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ON THE HOMOLOGY OF ASSOCIATIVE ALGEBRAS

DAVID J. ANICK

ABSTRACT. We present a new free resolution for k as an G-module, where G
is an associative augmented algebra over a field k. The resolution reflects the
combinatorial properties of G.

Introduction. Let k be a field and let G be an associative augmented fc-algebra.
For many purposes one wishes to have a projective resolution of k as a G-module.
The bar resolution is always easy to define, but it is often too large to use in practice.
At the other extreme, minimal resolutions may exist, but they are often hard to
write down in a way that is amenable to calculations. The main theorem of this
paper presents a compromise resolution. Though rarely minimal, it is small enough
to offer some bounds but explicit enough to facilitate calculations. As it relies
heavily upon combinatorial constructions, it is best suited for analyzing otherwise
tricky algebras given via generators and relations.

Since several results we get as consequences of the main theorem have been
obtained before through other means, this paper may be viewed as generalizing
and unifying several seemingly unrelated ideas. In particular, we are generalizing
Priddy's results on Koszul algebras [12], extending homology computations by
Govorov [9] and Backelin [3], and complementing Bergman's methods regarding
the diamond lemma [6].

Three results may be of interest. The homology of the modp Steenrod algebra is
given in terms of the homology of a new chain complex smaller than the A-algebra
in Theorem 3.5. Formula (16) offers an efficient algorithm for the determination of
Hubert series, and Theorem 4.2 asserts the existence of new bounds on the torsion
groups of commutative graded rings.

1. Definitions and the main theorem. Throughout this paper, k denotes
any field and G is an associative fc-algebra with unity. The field k embeds in G
via n: k ^-> G and we suppose that G has an augmentation, i.e., a fc-algebra map
£ : G —> fc for which n is a right inverse. S denotes a set of generators for G as
a fc-algebra and k(S) is the free associative fc-algebra with unity on S. There is
a canonical surjection /: k(S) —> G once S is chosen, and the augmentation e is
determined once we know e(x) for each x G S. In particular, this means that k{S)
may be augmented such that / becomes a map of augmented algebras.

To S we associate a function e: S —> Z+ called a grading. In the absence of a
more compelling choice we often take e to be grading by length, i.e., e(x) = 1 for

Received by the editors May 23, 1983 and, in revised form, February 22, 1984. This paper
was the subject of an invited one-hour address in Boulder, Colorado, during the week-long AMS
summer program on Combinatorics and Algebra, June 1983.

1980 Mathematics Subject Classification (1985 Revision). Primary 16A62; Secondary 13D03,
55S10.

©1986 American Mathematical Society
0002-9947/86 $1.00 + $.25 per page

641

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



642 D. J. ANICK

ail x G S. e extends uniquely to a map of monoids e: B —► Z+ U {0}, where B is
the free monoid generated by 5, and makes k(S) ss Span(B) into a graded algebra.
We do not necessarily assume that G inherits this gradation.

With the goal of selecting a vector space basis for G, let <o be a total ordering
on the set S. We may define a total ordering on the monoid B by setting x <
y if e(x) < e(y) and by resorting to the lexicographic ordering induced by <o
when e(x) — e(y). Because < restricted to S need not equal <o, we maintain the
distinction between them. We say that (5, e, <0) is locally well-ordered if and only
if e-1 (n) fi S is well-ordered under <o for each n. An important special case occurs
when e-1 (n) D S is finite for each n, and then we describe (S, e, <o) as locally finite.
It is a simple exercise to show that (B, <) is well-ordered if and only if (S, e, <o) is
locally well-ordered.

For u,v G B, we say v is a submonomial of u and write v C u if and only if
v = 1 or u = X{i ■ ■ ■ Xit and v = x¿m ■ • ■ x¿, for some 1 < m < s < t and Xij G S.
"Submonomial of" is a partial ordering on B and we say that a subset M Ç B
is an order ideal of monomials (henceforth abbreviated "o.i.m.") if and only if
u G M and v Ç u imply v G M. The following lemma generalizes Lemma 1.1 of
[1]. The proof is obtained by extending the proof in [1] from ordinary to transfinite
induction.

LEMMA l. 1. Let (S, e, <o) be locally well-ordered and f : k(S) —» G a surjection
of k-algebras. The set M — {x G B \ f(x) £ Spa.n(f(y) \ y < x)} is an o.i.m. and
the elements f(x) for x G M form a basis for G as a k-module.

Given any o.i.m. M in a free monoid B, define the set of obstructions for M to
be V — Vm = {v G B \ v £ M but u ^ v implies u G M}. Clearly u ^ v and
u, v G V cannot occur, i.e., V is an antichain in B.

LEMMA 1.2. For M an o.i.m. in a free monoid B, x G B — M if and only if x
contains as a submonomial some obstruction v G Vm-

PROOF. That v G Vm and v Ç x imply x £ M is clear since v $ M. Conversely,
for x £ M, let v be a submonomial of x of minimal length such that v £ M. Proper
submonomials of v belong to M, hence v G Vm-

Thus an o.i.m. in B uniquely determines its obstruction antichain and any an-
tichain V uniquely determines an o.i.m. M Ç B for which V = Vm- The correspon-
dence between order ideals and antichains is actually valid on any partially ordered
set having only finite descending chains. We may combine Lemmas 1.1 and 1.2 to
describe a "straightening law" for G. Let M be the o.i.m. of Lemma 1.1 and call
a monomial x admissible if and only if x G M. For any x G B — M, f(x) may be
expressed as a linear combination of /-images of smaller (in the sense of <) mono-
mials and uniquely as a linear combination of /-images of admissible monomials.
In particular, the obstructions may be so expressed. Conversely, suppose we know
for each v G Vm how to write f(v) = Eiemkd ^/f1)' where cvx G k and for
every v almost all cvx are zero. Any y G B — M must equal uvw for some v G Vm
and u, w G B, so we may write f(y) as a linear combination of /-images of smaller
monomials, f(y) = Yl,xeMx<vCvxf(uxw)' an(^ aPPty this procedure recursively to
each summand until we have f(y) equaling some linear combination of f(M). Since
(B, <) is well-ordered, this procedure must terminate after finitely many steps, and
the resulting linear combination is unique because f{M) is a basis.
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Our next objective is to show that the obstructions may be combined into a free
G-resolution of fc. First we select certain sets of monomials which will comprise the
free G-basis. Let V be any nontrivial (i.e., 1 ^ V) antichain in the free monoid B
on a set S. For n > 1, u = Xit ■ ■ ■ z¿t G B is an n-prechain if and only if there exist
integers a, and bj, 1 < j < n, satisfying

