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ON THE HOMOLOGICAL DIMENSION
OF A DER-FREE HYPERSURFACE

E. BACKELIN

Abstract.

Let 2 be a germ of an analytic hypersurface in C" at the origin. Let D(2) denote the left ©,-module of
holomorphic vector fields which are tangent to 2. We say that Q is a Der-free hypersurface if D(Q) is
afree 0,-module. See [Saito]. We define R(£2) to be the subalgebra of 9, generated by @, and D(). In
this paper we calculate the homological dimension of this ring when € is a Der-free hypersurface.

In the following module resp. ideal means left module resp. left ideal. Global
homological dimension means left dimension. However, since we only consider
noetherian rings, the left and right homological dimensions coincide.

Der-free hypersurfaces and rings of tangential operators.

Let 0, denote the ring of germs of holomorphic functions at the origin in C" and
Der¢(0,) the set of C-linear derivations on 0,. Der.(¢,) has a natural ¢,-module
“structure and a Lie algebra structure. For he0,, let Q = {h(z) = 0} be the
corresponding (germ of) a hypersurface in C". Let D(2) denote the set of
tangential vector fields to Q. Thus D(Q) = {©; @ € Der¢(0,) and O®he 0,h}. D()
has a natural @,-module structure and is a Lie sub algebra of Derc(¢,). We shall
say that Q is a Der-free hypersurface if D(Q) is a free ¢,-module.
Note that if Q = {h(z) = 0} is Der-free, then ranke (D(£2)) = n. This follows
easily from the inclusions (where d; = 0/0x;)

Ohd;, + ... + 0,hd, c DQ) < 0,0, + ... + 0,0,.

For a submodule D of Der¢(?,), denote by R(D) the subring of 9, generated by
0, and D. Here 2, is the ring of differential operators with coefficients in @,. If
D = D(Q) for some (not necessarily Der-free) hypersurface Q, we shall write R(£2)
instead of R(D). It is called the ring of tangential differential operators to Q.
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0, is identified with the ring C{x,,...,x,} of convergent power series and we
shall often use notations such as C{x,,...,X,; @y,...,0;} (or 0,{Oy,...,04})
for R(D) when @,,..., O, generates D over 0,.

ReMARKS. Every smooth hypersurface is Der-free, being analytically equival-
ent to {x, = 0}. Every irreducible curve is Der-free. An interesting example of
a singular Der-free surface in C? is constructed as follows: Regard C* as the set
{(x1, %2, X3, X4); X1 + ... + x4 = 0}. The group Sym(4) acts on C* by permuting
the coordinates. Let Y = X be the union of the hyperplanes stabilized by Sym (4),
ie. Y= cicjsa{xi = x;}. Let n:C?> — C*/Sym(4) be the quotient map. By
Chevalley’s theorem C3/Sym(4) =~ C3. The singular locus of © is Y. n(Y) is the
Der-free hypersurface called the swallowtail.

If an irreducible hypersurface is Der-free it is called a free divisor. These sets are
studied by [Saito], they occur in singularity theory and have been studied in
several papers.

If a Der free hypersurface Q = {h = 0} is a hyperplane arrangement, i.e.
h = a,-... o where the o;s are linear forms, Q is called a free arrangement. For
instance, the arrangement {x, *... x, = 0} is free and so are all reflection arrange-
ments (e.g. the arrangement Y above). Most arrangements are not free: If Q is an
arrangment of k hyperplanesin C",k > n = 3, Q will be non-free with probability
1. See the book [Orlik-Terao] for the theory of hyperplane arrangements.

Our goal is to calculate the homological dimension of R(®). In [Bjork 3] the
homological dimensions of several rings of differential operators are determined.
However, only rings which can be generated by a finite set of commuting vector
fields are treated there. This example shows that theorem 1.1 below does not
follow from the results in [Bjork 3]:

Let h=x} —x3,Q@={h=0} c C2. Then D(Q) = 0,(3x,0; + 2x,0;) +
0,(3x%0, + 2x,0,), so Q is a der-free curve. I claim that if O, =10, + f,0,,
6, = g,0, + ¢,0, is any O,-basis of D(), then [@,,0,] + 0.

Let m be the maximal ideal in 0, It is easy to see that f}, 5, g, g, € m. By Saitos
criterium [Saito] we have f,g, — f,9, = e-h, where e is a unit in O,. Since
hem?\m?, either f,g,em?\m? or f,g; em?\m3. WLOG f,g, em?\m3. Thus
fi,g2em\m?

