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On the holomorphic extension of CR functions
from non-generic CR submanifolds of C

n

Nicolas Eisen

Abstract. We give a holomorphic extension result for continuous CR functions on a non-

generic CR submanifold N of Cn to complex transversal wedges with edges containing N . We

show that given any v ∈Cn \(TpN+iTpN), there exists a wedge of direction v whose edge contains

a neighborhood of p in N , such that any continuous CR function defined locally near p extends

holomorphically to that wedge.

1. Introduction

1.1. Statement of results

Let N be a CR submanifold of C
n (dim(TpN ∩iTpN) is independent of p); we

say that N is generic if TpN+iTpN=C
n. The main question we address in this

paper is the possible holomorphic extension of CR functions from a non-generic CR
submanifold N to some wedge W in a complex transversal direction. We say that
a vector v in C

n is complex transversal to N at p∈N , if v /∈spanCTpN . For totally
real submanifolds of C

n, we have the following well-known result (due to Nagel [13]
and Rudin [15]), but not stated as such in any of the papers. If N is a non-generic
totally real submanifold of Cn and v ∈Cn is complex transversal to N at p, then for
any continuous function f on a neighborhood of p in N there exists Wv , a wedge of
direction v whose edge contains N , such that f has a holomorphic extension to Wv .
(See the remarks following for different proofs of this result.) Our main result is
the following generalization of this result for non-generic CR submanifolds.

Theorem 1. Let N be a smooth (C ∞) non-generic CR submanifold of Cn.
Let p∈N and let U be a neighborhood of p in N . For any v complex transversal
to N at p, there exists a wedge Wv of direction v whose edge contains a neigh-
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borhood V of p in N , V ⊂U , such that any continuous CR function on U extends
holomorphically to Wv . The holomorphic extension F is continuous on N ∪ Wv .

1.2. Remarks

In [8] we proved the above result for CR distributions that are decomposable
and in [9] we proved it in the case of positive defect. In this paper we will study the
last remaining case in which the defect is null. By [16], the union of the CR orbits
through a point p forms a CR submanifold of N of same CR dimension. Denote
this manifold by OCR

p . By [8] and [9] in order to prove Theorem 1, it suffices to
prove it in the case where OCR

p is a complex manifold.
If the CR function we seek to extend is of class C�, the extension obtained in

Theorem 1 is only continuous up to the boundary of the wedge, this differs from
the generic case in which the holomorphic extension to a wedge (if it exists) has the
same smoothness as the CR function it extends.

The result corresponding to Theorem 1 for totally real manifolds (mentioned
in the introduction) can be proved in several ways. One way is to follow the theory
of analytic vectors of an elliptic operator due to Baouendi and Trèves (see [4],
Section 3.2). Another way is to use the following result: Let N be a smooth
submanifold of the boundary of Ω, a strictly pseudoconvex domain in C

n. If N

is complex tangential (TN ⊂(T (∂Ω)∩iT (∂Ω))), then N is a Pic interpolating set.
See, for example, [13] or [15]. Given N , a totally real non-generic submanifold
of C

n, one can easily construct Ω as above and deduce the theorem. Finally, the
simplest proof is to use the fact that any CR function on a totally real submanifold
is decomposable, and hence by a projection argument (see [8]) any CR function
extends holomorphically in a complex transversal wedge.

The main difference between this result and the “classical” holomorphic exten-
sion to wedges is that in the latter case, the holomorphic extension is forced and
unique, since the CR functions are locally uniform limits of holomorphic polynomi-
als. In our setting, Corollary 19 implies that the extension obtained is not unique.
One should note that the question of CR extensions can be viewed as a Cauchy
problem with Cauchy data on a characteristic set N . In [8] we constructed an ex-
ample of an abstract CR structure, where there is no such CR extension property. It
is from the perspective of trying to understand CR extensions from manifolds of the
same CR dimension that we approached the problem treated in this paper (Corol-
lary 20). Also note that in our setting, we can choose the direction of extension
(provided it is complex transversal). This differs from the theory of holomorphic
extensions in generic submanifolds, where not only one cannot choose the direction
of extension, but in general, one does not know that direction.
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1.3. Background

