., [11, Ch.V, § 3.3]).

3. Proof of Theorem 1.1

Let R be an irreducible real analytic set in Cn and let p ∈ R. Suppose first
that R is irreducible at p. Put d = dimRRp. Then, by [5, Prop. 10], there exists
a real analytic subset R′ ⊂ R ∩ Ω in an open neighbourhood Ω of p, such that R′

is of dimension at most d − 1, and every point of R \ R′ lies in the closure of a
d-dimensional real analytic manifold contained in R.

Let X be a complex analytic set in an open neighbourhood U ⊂ Ω of p in C
n

such that Rp ⊂ Xp, and Xp is the smallest germ with this property. Let Xz and Xw

be defined as in (2.1). Then, with the notation of Section 2, for q := d(p) ∈ C2n,

X̂q = (Xz ∩Xw)q

is a complex analytic germ containing Rc
p, of dimension equal twice that of Xp.

Let A be a complex analytic representative of the complexification Rc
p at q; i.e.,

Aq = Rc
p. Then

Rp ⊂ Xp ⇒ Aq ⊂ X̂q ⇒ (πz(A))πz(q) ⊂ (πz(Xz))πz(q).

Hence, dim(πz(A))πz(q) ≤ dimXp, by (2.1) and (2.2).

On the other hand, suppose (πz(A))πz(q) ⊂ Z̃πz(q) for some complex analytic Z̃

in a neighbourhood V of πz(q) in Cn and dim Z̃ < dimXp. Say, Z̃ = {z ∈ V :
gk(z) = 0, k = 1, . . . , t}. Define a complex analytic set Z in a neighbourhood U of

p as Z = {ζ ∈ U : gk(ζ) = 0, k = 1, . . . , t}. Then Z = d−1(π−1
z (Z̃) ∩D), and hence

Rp ⊂ (d−1(A ∩D))p ⊂ (d−1(π−1
z (Z̃) ∩D))p = Zp ,

where dimC Zp = dimC Z̃πz(q). This, however, contradicts the choice of Xp. There-
fore,

(†) Rp ⊂ Xp and dimC Xp = r ⇐⇒ πz maps the germ Rc
p into a complex

analytic subgerm of (Cn)πz(q) of dimension r .

Again let A be an irreducible complex analytic set in a neighbourhood U ′ of
q ∈ C2n such that Aq = Rc

p, and let a proper real analytic subset R′ ⊂ R ∩ Ω be
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as at the beginning of the proof. Then, for every x ∈ R \ R′ in a sufficiently small
open neighbourhood U ⊂ Ω of p, the germ Ad(x) contains the complexification Rc

x,
and

dimC Rc
x = dimC Ad(x) = dimC Aq = d .

Consider the mapping ϕ : A → Cn induced by the restriction πz|U ′ . By irreducibil-
ity of A, every point η ∈ A has arbitrarily small open neighbourhoods V η with the
property

(‡) dimC ϕ(V η) = dimC A− λ(ϕ) = d− λ(ϕ) ,

where λ(ϕ) is the generic fibre dimension of ϕ on A (see, e.g., [11, Ch.V, § 3]). Let
B = NR(ϕ) be the non-regularity locus of ϕ. By Lemma 2.3, B is a proper analytic
subset of A.

Now, for every η ∈ A\B, the germ Aη is mapped by ϕ into an analytic subgerm
of Cn

ϕ(η) of dimension d − λ(ϕ), whilst, for every η ∈ B and an arbitrarily small

open neighbourhood V η of η,

ϕ(V η) ⊂ Z, and Z locally analytic ⇒ dimC Zϕ(η) > d− λ(ϕ) .

Put S = (R′ ∪ d−1(B ∩D)) ∩ U . Then S is a proper real analytic subset of R ∩ U ,
and the holomorphic closure dimension of R is equal to d− λ(ϕ) on (R∩U) \S by
(†) and (‡).