A straightforward calculation using the conditions @;he(h), i = 1,2, shows
that (WLOG) fy = x, + fi, fo = 2/3)x; + axy +Jy, 91 = 3¢/2%1 + 1, ga =
bx, + cx; + g,, where a, band ceC, b — 3ac/2 + 0,1}, /3, G, and §, € m2. Then
[6,,0,] = (1/3)(b — 3ac/2)x,d, + “some vector field with coefficients in m>2”.
Thus [@,,0,] * 0.

1.1 THEOREM. If Q is a Der-free hypersurface, then

gl.dim (R(Q)) = 2n — m(Q),
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where m(L) is the dimension of the vector space {©(0); @ € Der(R2)}. Here @(0) is
the tangent vector at the origin of the given vector field ©.

ReMARK. If Q is smooth, we can assume Q = {x, = 0}. Then D() has the
O,-basis 04,...,0n-1, X,0p. Thus, m(Q) =n — 1 and gl.dim (R(Q)) =n + 1 by
theorem 1.1. If Q is not free I believe that gl.dim (R(2)) = oo, but I cannot prove
this.

LEMMA. Let Q:= {h(z) = 0} be a Der-free hypersurface in C" and m = m(Q) the
integer defined in Theorem 1.1. There exists an O,Basis @,,...,0, for D(Q)
satisfying (in an appropriate system of coordinates):

1) @;=0;12i<m

(2) 0, =fi,m+lam+l + ... +ﬁ,nan; m+12iZn

(3) f;je Oy isindependent of x,, . . ., X, and f;(0) = 0 for every double index in (2).

Proor. The proof goes by induction on n. If n = 0 there is nothing to prove.
Suppose the lemma holds for all Der-free hypersurfaces in C¥, for k < n.

We can assume m = 1, since the lemma trivially holds when m = 0. Pick
de D(R2) such that 6(0) + 0. After a biholomorphic map we may assume that

h C ..
0 = 0;. Then ~——§k + € O h for every k which implies that the germ h is independent
X1

on x;. If h = h(x,,...,x,) then it folows that

D(Q) = 0,0, + 0, ®o,_,D(),

where 0,_; = C{x,,...,x,}, @ is the Der-free hypersurface h~(0)n C" ! in
C"~!, By the induction hypothesis (1 — 3) holds for D(£2') and the result follows.

Filtered rings.

Let us recall a few basic facts from the theory of filtered rings. Proofs and details
may be found in [Bjork 2, Appendix 3]. Let R be a ring equipped with a positive
(increasing) filtration {I7;}. If the associated graded ring grp(R) is noetherian we
shall say that R is filtered noetherian. This implies that R is noetherian. From
now on R denotes a filtered noetherian ring.

Let M be a finitely generated and filtered R-module. The filtration {M,} on
M is said to be good if the associated graded module gr(M) is a finitely generated
grr(R) module. The grade number of M is defined by

Je(M) = inf{i: Extiy(M, R) % 0}.

(If all these Ext groups vanish we put Jg(M) = —o0.) Obviously, Jg(M) =
gl.dim(R) for any R-module M.
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1.3 PROPOSITION. We have gl.dim(R) < gl.dim(gr(R)). Further, if grp(R) is
commutative and has finite homological dimension, then for every finitely generated
R-module M and any good filtration {M,} on M one has:

Jr(M) = Jgr (r) (8T (M)).

The two following lemmas generalizes well-known properties of 2, [Bjork 2;
chapter 1].

1.4 LEMMA. Let Q be a Der-free hypersurface and put D = D(Q2), R = R(Q). Let
©,,...,0,be an O,-basis of D. Then the elements {@% = OF' ... - Oi"} 420 form
a basis of the ©,-module R.

PrOOF. We shall prove that the elements {©@3} are independent over ©,. An
element in P is considered as an element in 9,. Write P = ) 5 <, f30". Then, o(P),
(fs # O for some |B| = k) the principal symbol of P is defined to be the element
Y= fs TP€0,[T,,..., T,] = gr(2,), where T, = a(0)).

It is not hard to see an (,-linear dependence Z,,lék £,0% = 0, implies that
Z|,|=1‘f.0(@f) =0.