Most of the work dealing with holomorphic extensions of CR functions takes
place on a generic CR submanifold of C

n. We only give a short and incomplete
survey of the work on this subject. The first result is due to H. Lewy [12]. He
proved that if a hypersurface was Levi non-degenerate at p0, then CR functions
extend holomorphically to one side of the hypersurface. This result was generalized
by Boggess and Polking [6] for arbitrary dimensions. In the case of Levi flatness,
Trépreau [17] proved that if a hypersurface in C

n is minimal at p0 (it contains
no (n−1)-dimensional complex manifold through p0), then CR functions extend
holomorphically to one side of the hypersurface. The generalization of Trépreau’s
result to arbitrary codimension is due to Tumanov [21], in which he states that
if the manifold M is minimal at p0 (it contains no proper submanifolds of the
same CR dimension through p0), then CR functions extend to a wedge in C

n with
edge M . It turns out that minimality is a necessary and sufficient condition for
extension of CR functions. The converse of Tumanov’s result is due to Baouendi
and Rothschild [3]. If the CR manifold is not minimal, then one cannot obtain
holomorphic wedge extensions. However, one should note that there is a variation
of Tumanov’s theorem, due essentially to Tumanov [22] and Trépreau [18], which
can be seen as a refinement of the Aı̆rapetyan edge of the wedge theorem [1], which
describes a possible CR extension to a CR submanifold of higher CR dimension
(see [18] and [22]). For those interested in the subject, we recommend the survey
paper on holomorphic extension by Trépreau [19]. For general background on CR
geometry, see the books by Baouendi, Ebenfelt and Rothschild [2], Boggess [5] and
Jacobowitz [11].

1.4. Outline of the paper

A non-generic CR submanifold of C
n is given locally as a CR graph of a generic

submanifold of C
n−m (see [5]). So N={(Z, h(Z)):Z ∈N}, where N is a generic CR

submanifold of C
n−m and h is a CR map from N→C

m. Choose coordinates on
N(z, w), where z is the complex tangential coordinate. We first establish holomor-
phic extension in the variable w using the theory of analytic vectors due to Baouendi
and Trèves. We construct an elliptic operator of degree two with no constant term
for which we solve a Dirichlet problem. We then show that the solution to this
Dirichlet problem (with the CR function we are extending as boundary values) is
holomorphic (in w) on an open set whose boundary contains N . Next, we solve a
∂ problem in z with a vanishing condition on N . This is the main difficulty in the
proof of Theorem 1, since there is no convexity assumption in the variable z. Since
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the w variable on this open set depends on the variable z, one cannot take a global
convolution with a Bochner–Martinelli kernel.

2. Local coordinates

Let p∈N , our setting is the following:

N = {(z, w′, h(z, w′)) : (z, w′) ∈ N} ⊂ C
n−m ×C

m,

where N is generic in C
n−m and h is a CR map into C

m defined in a neighborhood
of p. Define CTpN=TpN⊗C and T 0,1

p N=T 0,1
p C

m ∩CTpN. The CR vector fields of
N and hence on N , are vector fields L on N (or N ) such that for any p∈N we have
Lp ∈T 0,1

p N. We introduce local coordinates near p so that p is the origin in C
n and

N is parameterized in Cn−m=Cd
z ×Ck

w′ by

(2.1) N = {(z, w′) ∈ C
d ×C

k : Im(w′) = a(z, Re(w′))}, T0N = C
d ×R

k.

We let s=Re(w′)∈R
k, and set w′(z, s)=s+ia(z, s). We thus have

(2.2) N = {(z, w′(z, s) : z ∈ C
d and s ∈ R

k } ⊂ C
d ×C

k, T0N = C
d ×R

k.

By [8] and [9], we may suppose that OCR
0 is a complex submanifold. Indeed,

in [8] we show that in the case where N is minimal at 0 then all CR distributions
holomorphically extend to any complex transversal wedge (it is a simple projection
argument). In the case where OCR

0 is not a complex manifold (that is when the
defect in the sense of Trépreau–Tumanov is positive) we showed again in [9] that
any continuous CR function extends holomorphically to any complex transversal
wedge. Therefore, to prove Theorem 1, it suffices to consider the case where OCR

0

is a complex submanifold of N. Hence, after a holomorphic change of coordinates,
we may assume that for some ε>0 we have

(2.3) a(z, 0) ≡ 0 for ‖z‖ <ε.

We are henceforth working in a fixed neighborhood U of the origin in N which
we shall assume is parameterized by

(2.4) U = {(z, w′(z, s)) : ‖z‖ <ε and s ∈ U },

where U is a neighborhood of the origin in R
k.

We will prove Theorem 1 in the case where m=1. That is, h is a CR function
defined in a neighborhood of the origin in N. The general case follows in precisely
the same manner, see the remark at the end of the proof of Theorem 1. Note that if
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v is complex transversal to N at the origin, then v=(v′, v′ ′)∈C
n−1 ×C with v′ ′ 	=0.

After a linear change of variables not affecting (2.2), we may assume that

(2.5) v =(0, 1) ∈ C
n−1 ×C.