(a) 1 = ai < ai < bi < a$ < bi < • ■ ■ < an < bn-\ < bn = t and
(b) Xia. • • • Xib. G V for 1 < j < n.
Conceptually, an n-prechain is a sequence of n not necessarily different elements

of V, the end part of each monomial overlapping with the beginning part of the
next. We also require that each monomial intersect only its immediate neighbors.
The n-prechain x^ ■ ■ ■ x¿t is an n-chain if and only if the integers {aj, bj} may be
chosen so as to satisfy

(c) Xi1 ■ ■ ■ x¿a is not an m-prechain for any s <bm, 1 < m < n.
For formal reasons it is convenient to define a 0-chain to be any element of 5, a

(—l)-chain to be the minimal monomial 1 G B, and to let bo,b-i be the integers
1 and 0 respectively. A 1-chain is precisely an element of V because ax = 1 and
bi = t mean by (b) that X{1 ■ ■ ■ x¿t G V.

Some examples will help make clear this notion of n-chain. Suppose V is the
singleton {x3}, x G S. Then x3 is a 1-chan (ai = 1 < i>i = 3) and x4 = ,xxx,x,'
viewed as two overlapping copies of x3, is a 2-chain (ai = l<02=2<i>i=3<
bi = 4). X6 — .z'xxxxz.is a 3-chain (1<2<3<4<4<6) but x5 = ,xxxxx, is not
a 3-chain because it would violate bx < a^ ■ x7 =,xxx.xxxx,is a 3-prechain but not a
3-chain because, as we have already noted, the submonomial x6 is a 3-chain. Here
x7 = .x'xxXxxx' is the only 4-chain, x9 is the unique 5-chain, and in general x3n is a
(2n - l)-chain while x3n+1 is a (2n)-chain.

As a second example suppose V — {x2yxy,xyxy2}. Then x2yxy2 = x'xyxyy'and
xxyxyxyy1 are 2-chains but there are no n-chains for n > 3.

LEMMA 1.3. Let B be the free monoid on S, and suppose V Ç B is any
nontrivial antichain. If n > 1 and u = x^ • • • Xjt is an n-chain on V, then the
integers {aj,bj} fulfilling (a)-(c) above are uniquely determined. In particular,
there is a unique s = bn-X < t such that x¿t ■ • • z¿4 is an (n — l)-chain, and for this
s, Xii+l ■ ■ -Xit does not contain as a submonomial any element ofV.

PROOF. Suppose {üj,bj} and {a',&'•} could both serve in (a) and (b) above for
some u = x¿j • • ■ x¿(. Then each bm — bm, or else the larger one would violate (c).
That am = a'   follows because x¿„    • • • x¿.    and x¿ ,   • • • x¿k    must both lie in the

"6 am °m arn °m

antichain V. Properties (a)-(c) are clearly inherited by x¿t • • • x¿6    for 1 < m < n.
For U a subset of B, let Uk denote the fc-submodule of k(S) spanned by U. For

G a fc-algebra and M as in Lemma 1.1, Uk ® G ("®" means "®fc") has as a basis
U = {u ® f(x) | u G U, x G M}. When no confusion can result we denote the
element u ® f(x) of U by u ® x.

Define a partial order on U by writing u ® x < u' ® x' if and only if ux < u'x'
in B. We will be interested in U when U is the set of n-chains on the antichain V.
In that case ux — u'x' is impossible by property (c) unless u = u' and then x = x',
so < becomes a total order on U. When w — £?=1 Cj(uj <E>Vj) G Uk ®G with
Cj G k — (0), Uj G U, Vj G M, we say that ux <g> vx is the high term of w if and only
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if q — 1 or u\ (g> v\ > Uj <g> Vj for ail j ^ 1. Such a situation will also be denoted

We now factor the augmentation into the picture and prove the main theorem.

THEOREM 1.4. Let G be an associative augmented k-algebra, generated as a
k-algebra by the locally well-ordered set (S,e,<o). Let M be the o.i.m. of Lemma
1.1, let V be the set of obstructions for M, and let V^ be the set of n-chains on
V. Then there is a free G-resolution of k,

(1) 0^-k^G^Sk®G^Vk®G^ V™k g G & V^k ® G <-
in which

(2) 6o(x ® 1) = x - rie{x)

for x G S and for n > 1,

(3) 6n (xit ■ ■ ■ xibn ® l) = x¿1 • ■ • xibn_i ® xibni+1 ■ ■ ■ xibn + u,

where HT(uj) < X{i ■ ■ ■ X{b   if w ^ 0.

PROOF. We must define ¿>n and show that (1) is exact. Exactness at G follows
because eêo = 0 and ker(e) is spanned by {y — ne(y) \ y G G}. If y = /(x^ • ■ • x¿J,
x¿! • • ■ x¿( G M, set

¿o(y - rje(y)) = x¿1 ®x¿2 •••x¿, -l-e^Kx»., ®x¿3 ■••XiJ
+ • • • + e(x¿, ■■■xit_1){xit ®1).

Then ¿o extends to a fc-module map ¿o: ker(e) —> Sk®G with énio = idker(£)- This
means that im ¿o = ker(e).

The sequence (1) may be rewritten, including n and z'o, as
e=i_i «o

(4) O^fc   ^   VÍ-^fcigG^V^fcoGÍí-V^^igiG^V^^OG^-.

Suppose inductively that for some n > l,{6j} have been defined satisfying (2) or
(3) for 0 < j < n and that the sequence (4) has been proved exact to the left of
T/(n-i)£ 0 q Suppose further that there are fc-module splittings ij : ker(éJ_i) —»
V^'fc ® G for 0 < j < n satisfying

(5) Sjij = idkerCij-O

and

(6) flTit^w)) = HT(w).
These properties hold for j = 0, so it suffices to verify them for j — n when they
hold for j < n.

