On the Homogenization of Quasilinear Divergence Structure Operators (*).

N. Fusco - G. Moscariello

Summary. - We study the homogenization of second order quasilinear operators of the form

$$
A_{\varepsilon} u=-\operatorname{div} a\left(\frac{x}{\varepsilon}, u, D u\right)
$$

in Sobolev spaces $H^{1, p}(p>1)$. An explicit formula of the homogenized operator is given.

1. - Introduction. . .

In this paper we study the homogenization of a family of quasilinear operators

$$
\left\{\begin{array}{l}
A_{\varepsilon} u=-\operatorname{div} a\left(\frac{x}{\varepsilon}, u, D u\right) \tag{1.1}\\
u \in H_{0}^{1, p}(\Omega) \quad p>1
\end{array}\right.
$$

where $a(x, u, \xi)$ is periodic in x and verifies suitable growth conditions, $\varepsilon>0$.
Indeed we prove that the solutions u_{ε} of the problems

$$
\left\{\begin{array}{l}
A_{\varepsilon} u=f \tag{1.2}\\
u \in H_{0}^{1, p}(\Omega)
\end{array}\right.
$$

converge in the weak topology of $H_{0}^{1, \boldsymbol{D}}(\Omega)$ to a function u_{0} which is the solution of the problem:

$$
\left\{\begin{array}{l}
-\operatorname{div} b(u, D u)=f \\
u \in H_{0}^{1, p}(\Omega)
\end{array}\right.
$$

and $a\left(x / \varepsilon, u_{\varepsilon}, D u_{\varepsilon}\right)$ converge to $b\left(u_{0}, D u_{0}\right)$ in the weak topology of $L^{p^{\prime}}$, with $p^{\prime}=$ $=p /(p-1)$. Moreover the matrix $b(u, \xi)$ is given by an explicit formula.
(*) Entrata in Redazione 1's settembre 1984.
(*) Indirizzo degli A.: Dipartimento di Matematica, Universit̀̀, Via Mezzocannone 8, 80134 Napoli.

The study of the homogenization of a family of linear elliptic operators

$$
A_{\varepsilon} u=-\operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right), D u\right)
$$

goes back to De Giorgi-Spagnolo ([16]), but many difierent proofs of the main results have been given by several authors ([1], [2], [3], [4], [10], [13], [17], [20]). On the other hand, the homogenization of a family of variational integrals

$$
\begin{equation*}
F_{\varepsilon}(u)=\int_{\Omega} f\left(\frac{x}{\varepsilon}, D u\right) d x \tag{1.3}
\end{equation*}
$$

has been studied by Marcellini in [9] and by Carbone-Sbordone in [5], using the techniques of Γ-convergence introduced by De Giorgi. However a direct proof of the homogenization of the functionals (1.3) has been recently given in [7].

For non linear equations of the type (1.2) some homogenization results, in the case $p=2$, were first given by Babuska ([2]) and recently extended to the case of systems by Suquet ([14]) and Tartar [18].

Some general results of G-convergence for non linear operators of the form (1.1), in the case $p \geqslant 2$, have been recently announced by Ratcum ([12]), although in this paper he is not concerned with the problem of giving a representation formula for the limit operator. In any case, he shows that if $p>2$ the limit operator may not verify the same structure conditions of the A_{ε}. However, we show here that certain conditions are preserved, passing to the limit, and that in some cases one may have stability results.

We wish to thank Prof. N. S. Trudinger for his interest in this work and the Centre for Mathematical Analysis in Canberra for the hospitality given to one of the authors.

2. - Preliminary lemmas.

In the following Y will denote the unit cube in \boldsymbol{R}^{n}, y an element of Y and x an element of \boldsymbol{R}^{n}. If $f \in L_{n, \text { loc }}^{1}\left(\boldsymbol{R}^{n}\right)$ and $\boldsymbol{E} \subset \boldsymbol{R}^{n}$ is a bounded set of positive measure, we define:

$$
\langle f\rangle_{\vec{R}}=\frac{1}{\operatorname{meas}(\boldsymbol{E})} \int_{E} f(x) d x .
$$

However we shall omit the subscript E, when it is clear to which set we refer.

If $p>1$ and $p^{\prime}=p /(p-1)$ we shall consider the following spaces:
$H_{\text {per }}^{1, p}(Y)=\left\{u(y) \in H^{1, p}(Y): u\right.$ has the same trace on the opposite faces of $\left.Y\right\}$;

$$
L_{n, \operatorname{per}}^{p^{\prime}}(Y)=\left\{q(y) \in L_{n}^{p^{\prime}}(Y): \int_{\mathbf{Y}} q \cdot D u d y=0, \forall u \in H_{\mathrm{per}}^{1, p}(Y)\right\}
$$

We recall the following lemmas about the above spaces (for a proof see e.g. [14]).
Lemma 2.1. - If $u(y)$ is an element of $H_{\text {per }}^{1, n}(\bar{Y})$, then it can be extended by periodicity to an element of $H_{l o c}^{1, p}\left(\boldsymbol{R}^{n}\right)$.