A basis L of T 0,1N near the origin consists of vector fields Lj , j=1, ..., d, of
the form

(2.6) Lj =
∂

∂z̄j
+

k∑

l=1

Fjl
∂

∂sl
.

We are now going to consider the “simplest” generic submanifold of C
n which

has the same CR structure as N , namely N ×R. Define M ⊂C
n by

(2.7) M = {(z, w′(z, s), t+h(z, w′(z, s))) : w′(z, s) = s+ia(z, s), (z, w′(z, s)) ∈ N}.

We will denote the coordinate functions on M as (z, w)=(z, w′, w′ ′)∈C
d
z ×C

k
w′ ×Cw′ ′

with

(2.8)

{
w′(z, s, t)=s+ia(z, s)⊂C

k,

w′ ′(z, s, t)=t+h(z, s)⊂C.

We are going to show that any CR function on N extends holomorphically to a
wedge with edge N in the direction of M+={(z, w(z, s, t))∈M :t>0}.

3. Elliptic theory

3.1. Construction of Δ

Lemma 2. On the manifold M , there exist k+1 vector fields Rj of the form

Rj =
k∑

l=1

ajl(z, s)
∂

∂sl
, j =1, ..., k, and Rk+1 =

∂

∂t
,

where the ajl are smooth functions, such that for j, l∈ {1, ..., k+1},
(i) Rj(wl)=δjl;
(ii) [Rj , Rl]=0;
(iii) [Lj , Rl]=0;
(iv) the set {L1, ..., Ld, L̄1, ..., L̄d, R1, ..., Rk+1} spans the complex tangent plane

to M near the origin.
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Proof. The proof of the lemma is classic. Cases (ii), (iii) and (iv) follow from (i).
We thus determine the Rj by solving for their coefficients in (i) (see for example [2],
Lemma 8.7.13, p. 234). �

On M , we construct an elliptic differential operator Δ (following Baouendi and
Trèves [4]) for which we shall solve a Dirichlet problem.

Remark 3. Since T0N=C
d ×R

k, we note that the Rj ’s satisfy

Rj(0) =
∂

∂sj
.

Define Δ by

(3.1) Δ=
k∑

j=1

R2
j +

∂2

∂t2
.

From Remark 3 we immediately deduce the following result.

Lemma 4. The operator −Δ is strongly elliptic of degree two on M with
smooth (C ∞) coefficients and no constant term.

3.2. Resolution of a Dirichlet problem

Δ is a differential operator in the variables s and t, whose coefficients depend
smoothly on the variable z. Hence we view Δ as a differential operator on R

k+1=
R

k
s ×Rt with z acting as a parameter. Let Ω be an open set in {(z, w(z, s, t))∈M :

t>0} such that if Π is the projection from Cd ×Ck ×R onto Cd ×Ck × {0}, then Ω
satisfies

(3.2) Π(Ω) ⊂ U .

We shall now define a boundary of Ω on which we shall impose a boundary
condition of a Dirichlet problem. Since Δ is a differential operator in the variables
s and t, we shall “close” Ω in the variables s and t. That is, we can assume that
Ω is parameterized by Ω={(z, w(z, s, t)):z ∈V and (s, t)∈ω}, where ω is an open
set in R

k ×R. We then define the boundary ∂Ω of Ω on which we shall impose the
Dirichlet condition by

(3.3) ∂Ω = {(z, w(z, s, t)) : (s, t) ∈ ∂ω}.
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Denote by (D) the Dirichlet problem on Ω, i.e.

(D)

{
Δ(u)=0 in Ω,

u=g on ∂Ω.

Then we have the fundamental result.

Theorem 5. For g ∈ D ′(∂Ω), (D) has a unique solution. If the boundary data
g is continuous, then S(g) is continuous up to ∂Ω.

For a reference, we refer the reader to [7], Theorem 5.2 and Remark 5.3, pp.
263–265, as well as to [10], Chapter 10.

Let S be the solution operator for (D). That is, for g ∈ D ′(∂Ω), we have

(3.4)

{
Δ(S(g))=0 in Ω,

S(g)=g on ∂Ω.

3.3. Analytic vector theory

In this section we present the results developed by Baouendi and Trèves [4] and
later by Trèves in [20]. We have included this section for the sake of completeness
and claim no originality whatsoever.

Definition 6. Using the notation Rk+1=∂/∂t and Rα=Rα1
1 ...R

αk+1
k+1 , α∈N

k+1,
we shall say that a continuous function f in ω is an analytic vector of the system
of vector fields {R1, ..., Rk+1} if Rαf ∈ C0 for any α∈N

k+1, and if to every compact
set K of ω there is a constant ρ>0 such that in K,

(3.5) sup
α∈Nk+1

(
ρ|α| |Rαf |

|α|!