First we define 6n. As 6n is to be a G-module map, we need only specify 6n(u® 1)
for u G V^. By Lemma 1.3 we may uniquely write u = rs, where r G V'n_1^ and
s G M. Consider én_i(r®s) = 5n_i(r) -s. Writing u = Xix ■ --x^, we have by the
inductive assumption

6n-x{r)-s= (xil---xlbri2 ®xibn_2 + 1   ■■Xibn_l) (xibni + 1---xlb) +w
(7) / v

= Xi1---xibn 2 ®/^i,n_2+1---xibnJ + W,
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where HT(uj) < u. Since x¿6 _ +1 •••Xibn has the obstruction x¿0n •••x%bn as a
submonomial, however, the entire right-hand side of (7) has high term less than
it. Inductively a — in-\8n-\(r ® s) has been defined, implying that 6„_i(cr) =
on-ii? ® s) while by (6) HT(a) < u. Define 6n(u) to be

¿n(u® 1) — r ® s — o.

Then 8n fulfills formula (3) and 6n-i6n(u ® 1) = 0.
The splitting in — ker(<5„_i) —► V^k®G is defined recursively, so it is here that

we make use of the fact that (B, <) and consequently {V^n~l\ <) are well-ordered.
Suppose

03 = Z^'W ® V3t G ker(6«-l),

that ui ® îii is the high term of w, and that in(uj') has been defined and satisfies
(5) and (6) for u/ G ker(¿n_i) with HT(oj') < uiV\. Because u G ker(¿n_i) we
must by (3) have HT(6n-i(ui 0 vx)) < uxvx.   Writing ux = Xil---Xib _    and
Vl = **kn_j + l ' ' ' xi»>

HTÍxí, ■••*<,;_, ®/(^!.n_2-n •"S-i^-i+i '"Xis)) <um'

which can only happen if x¿6 +1 ■ • ■ x¿3 contains some obstruction. Letting x¿a • ■ ■
x¿. be the obstruction contained in x¿k .,••:!» which starts furthest to the
left, we must have 6n_2 < an < bn-X < bn, which makes x^ • • • x¿6 an n-chain.
Furthermore, y — x,ön+i ••'Xi, is a submonomial of i>i G M, so y G M. This shows
that

T = x¿1 ■■■xlbn ®yGV{n)k®G.

By (3), Ui 0 iii is the high term of 6n(r), so w' = w - Ci¿n(r) G ker(é„_i) while
HT(ijj') < uiv\. Define ¿„(w) by

¿n(w) = cXT + in(uj').

Then (6) is fulfilled and 6nin(u/) = Ci6n(r) + u>' = w. The fc-linearity of z'„ is
automatic. This completes the recursive step in the definition of in. In particular,
6n is onto ker(6„_i), i.e., the sequence (4) is exact at V*(™_1)fc0G.

We wish to specialize Theorem 1.4 to the case of connected graded fc-algebras.
An augmented fc-algebra G is a connected graded k-algebra if and only if there
are fc-submodules {G„}n>o such that G « $™=0 G„, where Go = im(n) w fc,
ker(e) = ©^Lj Gn, and (Gm) ■ (Gn) Ç Gm+n. An element x G G is homogeneous
if and only if x G Gn for some n, in which case we write |x| = n. We have already
alluded to the fact that H = k(S) is graded, with Hn — Span{x G B | e(x) = n}.
Since any graded algebra has generating sets consisting of homogeneous elements,
we will always assume when G is graded that |/(x)| = e(x) for x G S. Then the
surjection /: k(S) —► G is a map of connected graded algebras, i.e., |/(x)| = n
whenever |x| = n.

Since each x G B is homogeneous in AT = fc(S) and the {Gn} are linearly inde-
pendent, f(x) G Span{/(y) \ y < x, y G B} if and only if f(x) G Sp&n{f(y) | e(y) =
e(x) and y < x, y G B}. In other words, not only does the o.i.m. M of Lemma
1.1 consist of homogeneous elements in the graded case, but also the straightening
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646 D. J. ANICK

law for any obstruction is homogeneous. If v G Vm and f(v) = Y^x&Mx<v °vxf{x),
then cvx = 0 for e(x) ^ e{v). The fc-modules V^k and consequently V^k 0 G
inherit gradings from that of H. These observations allow us to deduce the graded
version of Theorem 1.4, which we state without further proof.

THEOREM 1.5. If G is a connected graded k-algebra, then each homomorphism
in the exact sequence (1) is a homomorphism of graded G-modules. In particular,
the right-hand side of (3) is homogeneous, with \u>\ — \xil\+ ■■ ■ + \xibn\.

2. The diamond lemma revisited. We take up here the practical matter
of determining the set of obstructions for an algebra given in terms of generators
and relations. The differential 6i in (1) is shown to reflect the process of resolving
overlap ambiguities discussed in [6]. We also observe that the obstruction set is
recursive for a locally finite graded algebra.

Many authors have studied algebras from the point of view taken here, which
variously emphasizes normal form for elements, straightening laws, or unambiguous
reduction. We adopt [6] as our primary reference. Given an o.i.m. M Ç B and its
obstruction antichain V, with B the free monoid on the locally well-ordered graded
set (5, e, <o), we can identify Mfc with a unique quotient G of fc(5) if we have a
function r: V —► Mfc such that t(x) G Span{y G M \ y < x}, and such that r
has no overlap ambiguities. The latter condition requires that repeated application
of the maps given by uvw \-+ ur(v)w for v G V and y »-► y for y G M stabilizes
pointwise at something we call hT, and that hT(x) is independent of the order or
choice of maps. Recursively, this is equivalent to requiring whenever X{1 ■ ■ ■ X{b2 is
a 2-prechain, that

hT (Xi1 - ■ ■ Xia3_1r (x¿02 • • • Xib/¡ )) = hT (T \Xi1 ■ ■ ■ Xibi ) Xibi + 1 • ■ ■ Xibi¡ J.

The use of an antichain for V eliminates the possibility of inclusion ambiguities,
which would otherwise also occur (see [6]).