To complete the proof, it remains to show that, if R is reducible at p, there exist
an open neighbourhood Ω of p and real analytic subsets Rj ⊂ R ∩ Ω, j = 1, . . . , s,
each irreducible at p, such that R ∩ Ω = R1 ∪ · · · ∪ Rs, and if the holomorphic
closure dimension of the Rj is constantly hj , say, on the complement of a proper
analytic subset Sj ⊂ Rj , then hj = hk for all j, k = 1, . . . , s. For this it suffices
to know that, given any two points in R, there exists a path γ ⊂ R that connects
these points and has the property that if a ∈ γ is a point at which R is reducible,
then γ stays in the same local irreducible component of R at a. For a proof by
contradiction, let Σ denote the locus of those points of R that can be connected
with a given point q by a path γ which satisfies the above property, and suppose
that Σ �= R. We claim that Σ is a real analytic set. Indeed, every point a ∈ Σ
admits an open neighbourhood U such that Σ∩U is the union of some of the local
irreducible components of R ∩ U , and thus Σ ∩ U is real analytic in U . Since Σ
is clearly closed, it is a real analytic subset of R. Now let Σ′ = R \ Σ. Then Σ′

is also real analytic. Indeed, if a ∈ R \ Σ, then an open neighbourhood of a in R

is contained in Σ′, and if a ∈ (R \ Σ) \ (R \ Σ), then R is reducible at a, and in
a small open neighbourhood U of a, Σ′ ∩ U is the union of those local irreducible
components of R at a that are not in Σ ∩ U . Thus R = Σ ∪ Σ′ is reducible, a
contradiction. Therefore Σ = R, which completes the proof.

4. Semianalytic consequences

Proof of Corollary 1.2. For the proof of case (a), let R be a semianalytic set of
dimension d > 0, contained in an irreducible real analytic d-dimensional set Z in
Cn. By Theorem 1.1, there exists a real analytic set S′ ⊂ Z of dimension at most
d− 1 and such that the holomorphic closure dimension is constant on Z \ S′, say,
equal to hZ . By the semianalytic stratification, there is a closed semianalytic subset
R′ ⊂ R such that dimR R′ ≤ d − 1, and dimR Rp = d for every point p ∈ R \ R′.
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Then S = S′ ∪R′ is a closed semianalytic subset of R, of dimension at most d− 1,
and such that, for every p ∈ R \ S, dimHC Rp = dimHC Zp = hZ .

Now, for (b), suppose that R is connected, semianalytic of pure dimension d > 0,
and that, for every point p ∈ R, there exist an open neighbourhood Up and an
irreducible real analytic set Z ⊂ Up of dimension d such that R ∩ Up ⊂ Z. Then,
as above, there is a closed semianalytic subset S ⊂ R ∩ Up, of dimension at most
d−1, such that the holomorphic closure dimension is constant on (R∩Up)\S, say,
equal to hp. It remains to show that, for any two points p and q in R, hp = hq.
Then let γ be a path joining p and q in R, and let, for every x ∈ γ, Ux be an
open neighbourhood of x with the above properties. By compactness of γ, there
are finitely many p = x0, x1, . . . , xs = q such that Ux0 , . . . , Uxs cover γ. Then
hxi

= hxi+1
, i = 0, . . . , s− 1, as they agree on the overlaps, and hence hp = hq, as

required. �

Proof of Theorem 1.3. Let R be a connected semianalytic set of pure dimension
d > 0, contained (resp. locally contained) in an irreducible (resp. locally irre-
ducible) real analytic set Z in Cn of the same dimension. Suppose first that R is
semialgebraic. Then there exists a real algebraic set Y in C

n, of dimension d, such
that R ⊂ Y and, for any open neighbourhood U of any point p ∈ R̄, R∩U contains
an open subset of Y . Then, at every point p ∈ R̄ where Zp is irreducible, we have
Zp = Yp. It follows that, in the proof of Theorem 1.1, the complexification of Zp

is a complex algebraic germ. Therefore it suffices to show that a projection from
an algebraic set to a manifold is always Gabrielov regular. This however follows
from Chevalley’s theorem stating that a projection of an algebraic costructible set
is itself constructible and the fact that

dimC E = dimC E
Zar

for a constructible set E (see [11, Ch.VII, § 8]).
Suppose now that the dimension of the ambient space Cn is at most 2. Then,

by the proof of Theorem 1.1, it suffices to show that a projection into C
n is always

regular for n ≤ 2. For this, consider a mapping ϕ : A → C2 with A an irreducible
complex analytic set of dimension d > 0, and let