Lemma 2.2. - If $q(y)$ is an element of $L_{n, \text { per }}^{\mathfrak{p}^{\prime}}(Y)$, then it can be extended by periodicity to an element of $L_{n, \text { loc }}^{p^{\prime}}\left(\boldsymbol{R}^{n}\right)$, still denoted by q, such that

$$
\operatorname{div}_{x} q(x)=0
$$

In the following we shall consider the Dirichlet problems:

$$
\left\{\begin{array}{l}
-\operatorname{div} a\left(\frac{\mathscr{~}}{\varepsilon}, u, D u\right)=f \quad \text { in } \Omega \\
u \in H_{0}^{1, p}(\Omega)
\end{array}\right.
$$

where Ω is a bounded open set in $\boldsymbol{R}^{n}, f \in L^{q}$ with $q>\max \{n / p, p /(p-1)\}, \varepsilon>0$, and $a(x, u, \xi)$ verifies the following structure conditions:
$\left.H_{1}\right) a$ is Y-periodic and measurable with respect to x.
H_{2}) For any $x \in \boldsymbol{R}^{n}$ a.e., any $u, u_{1}, u_{2} \in \boldsymbol{R}$ and $\xi_{1}, \xi_{2} \in \boldsymbol{R}^{n}$ then
if $p \geqslant 2$
i) $\quad\left|a\left(x, u_{1}, \xi_{1}\right)-a\left(x, u_{2}, \xi_{2}\right)\right| \leqslant \beta\left(1+\left|u_{1}\right|+\left|u_{2}\right|+\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}\left(\left|\xi_{1}-\xi_{2}\right|+\left|u_{1}-u_{2}\right|\right)$
ii) $\quad\left(a\left(x, u, \xi_{1}\right)-a\left(x, u, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant \alpha\left|\xi_{1}-\xi_{2}\right|^{p}$
or, if $1<p \leqslant 2$
j) $\left|a\left(x, u_{1}, \xi_{1}\right)-a\left(x, u_{2}, \xi_{2}\right)\right| \leqslant \beta\left(\left|u_{1}-u_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right)^{p-1}$
jj) $\left(a\left(x, u, \xi_{1}\right)-a\left(x, u, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant \alpha\left|\xi_{1}-\xi_{2}\right|^{2}\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}$
$\left.H_{3}\right) \quad a(x, 0,0) \in L_{n}^{p^{\prime}}$ if $p>n$ or $a(x, 0,0) \in L_{n}^{q}$ with $q>\frac{n}{p-1}$ if $p \leqslant n$.
REmark 2.3. - We remark that under the above hypothesis, using the same argument of [8] (theorems 8.15-8.16), one can prove uniform (i.e. not dependent
on ε) a priori bounds for the L^{∞} norm of the solutions of the problems ($\mathcal{S}_{\varepsilon}$). From this then one can easily deduce the existence of solutions for ($\mathscr{T}_{\varepsilon}$).

In the next section we will prove the convergence of the solutions of $\left(\mathcal{T}_{\varepsilon}\right)$ to the solutions of the homogenized problem

$$
\left\{\begin{array}{l}
-\operatorname{div} b(u, D u)=f \quad \text { in } \Omega \tag{0}\\
u \in H_{0}^{1, y}(\Omega)
\end{array}\right.
$$

where b is given by:

$$
\begin{equation*}
b(u, \xi)=\int_{Y} a(y, u, D v(y)) d y \tag{2.1}
\end{equation*}
$$

and $v(y)$ is the solution of the problem:

$$
\left\{\begin{array}{l}
\int_{\bar{Y}} a(y, u, D v(y)) \cdot D \varphi(y) d y=0, \quad \forall \varphi \in H_{\operatorname{Der}}^{1, p}(Y) \tag{2.2}\\
v(y) \in \xi \cdot y+H_{\mathrm{Der}}^{1, n}(Y)
\end{array}\right.
$$

Using the above assumptions on a it is straightforward to prove that problem (2.2) (in which u is fixed) has a unique solution. So $b(u, \xi)$ is well defined.

We state now some lemma about the structure properties of b.
Lemicma 2.4.

$$
|b(u, \xi)| \leqslant c[1+|u|+|\xi|]^{p-1}
$$

where $c \equiv c\left(\alpha, \beta, p,\|a(y, 0,0)\|_{p^{\prime}}\right)$.
Proof. - Let us fix (u, ξ) and denote by $v(y)$ the corresponding solution of (2.2). Then by i) or j) we get:

$$
\begin{equation*}
\left|b(u, \xi)-\int_{\bar{Y}} a(y, 0,0) d y\right| \leqslant \beta \int_{\bar{Y}}(1+|u|+|D v(y)|)^{p-1} d y \tag{2.3}
\end{equation*}
$$

On the other hand, using ii) or jj) and the fact that $v(y)$ is a solution of (2.2) we have:

$$
\begin{aligned}
\alpha \int_{\bar{Y}}|D v(y)|^{p} d y & \leqslant \int_{\bar{Y}}(a(y, u, D v(y))-a(y, u, 0), D v(y)) d y= \\
& =b(u, \xi) \cdot \xi+\int_{\bar{Y}}(a(y, 0,0)-a(y, u, 0)) \cdot D v(y) d y-\int_{Y}(a(y, 0,0), D v(y)) d y .
\end{aligned}
$$

Then, applying Young inequality to the two integrals on the left side, i) or j) and (2.3):

$$
\begin{equation*}
\int_{\bar{F}}|D v(y)|^{p} \leqslant c(1+|u|+|\xi|)^{p} \tag{2.4}
\end{equation*}
$$

where $c \equiv c\left(\alpha, \beta, p,\|a(y, 0,0)\|_{v^{\prime}}\right)$. Then, applying again (2.3), we get the proof.
Lemma 2.5. $-b(u, \xi)$ is locally Hölder (Lipschitz if $p=2$) with respect to (u, ξ).
Proof. - Let us denote by v_{1} and v_{2} the solutions of (2.2) defining respectively $b\left(u_{1}, \xi_{1}\right)$ and $b\left(u_{2}, \xi_{2}\right)$. We shall put

$$
\begin{equation*}
H=1+\left|u_{1}\right|+\left|u_{2}\right|+\left|\xi_{1}\right|+\left|\xi_{2}\right| . \tag{2.5}
\end{equation*}
$$