In our context, we can immediately relax the requirement for r from being
ambiguity-free on 2-prechains to 2-chains. For suppose the reduction scheme hT
defined by r is unambiguous on 2-chains, and let w = x¿, • • • Xib2 be the smallest
2-prechain for which

«l =T(xi1---Xibi)xibi+1---xib2    and    u3 = xit ■ ■ ■ xiai_1T(xia2 ■ ■ ■ xibj)

are straightened differently. Since w is not a 2-chain, there is a 2-chain w' =
Xi1 ■ ■ ■ X{, with s < bi and we let r be the index for which X{T ■ • ■ x¿é G V. w" =
x¿r • • • Xib   is also a 2-prechain and w" < w, so

hT (t (Xir •• • Xi,) Xi,+t • ■ • Xib2 ) = hT [Xir ■ ■ ■ Xia2_ 1 t (x¿a2 • • • Xib2 J).

Note that ui = x¿, • • ■ x¿r_tT(x¿r • • • x»,)xí.+i ' • ■ Xib2 and u¡ are both spanned by
monomials lower than w, so hT is uniquely defined on each of them. In particular,

hT{u2) = hT(xi, •■•xir_1hT {r(.xÍT---Xi,)xi,+1 ■••xib3))

= hT (Xjj • • • Xjr_1AlT [Xir ■ ■ ■ Xic¡2_1T \Xia2 • • ■ Xib<¡ )))

= hT(u3),

and likewise hr(ui) = hT(u2). Consequently hT(ux) = ^(^3), contradicting our
choice of w.
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HOMOLOGY OF ASSOCIATIVE ALGEBRAS 647

When S is locally finite, we review next an algorithm for finding or approximating
the obstruction set V, given that G is the quotient of k(S) by the finite or countable
relation set {pi}i>\. Write each relation in the form pi = n — £}/=i cijrij< where
ri,rij G B, Cij G k, and r¿ > rij for all i and j; it simplifies matters to assume that
the {pi}i>\ are arranged such that ri < r2 < r$ < • ■ ■. We will construct a sequence
{Vn,Tn} of antichains Vn Ç B and functions r„: Vn —> Mnk, where Vn = V(m„) as
in Lemma 1.2, and rn(v) G Span{x G Mn \ x < v} for each v G Vn. From a set
theoretic standpoint, we think of {rn} as functions from a subset of B to a subset
of Bk, hence as subsets of B x Bk.

Begin the algorithm by setting Un = {r¿ | e(r¿) = n} and f (r¿) = ]C/=i cijrij e
Bk. Let (Vb,To) be empty.

Suppose (Vn,Tn) has been constructed and has the property that rra defines a
unique reduction scheme hTn: {x G B \ e(x) < n} —> Bk and furthermore that
/(x - hTn(x)) — 0 on this set, where /: k(S) = Bk —► G is the canonical surjec-
tion. (When rn is empty, hTn is defined by hTn(x) = x for all x G B.) To define
(Vn+i,Tn+i), start with (V,t') = (V„,rn) U (Un+i,T \un+1)- Let w be the least
monomial (in the sense of <) if any for which hT'(w) has two possible values yx and
2/2 • To resolve the ambiguity, treat y\ - y2 as a new relation in adjoining its high
term y to V, and define r'(y) in accordance with the requirement that hTA[yx — Î/2)
become zero. Repeat this step until hT> has no ambiguities in degrees < n + 1.
Only finitely many steps will be needed, as the local finiteness of S guarantees that
only finitely many monomials are involved at this stage. Take Vn+i to be the set of
minimal (in the sense of Ç) monomials in the final V, and r„+i to be the reduction
scheme hTi obtained from the final r'. Because of the descending chain condition on
(B, <), the membership of the {Vn} and the functions {t„} must stabilize pointwise,
i.e.,

(V,r)= H   \J(Vn,rn)
m>l n>m

is the set of obstructions together with a straightening rule for G. A word of
warning: when x G Vn, there is no assurance that x will ultimately appear in V,
since it may be undercut by having some proper submonomial fall in Vm for m> n.
The most we can say in general is that the set B — M, consisting of those monomials
which contain some obstruction as a submonomial, is recursively enumerable.

An algebra G has solvable word problem relative to the generating set S if and
only if, when /: k(S) —» G is the canonical map and x,y are any two elements of
k(S), there is an algorithm for deciding whether or not /(x) = f(y). Assuming that
S is at most countable and has been given a locally finite grading, the associative
fc-algebra G clearly has solvable word problem relative to S if the set of obstructions
is recursive, and the converse is true over finite fields fc. The converse is also true
for a group ring k(P) if S consists of a set of generators for P and their inverses,
since fc(P) has solvable word problem if and only if P has solvable word problem in
the group theory sense. Whether or not a solvable word problem implies a recursive
obstruction set for arbitrary algebras over infinite fields remains open. For graded
algebras, however, we have a complete answer.

THEOREM 2.1. Let (S, e, <o) be any locally finite ordered graded set, and sup-
pose p = {pi}i>i is a finite or countable set of homogeneous elements in k{S).
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648 D. J. ANICK

Suppose further that \px\ < \pi\ < ■ ■ ■ and that G is the quotient of k(S) by the two-
sided ideal p generates. Then the obstruction set for G is recursive. In particular,
G has solvable word problem relative to (S,e, <n).

PROOF. When G is graded, the nth stage in the above procedure generates and
resolves ambiguities in degree n only, and this does not affect Vn or r„ in degrees
< n. If x G S has e(x) = m, then x G V if and only if x G Vm. Thus we can decide
in finitely many steps whether or not x G V.

We wish to observe that the process of resolving overlap ambiguities, which
obtains from a 2-chain either a new obstruction or (if there was no ambiguity) zero,
is reflected in the map ¿2 of (1) from 2-chains to 1-chains. Although this is true in
general, it is clearest and most useful in the connected graded case, so we restrict
our attention to that situation. In the process we shall give explicit formulas for
the algorithm of Theorem 2.1.

By omitting the term "fc" and tensoring the sequence (1) over G with fc we obtain
the chain complex

(8) o^k^skhvkhv^khv^k^---.
We seek to calculate the map ¿2 explicitly. To do this, we first need to define several
simple homomorphisms among the graded vector spaces Bk, Mk, and Vk.