X = {x ∈ A : fbdxϕ > λ(ϕ)}

be the locus of non-generic fibre dimension (cf. Section 2). By the Cartan-Remmert
Theorem (see [11, Ch.V, § 3]), X is a proper analytic subset of A, and hence of
dimension at most d− 1. Moreover, the fibre dimension of ϕ is constant on A \X.
Hence by the Remmert Rank Theorem ([11, Ch.V, § 6]), every point x ∈ A \ X
has arbitrarily small open neighbourhoods V x with ϕ(V x) locally analytic in C

2,
of dimension d − λ(ϕ). On the other hand, since the generic fibre dimension of ϕ
along every irreducible component of X is at least λ(ϕ) + 1, it follows that

(*) dimC ϕ(W ) ≤ (d− 1)− (λ(ϕ) + 1) = (d− λ(ϕ))− 2

for every subset W ⊂ X (cf. (‡) in Section 3).
Suppose that NR(ϕ) �= ∅. Then d − λ(ϕ) ≤ 1, for otherwise ϕ would be dom-

inating; i.e., r1x(ϕ) = 2 for every x in an open neighbourhood of p, and hence ϕ
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would have to be regular. However, clearly, NR(ϕ) ⊂ X (by the Remmert Rank
Theorem again), and hence, by (∗),

dimC ϕ(NR(ϕ)) ≤ (d− λ(ϕ))− 2 ≤ −1 .

This is only possible if ϕ(NR(ϕ)) = ∅; hence NR(ϕ) = ∅, a contradiction. �

5. CR consequences

Proof of Proposition 1.4. Let M be a real analytic CR submanifold of Cn of di-
mension d > 0 and CR dimension m ≥ 0. If we identify TpM , the tangent space
to M at a point p ∈ M , with the appropriate real linear subspace of Cn, then
clearly, the smallest complex linear subspace of Cn that contains TpM cannot be
of dimension less than d−m. It follows then that no germ Mp (for p ∈ M) can be
contained in a complex analytic set of dimension less than d −m. Thus, to prove
that dimHC Mp = d−m, it suffices to construct a germ of a complex analytic set
of dimension d−m containing the germ Mp for every point p ∈ M .

Without loss of generality assume that p = 0 ∈ M . Let φ : Rd → Cn be a real
analytic parametrization of M near the origin with φ(0) = 0. Then each component
φj , j = 1, . . . , n, of the map φ can be represented as a convergent power series

φj(t) =
∑
|ν|>0

cjνt
ν ,

where t ∈ Rd, cjν ∈ C, and ν ∈ Nd. Replacing t by a complex variable w = t+ is,
we obtain a holomorphic map φc(w) from a neighbourhood U of the origin in Cd

into Cn.
Since φc is a holomorphic map, dφc(Jv) = Jdφc(v) for any v ∈ TwC

d, w ∈ U ,
where J is the operator of multiplication by i. In particular, for w ∈ U ∩ Rd, the
image of dφc(w) is precisely the smallest complex subspace containing the images
of vectors tangent to Rd at w. It follows that dφc(w) has rank d−m for w ∈ Rd∩U .

Suppose that B is any (d−m+ 1)× (d−m+ 1) submatrix of dφc. Then detB
is a holomorphic function, and, since the rank of dφc equals d − m on Rd ∩ U , it
follows that detB vanishes on Rd ∩U . However, then detB vanishes identically in
U . Therefore, there is a neighbourhood V of U ∩Rd, where dφc has constant rank
d−m. By the Rank Theorem, φc(V ) is a (d−m)-dimensional complex submanifold
of Cn which contains M (in a neighbourhood of p). �

Proof of Theorem 1.5. Denote by G the Grassmannian Gr(2n, d) (i.e., the space
of d-dimensional real linear subspaces of R2n ∼= Cn), and let Gm be the subset
of G consisting of CR subspaces of Cn of CR dimension at least m. Let L be a
subspace of R2n generated by {vj}, j = 1, . . . , d, vj = (vj1, . . . , v

j
2n) ∈ R2n, and let

wj = (wj
1, . . . , w

j
2n) = Jvj (viewed as vectors in C

n). Then L ∈ Gm if and only if,
for any matrix of the form⎡

⎢⎣
v11 · · · vd1 w1

1 · · · wd−2m+1
1

...
...