Case $p \geqslant 2 .-$ By ii) we have

$$
\begin{aligned}
\int_{Y}\left|D v_{1}-D v_{2}\right|^{p} d y & \leqslant \int_{Y}\left(a\left(y, u_{1}, D v_{1}\right)-a\left(y, u_{1}, D v_{2}\right), D v_{1}-D v_{2}\right) d y \leqslant \\
& \leqslant\left(b\left(u_{1}, \xi_{1}\right)-b\left(u_{2}, \xi_{2}\right), \xi_{1}-\xi_{2}\right)+ \\
& +\left|u_{1}-u_{2}\right| \int_{Y}\left(1+\left|u_{1}\right|+\left|u_{2}\right|+\left.\left|D v_{2}\right|\right|^{p-2}\left|D v_{1}-D v_{2}\right| d y\right.
\end{aligned}
$$

Then, by the Young inequality and the estimate (2.4), we get:

$$
\begin{equation*}
\int_{Y}\left|D v_{1}-D v_{2}\right|^{p} d y \leqslant c\left\{(1+H)^{p^{\prime}(p-2)}\left|u_{1}-u_{2}\right|^{\prime}+\left(b\left(u_{2}, \xi_{2}\right)-b\left(u_{1}, \xi_{1}\right), \xi_{2}-\xi_{1}\right)\right\} \tag{2.6}
\end{equation*}
$$

On the other hand by i) and (2.4):

$$
\begin{aligned}
\left|b\left(u_{2}, \xi_{2}\right)-b\left(u_{1}, \xi_{1}\right)\right| \leqslant \int_{\bar{Y}} \mid a\left(y, u_{1}, D v_{1}\right) & -a\left(y, u_{2}, D v_{2}\right) \mid d y \leqslant \\
& \leqslant c(1+H)^{p-2}\left(\int_{\bar{Y}}\left(\left|u_{1}-u_{2}\right|^{p}+\left|D v_{1}-D v_{2}\right|^{p}\right) d y\right)^{1 / p}
\end{aligned}
$$

Then, using (2.6) and again Young inequality to separate the term $\left(b\left(u_{2}, \xi_{2}\right)-b\left(u_{1}, \xi_{1}\right), \xi_{2}-\xi_{1}\right)$ we have:

$$
\begin{equation*}
\left|b\left(u_{1}, \xi_{1}\right)-b\left(u_{2}, \xi_{2}\right)\right| \leqslant c(1+H)^{p(p-2) /(p-1)}\left(\left|u_{1}-u_{2}\right|+\left|\xi_{1}-\xi_{2}\right|\right)^{1 /(p-1)} \tag{2.7}
\end{equation*}
$$

Oase $1<p \leqslant 2$. - With the same argument used to prove (2.6) one can prove:

$$
\begin{align*}
& \int_{Y}\left|D v_{1}-D v_{2}\right|^{2}\left(\left|D v_{1}\right|+\left|D v_{2}\right|\right)^{p-2} \leqslant c\left\{\left.(1+H)^{(2-p)}\left|u_{1}-u_{2}\right|\right|^{2(p-1)}+\right. \tag{2.8}\\
&\left.+\left(b\left(u_{2}, \xi_{2}\right)-b\left(u_{1}, \xi_{1}\right), \xi_{2}-\xi_{1}\right)\right\}
\end{align*}
$$

But on the other hand, from j) we have:

$$
\left|b\left(u_{1}, \xi_{1}\right)-b\left(u_{2}, \xi_{2}\right)\right| \leqslant \beta \int_{Y}\left(\left|u_{1}-u_{2}\right|+\left|D v_{1}-D v_{2}\right|\right)^{p-1} d y
$$

And so from this and from (2.8) the following estimate comes:

$$
\begin{align*}
& \left|b\left(u_{2}, \xi_{2}\right)-b\left(u_{1}, \xi_{1}\right)\right| \leqslant c\left\{(1+H)^{(2-p)(p-1)}\left|u_{1}-u_{2}\right|^{(p-1)^{2}}+\right. \tag{2.9}\\
& \quad+(1+H)^{\left.\left.(2-p)(p-1) /(3-p) \mid \xi_{1}-\xi_{2}\right]^{(p-1) /(3-p)}\right\}}
\end{align*}
$$

We remark that both (2.7) and (2.9) show that if $p=2$ then b is Lipschitz with respect to its arguments. Moreover a counter-example given in [12] shows that, at least if $p>2$, the Hölder exponents appearing in the above estimates in general cannot be improved.