)
< ∞.

Set V ={z ∈Cd :‖z‖<ε}. We have

(z, w(z, s, t)) ∈ Ω if and only if (z, (s, t)) ∈ V ×ω.

The next proposition is a simplified version of Lemma 4.1 in [4].
Let B be the ball with center x and radius ρ in R

k+1 and for s∈(0, 1], let Bs

be the ball with center x and radius ρs.
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Proposition 7. Let B be as above and such that B�ω. Then there exists C1

and C2 depending only on ω and Δ such that for any C ∞ function f in an open
neighborhood of the closure of B with

Δf =0 in B,

for any z in V and every α∈N
k+1,

(3.6) ‖Rαf ‖L2(Bs) ≤ C1

(
C2

(1−s)

)|α|
|α|!.

The L2 norm can be replaced by the L∞ norm.

For the sake of completeness, we include the proof of the proposition, which is
found in [4], p. 403.

Proof. Denote by ‖ · ‖s the L2 norm on Bs. By Sobolev’s embedding theorem
and the linear independence of the Rj ’s, the L2 result implies the L∞ result. We
will prove the following for all z in V ,

(3.7) (1−s)|α| ‖RαΔkf ‖s ≤ D1D
|α|
2 Dk

3 (2k+|α|!).

Claim 8. There exists a positive R such that for all 0<s<s′ <1, β ∈N
k+1,

|β|=2, z ∈V and u∈ C ∞(B),

(3.8) ‖Rαu‖s ≤ R

(
‖Δu‖s′ +

1
s′ −s

k+1∑

j=1

‖Rj(u)‖s′ +
1

(s′ −s)2
‖u‖s′

)
,

where the Dj depend only on ω.

Choose φ∈ C ∞
0 (B) such that 0≤φ≤1, φ=1 on Bs, supp φ⊂Bs′ and

(3.9) |∂αφ| ≤ Cα
1

(s′ −s)|α| ,

where Cα is independent of s and s′.
By the ellipticity of Δ, there exists R′ depending only on ω such that

(3.10) ‖φu‖H2(ω) ≤ R′(‖Δφu‖L2(ω)+‖φu‖L2(ω)).

Hence (3.8) follows from (3.9) and (3.10) and the linear independence of the Rj ’s.
We now prove (3.7) by induction on |α|. Using that

‖φu‖H1(ω) ≤ R′ ′(‖Δφu‖H−1(ω)+‖φu‖L2(ω))
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and taking u=Δkf , we can assume that (3.7) holds for |α|=1 and all k ∈N, i.e.

(3.11) ‖RαΔkf ‖L2(B) ≤ C ′ ′
1 (C ′ ′

2 )k+2(2k+1)!.

Suppose that (3.7) holds for |α|=l. Let α∈N
k+1 and |α|=l+1. We will now

prove (3.7) for D1, D2 and large enough D3. Write α=β+α′, where |β|=2. By
(3.8) with u=Rα′

Δkf and s′ =s+1−s/|α| we have

‖RαΔkf ‖s ≤ R

(
‖Rα′

Δk+1f ‖s+1−s/|α| +
|α|
1−s

k+1∑

j=1

‖RjR
α′

Δkf ‖s+1−s/|α|(3.12)

+
|α|2

(1−s)2
‖Rα′

Δkf ‖s+1−s/|α|

)
.

Using the induction hypothesis to estimate the right-hand side of (3.12) we obtain

‖RαΔkf ‖s ≤ RD1

(
(1−s)− |α|+2

(
1+

1
|α| −1

)|α|−1

D
|α|−2
2 Dk+1

3 (|α|+2k)!

+(k+1)(1−s)− |α|
(

1+
1

|α| −1

)|α|−1

|α|D|α|−2
2 Dk

3 (|α| −1+2k)!

+(1−s)− |α| |α|(|α| −1)
(

1+
1

|α| −1

)|α|−1

D
|α|−2
2 Dk

3 (|α| −2+2k)!
)

.

Hence (3.7) follows for |α|=l+1 if

(3.13)
D3

D2
2

+
k+1
D2

+
1

D2
2

< 1.

It suffices to choose D1>C ′ ′
1 , D3>C ′ ′

2 and then D2 large enough so that D2>C ′ ′
2

and (3.13) holds. �

Proposition 9. (Proposition II.4.1 in [20]) Let Ω be an open set in M ×R

and let p∈Ω. A continuous function f=f(z, w(z, s, t)) on Ω is an analytic vector
of the system {R1, ..., Rk+1} if and only if there exists an open neighborhood V of p

in C
m+1 with V ∩Ω=Ω and a continuous function F =F (z, w) in V , holomorphic

with respect to the variable w, such that we have f(z, w(z, s, t))=F (z, w(z, s, t))
on Ω.