Define p: Bk®Bk —> Bk to be p{u®v) = uv. Let B = B — {1} and note that the
splitting ¿0 : ker(e) —► Sk 0 Mk <—> Sfc 0 Bk which occurs in the proof of Theorem
1.4 extends easily to io'- Bk —> Sk® Bk, where io{xilXi2 ■ ■ -x¿t) = x¿t 0x¿2 ■ • -x¿4.
Take /: Bk —> Mk to be the straightening map Bk -^ k(S) —» G —> Mk, so
/I Mk — id(Mfc)- Define ho,h\,h: Bk —> Vk 0 Bk by

,  /  \      ( w 0 1    if w GV,
hoiw) = \ 0 otherwise,

and
L 1   \      \ v ®u   if w = vu with v GV and u G B,

[ 0 otherwise,

and h{w) = ho{w) + hx(w) for w G B.   Lastly, set /l = p o (/ 0 1) o hi, fh =
p o (f 0 1) o h, fR = p o (1 ® /) o ¿0, /0 = fR o fL, and /0 = fR o fL.

We seek 61, we know ¿>rj, ana we note that

ii(»8u) = (8i(v 0 l))u = (i0(v - f(v)))u
- (1 0 /) o io{vu - f(v)u).

In view of the proof of Theorem 1.4, we need next a formula for the splitting
ii : ker(éo) -> Vk 0 G » Vfc 0 Mk.

LEMMA 2.2. Define j: 5fc0Mfc -> Vfc0Mfc by j{x®y) = J2n>oho(fo)n(xy)-
Then j\ ker(¿0) eQua^s the splitting ¿1 : ker(¿>o) —► Vk 0 Mk described in the proof of
Theorem 1.4.

PROOF. First, we note that /o(w) for u G B is spanned by monomials strictly
lower than u, so /n is pointwise nilpotent and the infinite sum converges. Now let
w G ker(¿o) and suppose we have shown that j(w') — ii(w') for w' G ker(¿o) when
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HT(w') < HT(w). Let x 0 y be the high term of w, occurring with coefficient
c G fc - (0), and let wo — w - c(x 0 y). We know that h(xy) ^ 0 so write
h(xy) = v 0 u. Using the inductive assumption and definition of i\,

ii(c~1w) = v 0 u + ii(c~1w — 8i(v 0 u)) = v 0 u + j(c~1w — 6i(v 0 u))

= v®u + j(c~1wo + x®y- x®y + (10/)¿o/u(/0 í)h(xy))

- v 0 u + j(c~1w0 + iofo{xy))

= h(xy)+j(c-1w0) + E Hfo)nfo(xy)
n>0

= j{c-lwo) + E Kh)n{xy) = j{c-lw),
n>0

as desired.

LEMMA 2.3.   For y G V(2),

^ ® 1) = £ M/oHid -/fi)(î/)-
n>0

PROOF. First observe that hfo(v) — 0 when v GV. This follows because

hfo{v) = hfnuif 0 l)(w 0 1) = hfRf(v) = hf(v) G h(Mk) = 0.
So hfo = hfo, and

M/o)n = Hfoph)n = (hfop)nh = {hfop)nh = h{foph)n = h(f0)n,
and then

J = E ft(/o)nM = E fe(/o) V-
n>0 n>0

Using this and the definition of 6i,

6a{yQl)=Hv)-ii6i{h(y))
= h(y) - Y^ h{fo)nfR{y) + E Hfo)n(fo)(y)

n>0 n>0

= - E KhTÎRiv) + Ky) + E M/o)n+1(2/)
n>0 n>0

= EM/or(id-/n)(y),
n>0

as claimed.
From Lemma 2.3 we deduce at once that with <52 as in (8),

(9) fc(y) = E>(/o)n(id-/Ä)(y)
n>0

for y G V^2\ an extremely useful closed form.  Let us see how this relates to the
algorithm of Theorem 2.1.

First we wish to simplify the infinite sum in (9). Let 7: Bk —» Bk be given by
-7(11;) = w — phi(w). Set Ç = 7 + fi and 0 = fR o c. In words, the map ç instructs
us to leave any monomial alone unless it properly contains an obstruction in the
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leftmost position, in which case we straighten that obstruction. The composition
6n tells us to alternate repeatedly between that operation and the operation which
straightens any obstructions except those in the leftmost slot. Monomials not left
fixed by 9 are sent to linear combinations of strictly smaller monomials, which
means that the sequence 6,62,93,- ■■ stabilizes pointwise. Let £ = limn^oo6n.

LEMMA 2.4.   If y G im(/ñ) -I- im(phi) C Bk, then
n oo

hoOn(v) = E M/o)m(y)    and    hot(y) = E M/o)m(y).
m=0 m=0

PROOF. Note that /o7 = 0, that /zrj7 — ho, and for y G im(fR) + im(phi) that
0{y) — (fo + i){y). On the subspace im(fR) + im(phi), which is fixed by 6, /o, and
7, we have

6n = (/o + 7)" = /o" + 7/o _1 + l2fo~2 + ■ ■ ■ + 7",
from which

ho6n = ho(foT + M/o)n_1 + • ■ • + ho.
Letting n —> co yields the latter formula.

When y is a 2-chain, we automatically have y G im(phi) and fR(y) G im(fR),
so (9) can be rewritten as

(io) 82(y) = Mi(v) - */*(»))■
Suppose for some n > 1 that we have found the set Vn of obstructions of degree

< n, along with their straightening rules rra : Vn —> Mnk, where Mn — {x G B | x
has no v G Vn as a submonomial}. This information suffices to compute z =
£(y) ~~ Ç/rÎv) f°r any 2-chain y having e(y) = n + 1. The connection with the
algorithm of Theorem 2.1 is made by observing that j/i = £(y) and 2/2 = í/«(y)
are two possible outcomes of the reduction scheme hTri applied to y. Although we
cannot calculate 8i(y) = ho(z) if we do not yet know what the obstructions of degree
n + 1 are, we do know that f(z) = 0 because /c = ffi = ffR = fO = /£ = /.
This says that "2 = 0" expresses a linear relation valid in G among the monomials
in M'n = {x G Mn I e(x) = n + 1}, just as we knew in the algorithm that yi — 1/2
should be viewed as a new relation. We have given an explicit formula for what
we mean by resolving the ambiguity presented by a 2-chain, and we see that the
formula comes directly from the differential ¿2 of (8).