Lemma 2.6. - For any $u \in \boldsymbol{R}, \xi_{1}, \xi_{2} \in \boldsymbol{R}^{n}$ we have

$$
\begin{equation*}
\left(b\left(u, \xi_{1}\right)-b\left(u, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant \alpha\left|\xi_{1}-\xi_{2}\right|^{p}, \quad \text { if } p \geqslant 2, \tag{2.10}
\end{equation*}
$$

$(2.10)_{2} \quad\left(b\left(u, \xi_{1}\right)-b\left(u, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant \alpha^{\prime}\left|\xi_{1}-\xi_{2}\right|^{2}\left(1+|u|+\left|\xi_{1}\right|+\left|\xi_{2}\right|^{p-2}\right.$,

$$
\text { if } 1<p \leqslant 2 \text {. }
$$

Proof. - Let us denote by v_{1} and v_{2} the solutions of (2.2) defining respectively $b\left(u, \xi_{1}\right)$ and $b\left(u, \xi_{2}\right)$. Let us consider $u_{i}=v_{i}(y)-\xi_{i} \cdot y, i=1,2$. Then $u_{i}(y)$ is in $H_{\mathrm{Der}}^{1, p}(Y)$ and so, if we extend it by periodicity, the resulting function (still denoted by u_{i}) is in $H_{l o c}^{1, p}\left(\boldsymbol{R}^{n}\right)$ (see Lemma 2.1). So, if we define:

$$
w_{i}^{\delta}(x)=\varepsilon u_{i}\left(\frac{x}{\varepsilon}\right)+\xi_{i} \cdot x, \quad i=1,2
$$

it is easy to check that:

$$
\begin{cases}w_{i}^{\varepsilon}(x) \rightarrow \xi_{i} \cdot x & \text { in } w-H_{\mathrm{loc}}^{1, p}\left(\boldsymbol{R}^{n}\right) \tag{2.11}\\ a\left(\frac{x}{\varepsilon}, u, D w_{i}^{\varepsilon}\right) \rightarrow b\left(u, \xi_{i}\right) & \text { in } w-L_{n, 100}^{p \prime}\left(\boldsymbol{R}^{n}\right), \\ \operatorname{div} a\left(\frac{x}{\varepsilon}, u, D w_{i}^{\varepsilon}(x)\right)=0 & \end{cases}
$$

where the last relation is proved using Lemma 2.2.
If $p \geqslant 2$ from ii) we get:

$$
\alpha \int_{Y} \eta\left|D w_{1}^{\varepsilon}-D w_{2}^{\varepsilon}\right|^{p} d x \leqslant \int_{Y} \eta\left(a\left(\frac{x}{\varepsilon}, u, D w_{1}^{\varepsilon}\right)-a\left(\frac{x}{\varepsilon}, u, D w_{2}^{\varepsilon}\right), D w_{1}^{\varepsilon}-D w_{2}^{\varepsilon}\right) d x,
$$

where η is a $C_{0}^{1}(Y)$ function, $0 \leqslant \eta \leqslant 1$. Then, passing to the limit as $\varepsilon \rightarrow 0$, and using (2.11), by the compensated compactness results of [11] we get (2.10). In the case $1<p \leqslant 2$ we can argue in a similar way. In fact from jj) we have

$$
\begin{aligned}
& \sqrt{\alpha} \int_{Y} \eta\left|D w_{1}^{\varepsilon}-D w_{2}^{\varepsilon}\right| d x \leqslant\left(\int_{Y} \eta\left(a\left(\frac{x}{\varepsilon}, u, D w_{1}^{\varepsilon}\right)-a\left(\frac{x}{\varepsilon}, u, D w_{2}^{\varepsilon}\right), D w_{1}^{\varepsilon}-D w_{2}^{\varepsilon}\right) d x\right)^{\frac{1}{t}} \\
& \cdot\left(\int_{Y} \eta\left(\left|D w_{1}^{\varepsilon}\right|+\left|D w_{2}^{\varepsilon}\right|\right)^{2-p} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

Then, passing to the limit as before, and remarking that $\int_{Y}\left|D w_{i}^{\varepsilon}\right|^{p} d x \leqslant c \int_{Y}\left|D v_{i}\right|^{p} d y$, and using (2.4) we get soon (2.10) ${ }_{2}$.

Finally we want to show how in some special case the Hölder estimate on b, provided by the Lemma 2.5 can be improved. In fact let us suppose that $a=a(x, \xi)$ and that verifies the following assumption:
$\left.K_{2}\right) \quad$ i) $\left|a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right)\right| \leqslant \beta\left(\left|\xi_{1}\right|+\left.\left|\xi_{2}\right|\right|^{p-2}\left|\xi_{1}-\xi_{2}\right| ;\right.$
ii) $\left(a\left(x, \xi_{1}\right)-a\left(x, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant \alpha\left|\xi_{1}-\xi_{2}\right|^{2}\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}$.

Then we have:

Proposition 2.7. - If $p \geqslant 2$ and $a(x, \xi)$ verifies K_{2}) then

$$
\begin{equation*}
\left|b\left(\xi_{1}\right)-b\left(\xi_{2}\right)\right| \leqslant c\left(1+\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}\left|\xi_{1}-\xi_{2}\right| \tag{2.12}
\end{equation*}
$$

Proof. - Let us denote by v_{1} and v_{2} the solutions of (2.2) defining respectively $b\left(\xi_{1}\right)$ and $b\left(\xi_{2}\right)$. Then from K_{2}) we get:

$$
\begin{aligned}
\left|b\left(\xi_{1}\right)-b\left(\xi_{2}\right)\right| \leqslant \beta & \int_{Y}\left(\left|D v_{1}\right|+\left|D v_{2}\right|\right)^{p-2}\left|D v_{1}-D v_{2}\right| d y \leqslant \\
\leqslant \beta \alpha^{-\frac{1}{y}}\left(\int_{Y} \mid\left(D v_{1} \mid\right.\right. & \left.\left.+\left|D v_{2}\right|\right)^{p-2}\right)^{\frac{1}{2}}\left(\int_{Y}\left(a\left(y, D v_{1}\right)-a\left(y, D v_{2}\right), D v_{1}-D v_{2}\right)\right)^{\frac{1}{2}} \leqslant \\
& \leqslant \beta \alpha^{-\frac{1}{2}}\left(\int_{Y}\left(\left|D v_{1}\right|+\left|D v_{2}\right|\right)^{p-2}\right)^{\frac{1}{2}}\left|b\left(\xi_{1}\right)-b\left(\xi_{2}\right)\right|^{\mid}\left|\xi_{1}-\xi_{2}\right|^{\frac{\beta}{7}} .
\end{aligned}
$$