The main difficulty in the proof of Proposition 9 is to show that the function
defined by

F (z, w, s, t) =
∑

α∈Nk+1

Rαf(z, s, t)
|α|! [w −w(z, s, t)]α
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is equal to f for w near w(z, s, t) in Ω, if f is an analytic vector of the vector fields
{R1, ..., Rk+1}.

We shall use Proposition 7 to construct analytic vectors of the vector fields
{R1, ..., Rk+1} and then apply Proposition 9 to these vectors to obtain a holomorphic
extension in the variables w.

4. Proof of Theorem 1

Let f be a continuous CR function defined in U . Then, trivially, f extends to
a CR function on M (since the CR structure of M is the same as N). By (3.2), f is
CR on Ω. Choose T >0 small enough so that

(4.1) for any z ∈ V, s ∈ U and t ∈ (0, T ], dist((z, w(z, s, t)), ∂Ω) = t.

Consider then the continuous function S(f) given by (3.4). By construction,
we have ΔS(f)=0 on Ω.

Define ΩT by

(4.2) ΩT = {(z, w(z, s, t)) : z ∈ V, s ∈ U and t ∈ (0, T ]}.

We then obtain as a consequence of Propositions 7 and 9 the following result.

Corollary 10. There exists C=Cω such that for any (z, w(z, s, t))∈ΩT , S(f)
extends holomorphically as a function of w for {w ∈C

k+1 :‖w −w(z, s, t)‖<Ct}.

Proof. Let Bt(p) be a ball with radius t in R
k+1. Thus, if (z, w(z, s, t))∈ΩT ,

then Bt(s, t)⊂ω, by (4.1). Since ΔS(f)=0 in ω, the corollary follows by Proposi-
tions 7 and 9. �

By (4.1) and Corollary 10 for (z, w(z, σ, τ))∈ΩT the function

(4.3) F (z, w(z, s, t)) =
∑

α∈Nk+1

RαSf(z, w(z, σ, τ))
|α|! [w(z, s, t)−w(z, σ, τ)]α

is equal to S(f)(z, w(z, s, t)) when (z, s, t)∈V ×Bτ (σ, τ), where Bτ (σ, τ) is the ball
with radius τ around (σ, τ) in ω, and extends holomorphically in the variable w

when ‖w −w(z, σ, τ)‖<Cτ .
We now claim that the various holomorphic extensions of S(f) agree where they

are defined. Indeed, for fixed z, Ω is a totally real generic submanifold of Ck+1.
Hence it is a defining set for holomorphic functions of w. So any two extensions of F

taken at different points (z, w(z, σ1, τ1)) and (z, w(z, σ2, τ2)) that are simultaneously
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defined as holomorphic functions of w in a neighborhood of Ω must be equal, since
by Proposition 7 their difference vanishes on an open subset of Ω. We will now
restrict ourselves to points in ΩT . We have established the following lemma.

Lemma 11. S(f) extends to a function F in W , which is holomorphic with
respect to w, where W is a neighborhood of ΩT given by

W = {(z, w) : ‖w −w(z, σ, τ)‖ <Cτ, z ∈ V and (z, w(z, σ, τ)) ∈ ΩT }.

We are now going to define a product domain w⊂C
n+1 to which F extends

holomorphically as a function of w. For (ξ, s)∈B ×U , define w(ξ, s, t)⊂Ck+1 by

(4.4) w(ξ, s, t) =
{
ω ∈ C

k+1 : ‖ω −w(ξ, s, t)‖ < 1
2Ct

}
,

and M⊂C
n+1 by

(4.5) M =B ×
(

⋃

ξ∈B
s∈U

0<t<T

w(ξ, s, t)

)
.

Proposition 12. Let W and F be as in Lemma 11, then F extends holomor-
phically as a function of w to M.

This is the main part of the proof of Theorem 1. We have no assumption of
convexity in z, so there is no obvious way to use L2 methods. Since the w coordinate
in W depends on z, we cannot use a convolution kernel either. This is where we
heavily depend on the fact that the union of the CR orbits through the origin is a
complex manifold. It allows us to extend the function F written in a “good” way
to M, where we can solve a ∂ problem via convolution kernels.