In practice one can continue as follows. Applying the function £ - £fR to each
Í 2Ïdegree n + 1 2-chain in V„ , one obtains a set Di of relations, valid in G, among

Mn. Applying £ to any of the original relations {pi} which have degree n +1 yields
another set Di of relations in Mnk. When the subset Di U L>2 of Mnk is row
reduced to standard row echelon form, the set V n M'n of degree n + 1 obstructions
together with their straightening laws may be read off at once.

A final point of interest lies in an outline for an alternate proof of the diamond
lemma for graded rings. How can we be sure that all of the obstructions are
uncovered by the algorithm of Theorem 2.1? The alternate proof begins with the
observations that v — f(v) belongs to the ideal generated by p = {p¿} for any v G V
and that a subset of p, namely the minimal relations, can be identified with a basis
for Tor^fc, fc) « (ker¿i)/(im¿2)- If we include also one relation from p for each
nonminimal generator in 5, a subset of p serves as a basis for im(¿i) ©Tor^fc, fc) «
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Vk/(im6~i). Vk is spanned by a subset of p and im(<$2). Any obstruction can be
obtained either from p or from p and im^). Since we have seen that 61 coincides
with the process of resolving ambiguities, this is the desired conclusion.

3. Applications. The free resolution (1) is naturally suited for determining the
homology of fc-algebras. This section is devoted to several disparate results along
those lines. After noting that a finite obstruction set renders each homology group
finite over fc and generalizing a condition which assures Tor¿ (fc, fc) = 0 for i > 3, we
specialize to graded algebras. We obtain a bound on the ranks of the doubly graded
homology modules for G in terms of those for an associated monomial algebra. We
outline a method for simplifying Hubert series calculations. Lastly, we present a
simpler than usual chain complex for computing the homology of the Steenrod
algebra.

By the homology of an augmented fc-algebra G we mean the fc-modules
{Tor¿ (fc,fc)}¿>o, where the augmentation gives both the right- and left-actions
of G on fc. When each homology group of G is a finite-dimensional vector space
over fc, the Poincaré series of G is the formal power series

00

PG(y) = E Dimfc(Torf (fc, k))y< = ! + ■■■.
i=0

There is no guarantee in general that the Poincaré series exists, i.e., that all
Torp(fc, fc) are finite over fc. When it does exist, various properties such as its
growth rate, rationality or irrationality as an analytic function, and connection to
other series can be studied to yield information about G. A series l^^Lo0«0"
will be said to have exponential or slower growth if and only if there are constants
ci,C2 > 0 such that C2(ci)n > an > 0 for all n.

When 5 is a locally well-ordered set of generators for G and the set V of obstruc-
tions is finite, the set of n-chains on V is obviously finite for each n. Since these
sets form a fc-module basis for the chain complex obtained when the resolution (1)
is tensored over G with fc, we have at once

LEMMA 3.1. If the obstruction set V for the k-algebra G relative to the locally
well-ordered generating set (S, e, <n) is finite, then Tor¿ (fc, fc) is finite-dimensional
over k for all i > 2. // in addition S is finite, then G has a Poincaré series with
exponential or slower growth.

An interesting special case of Lemma 3.1 occurs when G is finite-dimensional
over fc. Using other methods, Govorov fully analyzed this case in [9].

When V is finite, the algorithm of §2 for successively approximating the ob-
struction set must stop yielding new obstructions after finitely many stages, and
conversely if this happens at stage m when

m > sup({e(rt) 11 > 1} U {2e(v) - 1 | v G Vm}),

then all obstructions have been found. A delightful example is a variation on one
suggested by Warren Dicks. Let G = k(a,b)/(ababa - aba), where the notation
signifies that the quotient ideal is generated by the single element (ab)2a - aba.
Automatically ababa or a subword belongs to V. The two distinct ways of re-
ducing the overlap ambiguity abobaba yield hT((ababa)ba) = hT(ababa) = aba and
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hT(ab(ababa)) = hT(ababa) — aba, so there are no further obstructions or ambigui-
ties, i.e., V = {ababa}. V^ is the singleton {a(ba)^3n+1^2^}, brackets signifying
the greatest integer function, so each Torf(fc, fc) for i > 2 has dimension zero or
one. The actual Poincaré series, however, depends upon our choice of augmentation,
and we give here only the answers. When e(a) = e(b) — 0, PG(y) = V + (1 — y)~l'■
When e(o) ¿ 0, but e(b) = 0, PG(y) = -y2 + (1 - y)"1; and when e(ab) = 1,
Pa(y) = l + y.

Another way to restrict the size of V(") is by imposing combinatorial conditions
on V. For (S, e, <o) locally well-ordered and x G k(S) - (0), write x = YlT=r cAi
Ci ̂  0, bi G B distinct. The monomial 6, is the high term of x if and only if bj > 6¿
for 1 < i < m. In [1], a set {a¿} of monomials is defined to be combinatorially
free if and only if o¿ % üj for i ^ jf and uo¿ = ajV cannot happen with u,v G B
and |u| < \aj\. The following theorem generalizes Theorem 3.2 of [1] in view of [1,
Corollary 2.12].

THEOREM 3.2. Suppose G = fc(5)/(a¿), where (S,e, <o) is locally well-ordered
and {o¿i}i£i is any indexed subset of k(S) — (0). Letting a¿ be the high term of ai,
suppose the set A = {a¿}¿e/ is combinatorially free. Then V = A and if e: G —» fc
is any augmentation, Tor¿ (fc, fc) = 0 for i > 3.

PROOF. The combinatorially free condition is precisely equivalent to the nonex-
istence of inclusion or overlap ambiguities among the {o¿}. By [6] we have V = A.
Since any 2-chain would violate the condition uai ^ ajV, V^ and consequently
V(") are empty. The conclusion follows from Theorem 1.4.

We henceforth suppose G to be a connected graded fc-algebra. There are graded
free G-resolutions of fc (as in Theorem 1.5), so each of the homology groups
Torf (fc, fc) is itself graded. Denoting by Tor^g(fc, fc) the degree q component of
Torp (fc, fc), we define the (double) Poincaré series of G to be

PG(y,z)=  E  Dimfc(Tor£g(fc,fc))y*V.
p,g>o

When G is generated by a locally finite graded set (S,e), each V^"^fc is a locally
finite graded fc-module, so the double Poincaré series automatically exists; this has
traditionally been deduced also from the bar resolution.