Then using (2.4), we easily deduce (2.12).
We remark also that if $a(x, 0)=0$, then we have in particular

$$
\begin{equation*}
\left|b\left(\xi_{1}\right)-b\left(\xi_{2}\right)\right| \leqslant \frac{\beta^{p}}{\alpha^{p-1}}\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)^{p-2}\left|\xi_{1}-\xi_{2}\right| \tag{2.13}
\end{equation*}
$$

since it is easy to check that in this case (2.4) reduces to

$$
\alpha\|D v\|_{p} \leqslant \beta|\xi|
$$

However the following example shows that if $a(x, 0) \neq 0$, in general (2.12) cannot be improved in order to have an estimate of the type of (2.13). The same example shows also that if $p \neq 2$ and $a(x, \xi)=\xi|\xi|^{p-2}+d(x)$, then $b(\xi)$ is not equal to $\xi|\xi|^{p-2}+$ constant, as it happens if $p=2$. Let us take, for instance, $p=3, n=1$ and $a(x, \xi)=\xi|\xi|+d(x)$, where $d(y)=1$ if $0<y<\frac{1}{2}, d(y)=2$ if $\frac{1}{2}<y<1$. Of course $a(x, \xi)$ verifies the condition K_{2}, while an easy calculation shows that:

$$
b(\xi)= \begin{cases}1+\frac{(4 \xi|\xi|+1)^{2}}{16 \xi|\xi|} & \text { if }|\xi| \geqslant \frac{1}{2} \\ \frac{3}{2}+\xi \sqrt{2-4 \xi^{2}} & \text { if }|\xi| \leqslant \frac{1}{2}\end{cases}
$$

3. - Homogenization.

Let us prove the following homogenization result:
Theorem 3.1. - If $a(x, u, \xi)$ verifies the structure conditions H_{1}, H_{2} and H_{3}, then for any $f \in L^{q}$, with $q>n / p$, and any sequence ($u_{\varepsilon_{h}}$) of solutions of $\left(\mathcal{T}_{\varepsilon_{h}}\right)$, with $\varepsilon_{h} \rightarrow 0$, there exist a subsequence $\left(u_{\varepsilon_{r}}\right)$ and a function u_{0}, solution of $\left(\mathscr{T}_{0}\right)$ such that:

$$
\begin{array}{ll}
u_{\varepsilon_{r}} \rightarrow u_{0} & \text { weakly in } H^{1, v}(\Omega), \\
a\left(\frac{x}{\varepsilon_{r}}, u_{\varepsilon_{r}}, D u_{\varepsilon_{r}}\right) \rightarrow b\left(u_{0}, D u_{0}\right) & \text { weakly in } L_{n}^{p^{\prime}}(\Omega) . \tag{3.2}
\end{array}
$$

Proof. - Let us denote by u_{ε} a ${ }_{k}$ solution of ($\mathscr{J}_{\varepsilon}$). By Remark 2.3 we have that $\left\|D u_{\varepsilon}\right\|_{L^{p}} \leqslant C$ (with C independent of ε). Then by i) or j) we get that also $\left\|a\left(x / \varepsilon, u_{\varepsilon}, D u_{\varepsilon}\right)\right\|_{L_{n}^{p^{\prime}}}$ is uniformly bounded. So passing eventually to a subsequence, we may suppose that:

$$
\begin{cases}u_{\varepsilon} \rightarrow u_{0} & \text { in } w-H_{0}^{1 \cdot \nu}(\Omega) \\ a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right) \rightarrow a_{0}(x) & \text { in } w-L_{n}^{p^{\prime}}(\Omega)\end{cases}
$$

The theorem will be proved if we show that

$$
\begin{equation*}
a_{0}(x)=b\left(u_{0}, D u_{0}\right) \quad \text { a.e. in } \Omega \tag{3.3}
\end{equation*}
$$

Let us fix $\nu \in \boldsymbol{N}$ and denote by $\left\{Q_{i v}\right\}_{i}$ a partition of \boldsymbol{R}^{n} in cubes with the edges
equal to $2^{-\nu}$. Then we define: $I_{\nu}=\left\{i: Q_{i v} \subset \Omega\right\}, \Omega_{\nu}=\bigcup_{i \in I_{\nu}} Q_{i v}$. For any i let us consider $\left\langle u_{0}\right\rangle_{i v}=\left\langle u_{0}\right\rangle_{Q i v}$ and $\left\langle D u_{0}\right\rangle_{i v}=\left\langle D u_{0}\right\rangle_{Q_{i p}}$. Then, if $\chi_{i v}(x)$ is the characteristic function of $Q_{i v}$, by the continuity of b (see Lemma 2.5), we have if $v \rightarrow+\infty$ then

$$
\begin{equation*}
\sum_{i \in I_{v}} \chi_{i v}(x) b\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right) \rightarrow b\left(u_{0}(x), D u_{0}(x)\right) \quad \text { a.e. } \tag{3.4}
\end{equation*}
$$