Proof. Let F ∈ O(W ), and (z, w(z, u, t))∈M , then F is given by

(4.6) F (z, w) =
∑

α∈Nk+1

Dα
w(F (z, w(z, s, t)))

α!
[w −w(z, s, t)]α,

which converges normally for z ∈B and w such that ‖w −w(z, s, t)‖<Ct. We now
seek to isolate the dependence in the variable z to the coefficients of the power series
in (4.6).

For ω ∈C
k+1, define K(ω, s, t)⊂B ⊂C

d as

(4.7) K(ω, s, t) =
{
z ∈ B : ‖w(z, s)−ω‖ < 1

2Ct
}
.
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Given (s, t)∈U ×R
+, let w0 be such that K(w0, s, t) 	=∅. Define Br(w0) by

Br(w0) = {w ∈ C
k+1 : ‖w −w0‖ <r}.

If (z, w)∈K(w0, t)×BCt/2(w0) then it follows that (z, w)∈ W . Indeed, if (z, w)∈
K(w0, t)×BCt/2(w0) then we have

‖w −w(z, s, t)‖ ≤ ‖w −w0‖+‖w0 −w(z, s, t)‖ <Ct.

Hence if w0 is such that K(w0, s, t) 	=∅, we then have

(4.8) K(w0, s, t)×BCt/2(w0) ⊂ W .

If (z, w(ξ, s, t))∈K(w0, s, t)×BCt/2(w0), then (4.8) and (4.6) yield

(4.9) F (z, w, t) =
∑

α∈Nk+1

cα(ξ, s, t, z)[w −w(ξ, s, t)]α.

Let Γ(F )⊂C
d ×R

k+1 be defined as

(4.10) Γ(F ) = {(ξ, s, t) ∈ B ×U ×R
+ : K(w(ξ, s, t), s, t) =B}.

We claim that Γ(F ) is such that Γ(F )∩(B ×U × {0}) 	=∅. Indeed by (2.5) and
(4.7), for any t>0 there exists σ(t)∈R

+ such that

(ξ, s, t) ∈ Γ(F ) for ‖s‖ <σ(t).

We will show that there is a way to extend F so that Γ(F )=B ×U ×R
+. If

Γ(F )=B ×U ×R
+, then we are done. Hence, assume that Γ(F ) 	=B ×U ×R

+.
We next prove an elementary lemma, which is at the root of the extension of

the function F to a product domain.

Lemma 13. Let (ξ0, s0, t0)∈Γ(F ), then we may holomorphically extend F

such that if w(ξ1, s1, t0)∈BCt0/2(w(ξ0, s0, t0)) then (ξ1, s1, t0)∈Γ(F ).

Proof. For w ∈BCt0/2(w(ξ0, u0, t0))∩BCt0/2(w(ξ1, u1, t0)) we have

∑

α∈Nk+1

cα(ξ0, s0, t0, z)[w −w(ξ0, s0, t0)]α(4.11)

=
∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α.
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Note that the left-hand side of (4.11) is defined for all z in B as the right-hand
side is defined for z in K(w(ξ1, s1, t0), t0). Hence (4.11) enables us to holomorphi-
cally extend (as a function of z) the function given by

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α

to B ×BCt0/2(w(ξ0, s0, t0))∩BCt0/2(w(ξ1, s1, t0)) in the following way.
Let w(ξ2, s2, t0)∈BCt0/2(w(ξ0, s0, t0))∩BCt0/2(w(ξ1, s1, t0)), and write

∑

α∈Nk+1

cα(ξ0, s0, t0, z)[w −w(ξ0, s0, t0)]α(4.12)

=
∑

α∈Nk+1

cα(ξ0, s0, t0, z)[w −w(ξ2, s2, t0)+w(ξ2, s2, t0)−w(ξ0, s0, t0)]α.

By resumability of absolutely convergent power series, (4.12) becomes

(4.13)
∑

α∈Nk+1

cα(ξ0, s0, t0, z)[w −w(ξ0, s0, t0)]α =
∑

α∈Nk+1

eα(ξ0, s0, t0, z)[w −w(ξ2, s2, t0)]α

for w in a neighborhood N1 of w(ξ2, s2, t0). Note that the expression on the right
of (4.13) is defined for all z in B. Proceed in the same manner for the power series
on the right-hand side of (4.11) to obtain

(4.14)
∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α =
∑

α∈Nk+1

eα(ξ1, s1, t0, z)[w −w(ξ2, s2, t0)]α

for w in a neighborhood N2 of w(ξ2, s2, t0). Set N =N1 ∩N2. We then have by
(4.13), (4.14) and (4.11), for w ∈ N ,

(4.15)
∑

α∈Nk+1

eα(ξ0, s0, t0, z)[w −w(ξ2, s2, t0)]α =
∑

α∈Nk+1

eα(ξ1, s1, t0, z)[w −w(ξ2, s2, t0)]α.