The simplest graded algebras from a combinatorial standpoint are those whose
ideal of relations is generated by monomials on a set of generators S. If p Ç B is
any subset, then clearly x G B — M if and only if v Ç x for some v G p. Thus
V is precisely the antichain of all minimal (in the sense of C) monomials in p. In
particular, #(V) < #(p). Monomial algebras, as algebras with monomial relations
are sometimes called, are distinguished by the property that /: fc(5) —» G « Mk
has /(x) — x for x G M and /(x) = 0 for x G B — M. From this we deduce

LEMMA 3.3. Let G = k(S)/(p) be a monomial algebra, where p Ç B is a
set of monomials on S, and let e(x) — 0 for all x G S. Suppose S contains no
superfluous generators, i.e., S Dp is empty. Then V — {v G p\ no uG p is a proper
submonomial of v} and in the resolution (1),

(11) on [Xii ■ ■ ■ Xibnj = Xi1 • ■ ■ £¿(,nl 0 Xibn_i + l ■ ■ ■ Xibn.

In particular, Torf (fc,fc) sa V'1-1)fc as graded k-modules for all i > 0.
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PROOF. Tracing the construction in Theorem 1.4 under these circumstances, we
find inductively that (11) holds and that the splitting in: ker(5„_i) —> V^k 0 G
is given by

In [Xi1 ■ ■ ■ xibni  0 Xibni + 1 ■ ■ ■ Xibn ■ ■ ■ Xisj  — Xit X{bn 0 Xibn + 1 ■ ■ ■ Xit

when Xib +1 • • ■ x¿, and consequently Xib +1 • • • xts belong to M. In view of (11),
all differentials reduce to zero after tensoring over G with fc.

Monomial rings were considered by Govorov [8] and Backelin [3]. Backelin
computed the Poincaré series of monomial algebras by constructing a free left G-
resolution of fc which is equivalent in every way to our right resolution (1) with
differential (11). He used this resolution to show that the double (in fact, (#(5)+l)-
variable!) Poincaré series of a finitely generated monomial ring represents a rational
function if the set of relations is finite.

Even when G is not a monomial ring, we can use the resolution (1) to obtain
bounds on Tor^g(fc, fc). As usual, let V be the set of obstructions for G and M
the o.i.m. which serves as a basis. V being a set of monomials, we define the ring
k{S)/{V) to be the associated monomial ring to (G, S, e, <o). We call the graded
fc-algebra A = A(G) "an associated monomial ring" to G if it equals k(S)/(V) for
some choice of locally well-ordered generating set (S, e, <o) for G.

LEMMA 3.4. Let G be a connected graded k-algebra with a locally finite set of
generators (S,e,<o). Let A(G) be the associated monomial ring to (G,S,e,<o).
Then PG(y,z) < PA(G){y^z)> inequality holding coefficientwise.

PROOF. This is immediate from Theorem 1.5 because by Lemma 3.3, the degree
q component of V^'^k is Tor^jf^fc, fc).

We shall return in §4 to this idea of using a monomial ring's Poincaré series to
bound that of an arbitrary graded ring.

When j4(G) is an associated monomial ring to G, the same o.i.m. M serves as a
basis for G and for A(G), so in each degree their dimensions over fc coincide. Once
again we may summarize this information in a series: writing a graded fc-module
N as N = N0 © iVi © N2 © • • -, the Hubert series of A^ is

HN(z) = E Dimk(Nn)zn,
71=0

defined if each Nn is finite over fc. For G a connected graded algebra, HG(z) exists
if and only if G has a locally finite set of generators. In view of [1, Lemma 1.2] we
always have coefficientwise inequality

HG(z) < ( 1 -
V x€S

so Hilbert series of finitely generated graded algebras have exponential or slower
growth. Rephrased, our previous observation about associated monomial rings may
be written

(12) HG(z) = HA(G)(z)

when either side is defined.
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When HG exists, a well-known connection between Hubert and Poincaré series
is deduced from a minimal G-resolution of fc,

(13) O^fc*-G^C/10G^f/2®G^[/30G

in which Ui sa Torf(fc, fc) as graded fc-modules.   Because G is locally finite, the
alternating sum

(14) £(-1)^(3)./M*)
¿=0

is defined, and because (13) is exact it equals Hk(z) = 1. The sum (14) is quickly
rewritten as

oo oo

HG(z).   J2(-lYJ2Dimk(Tor^(k,k))z3
¿=0 j=0

yielding

(15) HG{z)-PG{-\,z) = l.

In view of (12) and (15) and Lemma 3.3 applied to A(G), we may write

i

(16) HG(z) = i-E(-i)n#vW*)
71 = 0

where V is the obstruction set for G relative to (S, e, <o). This offers a surprisingly
efficient algorithm for computation of Hilbert series. Given a connected graded
algebra G via a locally finite generating set (S, e, <o) and homogeneous relation
set p, first determine the set of obstructions of degree < m by the methods of
§2. Then form all n-chains on this set for n < m, count the number in each
degree up to m, and take an alternating sum of the resulting power series. HG(z)
agrees with the formal inverse of the result in degrees not exceeding m. Although
it appears elementary, this can be a very good way of calculating or checking a
Hilbert series, especially for algebras with few relations. For example, it simplifies
the total amount of work needed to verify the transcendental Hilbert series of the
"Shearer-type" algebras listed in [2, Theorem 5].

Lastly, we consider situations in which, for various reasons, the obstruction set
behaves particularly well. Suppose (S, e, <o) is locally finite and the obstruction
set V consists entirely of quadratic monomials. Then any n-chain has length n + 1.
If the length grading on S is compatible with the grading of G, then V(n)fc is
concentrated in degree (n + 1), and 6n must reduce to zero after tensoring over
G with fc. Consequently Tor pq(k,k) = 0 for g ^ p; this is one of the equivalent
conditions for G to be a "Fröberg" or "Koszul" algebra [5, 12], about which many
results are known. The condition we have given here is also the right-module version
of the PBW condition described in [12], so we shall not elaborate on it further.