...
...

v12n · · · vd2n w1
2n · · · wd−2m+1

2n

⎤
⎥⎦ ,

any (2d− 2m+ 1)-minor vanishes whenever 2d− 2m+ 1 ≤ 2n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5770 JANUSZ ADAMUS AND RASUL SHAFIKOV

If M is a real analytic manifold in Cn, then the assignment p �→ TpM defines a

real analytic map from M into G. It follows that, for every k ≤
[
d
2

]
, the set

(5.1) Sk(M) = {p ∈ M : dimCR TpM ≥ k}
is a real analytic subset of M (possibly empty). Let m = min{k : Sk(M) �= ∅}.
Then

M = Sm(M) ⊃ Sm+1(M) ⊃ Sm+2(M) ⊃ · · · ⊃ Sl(M), l =

[
d

2

]
.

By construction, Sm+1(M) is a proper real analytic subset of M and M \Sm+1(M)
is a CR manifold of CR dimension m.

Suppose now that R is an irreducible real analytic set of pure dimension d.
By [10], the sets Sk(R

reg) in (5.1) are semianalytic subsets of R. Let S be the
set from Theorem 1.1. Then M = R \ (Rsng ∪ S) is a real analytic manifold
of dimension d. Let M1,M2, . . . be the connected components of M . From the
above considerations, each Mj is a CR manifold outside a nowhere dense closed
set. Further, by Theorem 1.1, the holomorphic closure dimension h is constant on
M , and therefore, it follows from Proposition 1.4 that each Mj is a CR manifold
of the same CR dimension m = d − h for all j. Hence, R is a CR manifold in the
complement of the semianalytic set Y = Sm+1(R

reg) ∪Rsng ∪ S. �

6. Examples

In the following example we show that the exceptional set S of Theorem 1.1 may
be non-empty.

Example 6.1. Let R ⊂ C3
ζ be the real analytic manifold defined by equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x2 = x2

1 + y21
y2 = 0

x3 = x2e
x1 cos y1

y3 = −x2e
x1 sin y1

or

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ2 = ζ1ζ̄1

ζ̄2 = ζ̄1ζ1

ζ3 = ζ2e
ζ̄1

ζ̄3 = ζ̄2e
ζ1 ,

where ζj = xj + iyj , j ≤ 3. Then the complexification of R0 equals the germ at
0 ∈ C6

(z,w) of the set

A = {z2 − z1w1 = w2 − z1w1 = z3 − z2e
w1 = w3 − w2e

z1 = 0} ,
whose coordinate projection to C3

z agrees with that of the set

A′ = {(z, w) ∈ C
6 : w2 = w3 = z2 − z1w1 = z3 − z2e

w1 = 0} .
Consider the local ring of A′ at the origin,

OA′,0 =
C{z1, z2, z3, w1, w2, w3}

(w2, w3, z2 − z1w1, z3 − z2ew1)
∼=

C{z1, z2, z3, w}
(z2 − z1w, z3 − z2ew)

∼=
C{z1, z2, z3, v, w}

(z1 − v, z2 − vw, z3 − vwew)
.

The latter is the local ring of the germ at the origin of the graph of the classical
Osgood mapping

ϕ : C2 � (v, w) �→ (v, vw, vwew) ∈ C
3
z .

Now, by [7, § 2.5], every power series F ∈ C{z1, z2, z3} satisfying F (v, vw, vwew) =
0 vanishes identically. It follows that kerϕ∗

0 = {0}, and hence r30(ϕ) = 3, whilst
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r10(ϕ) = 2. Therefore, ϕ is not regular at the origin, and, consequently, the set S
from Theorem 1.1 is non-empty. In fact, S = {0}.