Moreover, from Lemma 2.4, we have that for any measurable set $E \subset \Omega$

$$
\int_{E}\left|\sum_{i \in I_{v}} \chi_{i v}(x) b\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right)\right|^{p^{\prime}} d x \leqq c \int_{E}\left(1+\left|\sum_{i} \chi_{i v}(x)\left\langle u_{0}\right\rangle_{i v}\right|+\left|\sum_{i} \chi_{i v}(x)\left\langle D u_{0}\right\rangle_{i v}\right|\right)^{\dot{p}} d x
$$

So, from the equi-absolute continuity of the integral on the left and from (3.4) we deduce that:

$$
\begin{equation*}
\sum_{i} \chi_{i v}(x) b\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right) \rightarrow b\left(u_{0}(x), D u_{0}(x)\right) \quad \text { in } L_{n}^{p^{\prime}}(\Omega) \tag{3.5}
\end{equation*}
$$

as $\nu \rightarrow+\infty$. If $v_{i v} \in\left\langle D u_{0}\right\rangle_{i \nu} \cdot y+H_{\mathrm{Der}}^{1, y}(Y)$ is the solution of (2.2) corresponding to $\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right)$, then $u_{i v}(y)=v_{i v}(y)-\left\langle D u_{0}\right\rangle_{i v} v$ may be extended by periodicity to a function in $H_{\mathrm{loc}}^{1, v}\left(\boldsymbol{R}^{n}\right)$ (see Lemma 2.1). So we can define

$$
w_{i v}^{\mathrm{s}}(x)=\varepsilon u_{i v}\left(\frac{x}{\varepsilon}\right)+\left\langle\boldsymbol{D} u_{0}\right\rangle_{i v} \cdot x .
$$

Hence by the above definitions and Lemma 2.2 we have that for any fixed i and v

$$
\begin{cases}w_{i v}^{\varepsilon} \rightarrow\left\langle D u_{0}\right\rangle_{i v} \cdot x & w-H_{100}^{1, p}\left(\boldsymbol{R}^{n}\right) \tag{3.6}\\ a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right) \rightarrow b\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right) & w-L_{n, l_{00}}^{p^{\prime}}\left(\boldsymbol{R}^{n}\right), \\ \operatorname{div}_{x v} a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{e}\right)=0\end{cases}
$$

Using the periodicity of $u_{i p}$ and the (2.4), we have also the following estimate:

$$
\begin{aligned}
\sum_{i \in I_{v}} \int_{Q_{i v}}\left|D w_{i v}^{\varepsilon}\right|^{v} d x \leqslant \sum_{i} 2^{-v_{n}} \varepsilon^{n}\left(\frac{1}{\varepsilon}+2^{v}\right)^{n} & \int_{Y}\left|D v_{i v}(y)\right|^{\nu} d y \leqslant \\
& \leqslant O \sum_{i} 2^{-v n}\left(1+\varepsilon^{n} 2^{v n}\right)\left(1+\left|\left\langle u_{0}\right\rangle_{i v}\right|+\left|\left\langle D u_{0}\right\rangle_{i v}\right|\right)^{p}
\end{aligned}
$$

where C is independent of ε and ν. Then, writing the last term as an integral over Ω_{v} we have:

$$
\begin{equation*}
\sum_{i \in I_{v}} \int_{Q i v}\left|D w_{i v}^{\varepsilon}\right|^{p} d x \leqslant C\left(1+\varepsilon^{n} 2^{n v}\right) \int_{\Omega}\left(1+\left|u_{0}\right|+\left|D u_{0}\right|\right)^{y} d x \tag{3.7}
\end{equation*}
$$

Finally, let us consider $\eta \in C_{0}^{1}\left(Q_{i v}\right), 0 \leqslant \eta \leqslant 1$ and extend it by periodicity to the whole \boldsymbol{R}^{n}.

Case $p>2$. - If φ is any $C_{n}^{0}(\bar{\Omega})$ function and $M_{\varphi}=\sup _{\Omega}|\varphi|$, then from i) we get:

$$
\begin{align*}
& \text { 8) } \quad\left|\int_{\Omega} a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right) \cdot \varphi \eta d x-\sum_{i \in I_{v}} \int_{Q_{i v}} a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}\right) \cdot \varphi \eta d x\right| \leqslant \tag{3.8}\\
& \leqslant C M_{\varphi}\left|\Omega-\Omega_{\nu}\right|^{1 / v}+\sum_{i} \int_{Q_{i v}} M_{\varphi} \eta\left\{\left(\left|u_{\varepsilon}\right|+\left|\left\langle u_{0}\right\rangle_{i v}\right|+\left|D u_{\varepsilon}\right|+\left|\cdot w_{i \nu}^{\varepsilon}\right|\right)^{p-2} .\right. \\
& \left.\cdot\left(\left|u_{\varepsilon}-\left\langle u_{0}\right\rangle_{i v}\right|+\left|D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right|\right)\right\} d x \leqq C M_{q}\left|\Omega-\Omega_{\nu}\right|+C M_{\varphi}^{p /(p-1)} \delta^{p /(p-1)}\left(1+\varepsilon^{n} 2^{\nu n p}\right)+ \\
& \quad+\delta^{-p} \sum_{i} \int_{Q_{i v}}\left|u_{\varepsilon}-\left\langle u_{0}\right\rangle_{i v}\right|^{p} d x+\delta^{-p} \sum_{i} \int_{Q_{i v}}\left|D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right|^{p} \eta d x
\end{align*}
$$

where the last inequality is obtained by applying Young inequality with $\delta>0$ and the estimate (3.7). Then by the same argument used in Lemma 2.5 to prove (2.6) we have:

$$
\begin{align*}
& \sum_{i} \int_{Q i v}\left|D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right|^{p} \eta d x \leqslant \tag{3.9}\\
& \leqslant O \sum_{i} \int_{Q_{i v}}\left|u_{\varepsilon}-\left\langle u_{0}\right\rangle_{i v}\right|^{\mid p^{\prime}}\left(1+\left|u_{\varepsilon}\right|+\left|u_{0 i v}\right|+\left|D u_{\varepsilon}\right|+\left|\left\langle D w_{i v}^{\varepsilon}\right\rangle\right|\right)^{p^{\prime}(p-2)} d x+ \\
& +\sum_{i} \int_{Q_{i v}}\left(a\left(\frac{x}{\varepsilon}, u_{\delta}, D u_{\varepsilon}\right)-a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right), D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right) \eta d x=a_{v}^{\varepsilon}+b_{v}^{\varepsilon} .
\end{align*}
$$

But applying again Young inequality with δ^{-p} and (3.7) we get:

$$
\begin{equation*}
a_{\nu}^{\varepsilon} \leqslant O \delta^{-p(p-1)} \sum_{i} \int_{\mathbb{Q}_{i v}}\left|u_{\varepsilon}-\left\langle u_{0}\right\rangle_{i v}\right|^{p} d x+C \delta^{p(p-1) /(p-2)}\left(1+\varepsilon^{n} 2^{n v}\right) \tag{3.10}
\end{equation*}
$$

On the other hand, using the fact that $\eta \in C_{0}^{1}\left(Q_{i v}\right)$ for any i, we may write, integrating by parts:

$$
\begin{aligned}
& b_{\eta}^{\varepsilon}=\sum_{i} \int_{Q_{i v}}\left(a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right)-a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right), D u_{0}-\left\langle D u_{0}\right\rangle_{i v}\right) \eta d x+ \\
&+\sum_{i} \int_{Q_{i v}}\left\{\left[\eta \eta-D \eta \cdot\left(a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right)-a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right)\right)\right] .\right. \\
&\left.\cdot\left[\left(u_{\varepsilon}-u_{0}\right)-\left(w_{i v}^{\varepsilon}-\left\langle D u_{0}\right\rangle_{i v} \cdot x\right)\right]\right\} d x
\end{aligned}
$$

where we ased also the fact that u_{e} is a solution of $\left(\mathscr{T}_{\varepsilon}\right)$ and the (3.6). The passing to the limit as $\varepsilon \rightarrow 0$, by (3.6) we get:

$$
\lim _{\varepsilon \rightarrow 0} b_{\nu}^{\varepsilon} \leqslant \sum_{i} \int_{Q_{i v}}\left|\left(a_{0}(x)-b\left(\left\langle u_{0}\right\rangle_{i v},\left\langle D u_{0}\right\rangle_{i v}\right), D u_{0}-\left\langle D u_{0}\right\rangle_{i v}\right)\right| d x .
$$

So if we first pass to the limit as $\varepsilon \rightarrow 0$, then let η converge to 1 in L^{p}, and then take the limit as $v \rightarrow+\infty$, from the above formula and from (3.8), (3.9) and (3.10), using (3.5) we obtain:

$$
\left|\int_{\Omega} a_{0}(x) \cdot \varphi d x-\int_{\Omega} b\left(u_{0}, D u_{0}\right) \cdot \varphi d x\right| \leqslant C\left(M_{\varphi}^{p /(p-1)} \delta^{p /(p-1)}+\delta^{v(p-1) /(p-2)}\right)
$$

So, letting δ go to zero, from the arbitrariety of φ we get (3.3).
Case $1<p \leqslant 2$. - In this case the proof is, with minor changes, essentially the same as in the previous case. So, instead of (3.8), now we have, using j):

$$
\begin{aligned}
\left\lvert\, \int_{\Omega} a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right)\right. &) \left.\varphi \eta d x-\sum_{i \in I_{v}} \int_{Q_{i v}} a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right) \cdot \varphi \eta d x \right\rvert\, \leqslant \\
& \leqslant C M_{q}\left|\Omega-\Omega_{\nu}\right|+\beta \sum_{i} \int_{Q_{i v}}\left(\left|u_{\varepsilon}-\left\langle u_{0}\right\rangle_{i v}\right|^{p-1}+\left|D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right|^{s-1}\right)|\varphi| \eta d x .
\end{aligned}
$$

Then, using jj) we can control the last term:

$$
\begin{aligned}
\sum_{i} \int_{Q i v} \mid D u_{\varepsilon}- & \left.D w_{i v}^{\varepsilon}\right|^{\mid p-1} \eta d x \leqslant c \delta^{2 /(3-p)} \sum_{i} \int_{Q: v}\left(\left|D u_{\varepsilon}\right|+\left|D w_{i v}^{\varepsilon}\right|\right)^{(2-p)(p-1) /(3-p)}+ \\
& +\delta^{-2 /(p-1)} \sum_{i} \int_{Q_{i v}}\left(a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right)-a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D w_{i v}^{\varepsilon}\right), D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right) \eta d x+ \\
& +\delta^{-2 /(p-1\rangle} \sum_{i} \int_{Q_{i v}}\left(a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right)-a\left(\frac{x}{\varepsilon},\left\langle u_{0}\right\rangle_{i v}, D w_{i v}^{\varepsilon}\right), D u_{\varepsilon}-D w_{i v}^{\varepsilon}\right) \eta d x
\end{aligned}
$$

and each of these terms is treated as in the previous case: The first using (3.7), the second using j) and the Young inequality, the third as b_{i}^{ε} before.