We are now able to extend the right-hand side of (4.15) to z ∈B. We have thus
obtained an extension of the power series

∑
α∈Nk+1 eα(ξ1, s1, t0, z)[w −w(ξ2, s2, t0)]α

to B × N . Hence, in (4.14), we obtain for w ∈ N , that
∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α
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converges absolutely for z ∈B. Therefore since w(ξ2, s2, t0) can be chosen arbitrarily,
by Abel’s lemma, we see that the power series

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α

converges absolutely for z ∈B and w ∈BCt0/2(w(ξ1, s1, t0)). We now show that this
extension is independent of ξ, s and t. Note that

(4.16)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂w

[
∂

∂ξ

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α
]

=0,

∂

∂w

[
∂

∂ξ̄

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α
]

=0,

∂

∂w

[
∂

∂s

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α
]

=0,

∂

∂w

[
∂

∂t

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α
]

=0.

By (4.15) for any z ∈B we have on N ,

(4.17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂ξ

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α =0,

∂

∂ξ̄

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α =0,

∂

∂s

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α =0,

∂

∂t

∑

α∈Nk+1

cα(ξ1, s1, t0, z)[w −w(ξ1, s1, t0)]α =0.

Hence by (4.16) and (4.17) we see that the extended power series is independent of
the variables ξ, s and t. This completes the proof of Lemma 13. �

Since Γ(F )∩(B ×U × {0}) 	=∅, for any t, pick (ξ, s, t)∈Γ(F ). By Lemma 13
we extend F as a holomorphic function of w to M. Note that any two exten-
sions, where simultaneously defined, must agree, since they are equal to our orig-
inal function F on K(w(ξ, s), s, t)×BCt/2(w(ξ, s, t)). This completes the proof of
Proposition 12. �
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Proposition 14. The extension F̃ satisfies the property

(4.18) lim
w′ ′→0

(z,w)∈M

∂F̃

∂z̄j
=0 for any j.

Proof. S(f) is continuous up to U × {0} and has boundary values f . Hence F

is continuous up to U × {0} with the same boundary values. Note that

(4.19) if (z, w′, w′ ′) ∈ M
′ then (z, w′, w′ ′)→ U × {0} if and only if w′ ′ → 0.

Hence (4.19) combined with the boundary values of S(f) on U × {0} yields

(4.20) lim
w′ ′→0

F (z, w) = f.

The next lemma holds in far greater generality, but we just need it in this
simple form.

Lemma 15. We have for any generator Lj of the CR vector fields on ΩT ,
and a function G, which is continuous up to U × {0}, that

lim
t→0

Lj(G)(z, w(z, s, t)) =Lj | U × {0}(G| U × {0}).

Proof. Set G=g0+g1, where

lim
t→0

G(z, w(z, s, t)) = g0 and lim
t→0

g1(z, w(z, s, t)) = 0.

By (2.6) we have Lj given by

Lj =
∂

∂z̄j
+

k∑

l=1

Fjl
∂

∂sl
,

with no differentiation in t (or dependence on t). Therefore, since G is assumed to
be continuous up to U × {0} we have

lim
t→0

Lj(G)(z, w(z, s, t)) = lim
t→0

∂

∂z̄j
+

k∑

l=1

Fjl
∂

∂sl
(g0+g1)

= Lj(g0)+lim
t→0

Lj(g1) =Lj(g0). �

Since F is holomorphic as a function of w, we have

(4.21) Lj(F )(z, w(z, s, t)) =
∂

∂z̄j
F (z, w(z, s, t)).
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F is continuous up to U × {0} and its boundary values are f , a CR function. Hence
by (4.21) and Lemma 15 we deduce that

(4.22) lim
t→0

∂

∂z̄j
F (z, w(z, s, t)) = 0.

Note that ∂F/∂z̄j is holomorphic as a function of w, so

(4.23) lim
w′ ′→0

(z,w)∈M
′

∂

∂z̄j
F (z, w)= 0.

Hence by (4.23), we have

(4.24) lim
t→0

∂

∂z̄j
cα(ξ, s, t, z)= 0.

Therefore the proposition follows from (4.24) and the extension used in (4.15). �

We will drop the tilde in the extended version of F . We now finish the proof
of Theorem 1. Fix a ball B′ ⊂B around the origin in C

d. Let χ∈ C ∞
0 (Cd) be such

that χ=1 on B′ and χ=0 of B. Let K be the Bochner–Martinelli kernel in C
d
z (see

for instance [14], Corollary 1.11), and define G by

(4.25) G(z, w) = −
∫

Cd

χ(ζ)
(

∂

∂z̄1
F (ζ, w), ...,

∂

∂z̄d
F (ζ, w)

)
∧ K(ζ, z).