Remark 6.2. As mentioned in Section 1, in general, the holomorphic closure dimen-
sion of a real analytic set R in Cn is bounded only by the dimension n of the ambient
space. Indeed, by [7, § 2.5] again, there exists, for every n ≥ 3, a monomorphism of
C-algebras

θ : C{z1, . . . , zn} ↪→ C{v, w} ,
and hence, a holomorphic mapping ϕ : C2 → Cn with ϕ∗

0 = θ. It follows that
kerϕ∗

0 = {0}, and hence r30(ϕ) = dimC{z1, . . . , zn}/(0) = n. Of course, r10(ϕ) ≤ 2,
since, in any case, this rank is bounded above by the dimension of the source. Then,
as in the above example, we may construct a 2-dimensional real analytic manifold
R in Cn

ζ such that the complexification Rc
0 has the same projection to Cn

z as the
graph of the map ϕ, and consequently dimHC R0 = n.

One might suppose that the holomorphic closure dimension of a real analytic set
R admits some sort of stratification. It turns out that this is not the case. We are
indebted to E. Bierstone for suggesting the following example, which shows that
no semianalytic (even subanalytic) stratification for dimHC Rp exists beyond S in
general.

Example 6.3. In [13] (see also [4, Ex. 1.29]), Paw�lucki constructed an analytic
mapping

(v, x, y)
ϕ�→ (v, x, xy, xg(v, y), xh(v, x, y))

from a small open neighbourhood of the origin in C
3 to C

5, with the following
properties:

(i) NR(ϕ) = {x = y = 0},
(ii) r2a(ϕ) = 5 at every point a ∈ {(0, 0, 0)} ∪ {(1/n, 0, 0) : n ≥ 1},
(iii) r3a(ϕ) = 4 at every other a ∈ NR(ϕ) .

Along the lines of the previous example, we construct the set R ⊂ C5
ζ as defined by

the equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ3 = ζ2ζ̄2

ζ̄3 = ζ̄2ζ2

ζ4 = ζ2g(ζ1, ζ̄2)

ζ̄4 = ζ̄2ḡ(ζ̄1, ζ2)

ζ5 = ζ2h(ζ1, ζ2, ζ̄2)

ζ̄5 = ζ̄2h̄(ζ̄1, ζ̄2, ζ2) .

Then

dimHC Rp =

⎧⎪⎨
⎪⎩
3 : p ∈ R \ S,
4 : p ∈ S \ T,
5 : p ∈ T ,

where S = {ζ2 = ζ3 = ζ4 = ζ5 = 0}, and T = {ζ ∈ S : ζ1 = 0 or ζ1 = 1/n, n ≥ 1}
is not subanalytic.

Example 6.4. As suggested by the proof of Theorem 1.1, the set S of the excep-
tional holomorphic closure dimension may have non-empty interior in an irreducible
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real analytic R, if R is not of pure dimension. Consider, for instance, the Cartan
umbrella

R = {(z1, z2) = (x1 + iy1, x2 + iy2) ∈ C
2 : x2(x

2
1 + y21)− x3

1 = y2 = 0} ,
which is of real dimension 2 except at the points of the “stick” S = {x1 = y1 =
y2 = 0} \ {0}. Then dimHC Rp = 2 for every p ∈ R \ S, and dimHC Rp = 1 for
every p ∈ S, since then Rp is contained in Xp = ({z1 = 0})p.

References

1. J. Adamus, E. Bierstone and P. D. Milman, Uniform linear bound in Chevalley’s lemma,
Canad. J. Math. 60 (2008), no. 4, 721–733. MR2423454 (2009e:13031)

2. E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci.
Publ. Math. 67 (1988), 5–42. MR972342 (89k:32011)

3. E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blow-
ing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.
MR1440306 (98e:14010)

4. E. Bierstone and P. D. Milman, Geometric and differential properties of subanalytic sets, Ann.
of Math. (2) 147 (1998), 731–785. MR1637671 (2000c:32027)

5. H. Cartan, Variétés analytiques réelles et variétes analytiques complexes, Bull. Soc. Math.
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