Now, if ©;=Y f;0;, then o(@) =Y f;T; and 0(0%) = fi; )"
(£, T)*~. By the assumption, D is free, so det( fij) ¥ 0. Thus, by means of
elementary algebra, the polynomials {(}. f3; T))** ... (O fu;i T)* "}t = are lin-
early independent over 0,. Thus g, = 0 for all multi-indices « of length k. An
induction over k shows that g, = 0 for all a. Thus, the elements {©2} are
independent over 0,.

It is left to the reader to verify (using the fact that D is closed under the Lie
bracket) that the elements {©@3} generate R.

1.5 LEMMA. Suppose D := D(Q) has a basis ©, such that (1-3) in 1.4 holds. Put
R = R(R). Then
() T =Y)usi 0% ... @2, f,€0,, defines a filtration on R such that
grr(R) = @n[ﬁl;- LR} én]'

(W) Zi =)o i faOImrr-. .- 0%, f:€0,{0,,...,0,}, defines a filtration on R
such that

gl'};(R) = @n{al" .. ’am}[€m+ ) ERRR) én]

Here’s the &;’'s are commutative variables. By definition, &; corresponds to the image
of O, in I'y/T' under these isomorphisms.

PROOF. Let us prove (ii). {Z;} defines a filtration on R. Because, by 1.4, we have
UZ} = R and it follows from standard rules of commutations that 22 i
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To avoid confusion we shall denote the Lie brackets on R, resp. on gry (R, by
[, drresp. [ Jarymy

Put &; = (O; + I'y)/Tp,m + 1 < i < n. The fact that D is closed under [ , ]z,
implies that [;, &;]gr,m) = 0

Also, it follows from our assumption that ©; and d; commutes when i > m and
j £ m. This implies that, for g,€0,, [9,07' ... 0%, ©Jr < O {01,...,0m}.
Therefore, [I'[0], &1 ,r) = 0,and it follows that the ;s lie in the center of gry(R),

It is left to the reader to verify (use 1.4) that the &is are independent com-
mutative variables over 0,{d,..,d,}.

The proof of (i) is similar.

PrOOF OF THEOREM 1.1. We keep the assumptions in 1.5.
Proof of gl.dim(R) = 2n — m. Define the ideal

I=Rxp+y+...+Rx,+ ROy +...+ RO, + ROpyy + ... + RO,

It is left to the reader to verify that I is a proper ideal in R.

Give R the filtration {I';} in 1.5 (i). Note that gl.dim(gr(R)) = 2n. Give R/I the
induced (good) filtration {(R/I),:= (I, + I)/I}.

Then gr(R/I) is isomorphic to a non zero quotient of @,,, as a gr(R)-module,
because it is generated as a complex algebra by the image of @, in gr(R/I). This
implies that the Krull dimension d, (x)(gr(R/I)) < m.

Since gry(R) is a commutative regular and noetherian ring the following
formula is well known [Matsumura, page 135]:

Jye (@1 (R/D)) = gl.dim(grr(R)) — dg;, (R)) — dge,(r)(8T (R/T)).

Thus Jy, &)(gr(R/1)) = 2n — m. By 1.3, Jg(R/I) 2 2n — m, and so gl.dim(R) =
2n — m. Proof of gl.dim(R) £ 2n — m. Give R the filtration {Z;} in 1.5 (ii).

We claim that the homological dimension of gr, (R) equals 2n — m. This
follows from a familiar theorem of Rees [Rotman, 248-249] if we can prove that
gl.dim 0,{0,,...,0n} =n.

The fact that gl.dim(0,{0,,...,0,}) = nis proved by induction on n. If n = m,
gl.dim(0,{0;,...,0m} = 2.) = m,by a theorem of Bjork [Bjork 1,88-92]. Thus,
for an induction step, assume that n > m and that gl.dim(0,-,{0,...,0n}) =
n—1.

Notice that 0,{dy,...,0n,} has finite homological dimension (the standard
filtration and 1.3). Moreover, x,, is a central element which is a non-unit and a non

zero divisor in 0,{0,,...,0,} and we have
0,01, s Om}/(Xn) = Op_1{04,...,0m}
We can now apply the theorem of Rees to establish

gl.dim(C,{0y,. .., 0m)) = gldim({dy,. .., 0n}) + 1.
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This finishes the induction. Thus, gl.dim(grs(R)) =2n — m and so, by 1.3,
gl.dim(R) < 2n — m.
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