Then for j=1, ..., d,

(4.26)
∂

∂z̄j
F (z, w) =

∂

∂z̄j
G(z, w) for (z, w) ∈ M

′ =B′ ×
(

⋃

ξ∈B′

s∈U
0<t<T

w(ξ, s, t)

)
.

So by Proposition 14 we have

lim
w′ ′→0

(z,w)∈M
′

G(z, w)= 0.

Therefore the holomorphic extensions of f to M′ is given by F −G. This concludes
the proof of Theorem 1.
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5. Remarks and corollaries

Remark 16. The proof of Theorem 1 for m>1 is as follows: After a linear
change of variables, there is no loss of generality assuming that v=(0; 0; (0, ..., 0, 1))∈
C

d ×C
k ×C

m. Construct the Rk as in Lemma 2 and define Δ by Δ=
∑k

j=1 R2
j +∑m

j=1 ∂2/∂t2j . In R
k ×R

m, define an open set Ω and ∂Ω as previously. Let f be
a CR function on N. Trivially, f is CR on N×R

m. Solve a Dirichlet problem on
Ω with the restriction of f to ∂Ω as boundary data. We therefore obtain, by the
above argument, a holomorphic extension of f to a wedge of direction v and of edge
N×R

m−1. Hence the result in higher dimension.

Remark 17. The tools used in this argument imply that the boundary values
of the holomorphic function H is the CR function we wish to extend only in a small
subset of the part of ∂Ω which is a CR submanifold of Ω.

We now give a few corollaries, arguments for proofs may be found in [9].

Corollary 18. Let N={(Z, h(Z)):Z ∈N} be a smooth (C ∞) non-generic CR
submanifold of C

n. If f is a CR distribution on N , then for any p∈N and any
v complex transversal to N at p, there exists a wedge W of direction v whose edge
contains a neighborhood of p in N and F ∈ O(W ), such that the boundary values of
F on N are f .

Corollary 19. Let N be non-generic CR submanifold of C
L and let v be a

complex transversal vector to N at p. If m is the complex codimension of spanCTpN

in C
n, then there exists a wedge W of direction v, and {Fl}m

l=1, Fl holomorphic
in W , such that dF1 ∧...∧dFm 	=0 on W and each Fl vanishes on N near p.

Corollary 20. Let M be a smooth (C ∞) generic submanifold of C
n contain-

ing, through some p∈M , a proper smooth (C ∞) CR submanifold N of the same CR
dimension and of codimension m. Let v ∈TpM \TpN . Then there exists a wedge W
in M of direction v such that :

(a) any continuous CR function of N near p admits a C ∞ CR extension to W
near p, the extension is continuous up to N ;

(b) if m is the complex codimension of spanCTpN in C
L, then there exists a

collection {gl}m
l=1 of smooth CR functions on W , vanishing on N near p such that

dg1 ∧...∧dgm 	=0 on W .
Suppose now that N is of codimension one in M . If u is a continuous CR

function near p in N , then u admits a continuous CR extension to a neighborhood
of p in M . Furthermore, N cuts M in two parts : M+ and M −. There exists a
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C ∞ smooth CR function ϕ of M in a neighborhood of p such that ϕ≡0 on M − and
ϕ 	≡0 on M+ locally near p. Such a function is an example of a smooth CR function
that admits no holomorphic wedge extension near p.

Remark 21. The function ϕ does not extend holomorphically to any neighbor-
hood of N . This situation differs greatly from the holomorphic extension situation
in the generic case. Consider Trépreau’s example given by

M = {(z, s1+is2|z|2, s2 −is1|z|2) : (z, s1, s2) ∈ C×R×R}.

Let W be a wedge attached to M in a neighborhood of the origin. Then any function,
which is holomorphic in W , extends holomorphically to a full neighborhood of the
origin (see [18] for details). However, if we now consider the CR graph of M,
M={(Z, h(Z)):Z ∈M}, where h is any CR function on M. Then, for any v complex
transversal to M at the origin, the graphing function h extends holomorphically to
a wedge Wv of direction v. Without loss of generality we may assume that, if
we have chosen for coordinates (z, w′, w′ ′)∈C×C

2 ×C, Re(w′ ′ −h)>0 in Wv . Set
g=exp(−1/w′ ′ −h). Then g vanishes to infinite order on M , and hence does not
extend holomorphically to a full neighborhood of M .
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