We observe that if $p=2$, then the structure condition H_{2} implies that for any $u_{1}, u_{2} \in \boldsymbol{R}, \xi_{1}, \xi_{1} \in \boldsymbol{R}^{n}$

$$
\left(a\left(x, u_{1}, \xi_{1}\right)-a\left(x, u_{2}, \xi_{2}\right), \xi_{1}-\xi_{2}\right) \geqslant c_{1}\left|\xi_{1}-\xi_{2}\right|^{2}-c_{2}\left|u_{1}-u_{2}\right|^{2}
$$

and so, with the same argument used in [18], one can prove that the problem ($\mathscr{P}_{\varepsilon}$) has a unique solution. Moreover Lemma 2.5 and 2.6 show that also $b(u, \xi)$ verifies
the same structure condition. So, also problem (\mathscr{S}_{0}) has a unique solution. Hence we may state the following

Corollary 3.2. - If $p=2$, under the same hypothesis of Theorem 3.1, for any $f \in L^{q}$ with $q>n / 2$ we have

$$
\begin{array}{ll}
u_{\varepsilon} \rightarrow u_{0} & \text { weakly in } H^{1,2}(\Omega) \\
a\left(\frac{x}{\varepsilon}, u_{\varepsilon}, D u_{\varepsilon}\right) \rightarrow b\left(u_{0}, D u_{0}\right) & \text { weakly in } L_{n}^{2}(\Omega)
\end{array} \quad \text { as } \varepsilon \rightarrow 0, ~ l
$$

where u_{0} and u_{ε} are the unique solutions of $\left(\mathfrak{T}_{0}\right)$ and $\left(\mathfrak{T}_{\varepsilon}\right)$.
Another case in which ($\mathscr{S}_{\varepsilon}$) has a unique solution, even under weaker hypothesis of f and $a(x, 0,0)$, is where $a(x, u, \xi)$ does not depend on u. In this case Lemma 2.6 shows that also (\mathscr{J}_{0}) has a unique solution. Hence by theorem 3.1 we have again

Corollary 3.3. - If $a(x, u, \xi)$ does not depend on u and verifies the structure conditions H_{1} and H_{2} and if $a(x, 0) \in L^{p^{\prime}}(\Omega)$, then for any $f \in H^{-1, p^{\prime}}$, if u_{ε} is the solution of $\left(\mathscr{T}_{\varepsilon}\right)$, and u_{0} of $\left(\mathscr{T}_{0}\right)$:

$$
\begin{array}{ll}
u_{\varepsilon} \rightarrow u_{0} & \text { weakly in } \left.H^{1, p} \Omega\right) \\
a\left(\frac{x}{\varepsilon}, D u_{\varepsilon}\right) \rightarrow b\left(D u_{0}\right) & \text { weakly in } L_{n}^{p^{\prime}}(\Omega)
\end{array}
$$

REFERENCES

[1] I. Babuska, Solutions of interface problems by homogenization, SIAM J. Math. Anal., 7 (1976), pp. 603-645.
[2] I. Babuska, Solutions of interface problems by homogenization, SIAM J. Math. Anal., 8 (1977), pp. 923-937.
[3] A. Bensoussan - J. L. Lions, - G. Papanicolau, Asymptotic methods in periodic structures, North Holland, 1978.
[4] L. Boccardo - F. Murat, Homogéneization de problèmes quasilinéaires, Proceedings of the Meeting «Studio di problemi limite dell'Analisi Funzionale», Bressanone, 1981; Ed. Pitagora, 1982.
[5] L. Carbone - C. Sbordone, Some properties of T-limits of integral functionals, Ann. Mat. Pura Appl., 122 (1979), pp. 1-60.
[6] E. De Giorgi - S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., 8 (1973), pp. 391-411.
[7] N. Fusco - G. Moscariello, An application of duality to homogenization of integral functionals, Memorie dell'Acc. dei Lincei, 17, I (1984), pp. 361-372.
[8] D. Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order; Springer, 1977, second ed., 1983.
[9] P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., (4) 117 (1978), pp. 139-152.
[10] P. Marcellini - C. Sbordone, Homogenization of non uniformly elliptic operators, Ap. plicable Analysis, 68 (1978), pp. 101-114.
[11] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), pp. 489-507.
[12] U. E. Raitum, On the G-convergence of quasilinear elliptic operators with unbounded coef. ficients, Sov. Math. Dokl., 24 (1981), pp. 472-475.
[13] E. Sanchez Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics 127; Springer, Berlin, 1980.
[14] P. Suquet, Plasticité et homogéneization, Thèse, Paris VI, 1982.
[15] L. Tartar, Topics in nonlinear Analysis, Publ. Math. d'Orsay, 13 (1978).
[16] L. Tartar, Homogéneization et compacité par compensation, Séminaire Schwartz Exposé, n. 9 (1978).
[17] L. Tartar, Oonvergence d'operateurs differentiels, Proceedings of the Meeting "Analisi Convessa e Applicazioni», Roma, 1974.
[18] L. Tartar, Oours Pecot, Collège de France, partiellement rédigé par F. Murat, \boldsymbol{H}-convergence, Séminaire d'Analise Fonctionnelle et Numérique de l'Université d'Alger, 1977-78.
[19] N. S. Trudinger, On the Comparison Principle for Quasilinear Divergence Structure Equations, Arch. for Rat. Mech. and Anal., 57 (1974), pp. 128-133.
[20] Zhikov-Kozlov-Oleinik-Khat'en Ngoan, Averaging and G-convergence of differential operators, Russian Math. Surveys, 34 (1979), pp. 69-147.