Let us turn our attention to Ap, the Steenrod algebra mod p. One of the special
properties of Ap is that it has a basis consisting of admissible sequences, and in our
terminology the admissible sequences form an o.i.m. Therefore the obstruction set
is precisely known.
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The Adem relations provide us with the obstruction set and straightening rules:

[a/21 ih-t- l\
(17) (p = 2)    Sqa Sq6 = E       a _ 2t       Sq°+6_t Sq*    tf ° < ^

t=o
i2(18a) (p > 2) ß* = 0

[o/p]

(18b) p»p6=E(-l)a+í((P_1)(*    ¿)     Mp^-'P'    ifa<p6,
t=o \ a    P J

pagpb _  V^ (_l)a+t I \P~ l)(fr      *)       1 \  apa+b-tpt

(18c)

+     £    (-l)a+t    (P ~ _   t_[ ~       P'+o-tßpt   if a < p6.
t=o V      a    p /

In order for these to be proper straightening rules in the sense of §1, we must order
the set of generators such that the left-hand monomial of each equation exceeds the
terms on the right. When p = 2, this necessitates taking Sq1 >o Sq2 >o Sq3 >o • • •
and when p > 2, P1 >o P2 >o P3 >o ■ • • >o ß- This is a good example of a
situation in which it pays to have (5, e, <o) be locally well-ordered but not well-
ordered.

We could proceed at once to apply Theorem 1.4, but we note first that half the
generators when p = 2 can conveniently be omitted. Using Sq2m+1 = Sq1 Sq2m,
(17) becomes

Sq2m Sq" = £ ( \m *~1 ) Sq2"*6-* Sq4
t=o

-*£,{£-£)"*"«

b-todd

+ E   t':,;h*-tM«.2m-2t
0<t<m     \
b—t even

b-t-,1Sq1 Sq2m Sq6 = Sq3m+1 Sq6 = £ ( 2m-2t + 1     Sq2m+1+i,-t Sq4

(19b) /   h    t     1    \

0<t<m    V /
6—te ven

the simplification in (19b) arising because a binomial coefficient representing even
choose odd is always even. When b-t is even, moreover, (^m-it) and (im~-2t+i)
have the same parity, which implies that (19b) is obtained by multiplying (19a) on
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the left by Sq1 and using (Sq1)2 = 0. Thus (19b) is a superfluous relation and (17)
may be replaced by
(20a)

Sq2* Sq2fc = Sq1    T       * " * ~J     Sq2^2^"1 Sq1 Sq4"1

(20b)

(20c)

2a+26-t Sq*    if a < 26,

Sq^Sq'Sq2^    V        f° ~ f      Sq2^2^1"4 Sq1 Sq4"1

2a+2b-tSqt    ifa<26.

In order to use (20) as our straightening rules, take 5 = {Sq1} U {Sq2a | a > 1},
ordered by Sq2 >0 Sq4 >0 Sq6 >0 • • • >o Sq1.

In view of the similarity between (18) and (20), we let ß denote Sq1 and P% denote
Sq2* when p — 2. Whether p is even or odd, we may write 5 = {ß} U {P1 | i > 1}
with e(ß) = 1 and e{P%) = 2(p - l)i. Whether p is even or odd,

V = {ß2} U {PlP3 | i < pj} U {PlßP3 | i < pj}

and consequently
y(n-l) = {ßny u |pll ßa, pl2 ß„2 . . . ßan., pln   | ffj _ q Qr t     ^ < „. +pij+1}.

Theorem 1.4 yields at once

THEOREM 3.5. Let p be any prime and set k = Z/pZ. Let Uq = k, Ux = Sk,
and for n > 2 Un = V(n_1'fc, with S and lA™-1' as above. Then there exists a
chain complex

(21) ...a?S*Un**Un_l*S*...?ïUo^o
of graded k-modules such that

(Hi(Ut,dt))j^ToT^(k,k).
Our claim that (21) is smaller than the usual A-algebra is based on the fact

that we have gotten by with a smaller set of generators, e.g., Priddy [12] used
S = {P* | i > 1} U {ßPi | i > 0}. y(n_1) is smaller than its counterpart in
the usual basis in that the "spikes" ßsPllßai ■ ■ ■ Pln, where s > 0, have been
eliminated. Hopefully Theorem 3.5 will be of use for actual homology calculations.
A word of warning: in spite of the apparent similarity between the p = 2 and p
odd cases, formulas (18) and (20), which determine the differentials {dn}, are very
different.

Finally, the multiplication in Ext^'*(fc, fc) (or comultiplication in Tor„p(fc, fc))
can be obtained from (21) using Sjodin's analysis of the way in which the Yoneda
product is calculated from an arbitrary projective resolution [13].
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4. A bound on the homology of commutative graded rings. We turn
our attention now to commutative graded algebras. We shall prove a precise analog
of Lemma 3.4. Combining this with a result due to Backelin, we obtain a bound
on the range of internal degrees in which an algebra's homology may be nonzero.

Let R be a finitely generated commutative connected graded fc-algebra. Because
R is Noetherian, each Torp (fc, fc) is finite-dimensional over fc, and this means that
for each p > 0, Torp^j (fc, fc) can be nonzero for only finitely many q. The connect-
edness of R assures that Tor^ (fc, fc) — 0 for p < q, but in general infinitely many
Tor^p(fc, fc) can be nonzero. Unless R is regular, Torp (fc, fc) / 0 for all p, hence

qo(p,R)=snp{q\TorRq(k,k)^0}

is well-defined. We seek a bound on q0{p,R).
The number qo(l,R) is the highest degree of any generator which belongs to a

minimal set of generators for R, and likewise qo(2, R) is the maximal degree of a
minimal relation. ço(3, R) can be interpreted as a bound on the complexity of the
syzygies among the relations of R, and some estimates exist for it (e.g., see [10]).
The behavior of qo{p, R) for p > 4 has up to now remained largely unknown. Our
goal here is to prove for every nonregular R that qo{p,R) is at most linear in p.

We proceed in a manner analogous to that of Lemma 1.1. Although in this
paper we postponed commutative rings until last, historically Macaulay [11] an-
alyzed the commutative situation long before the noncommutative situation was
even considered. The ideas we recall next inspired our earlier results rather than
vice versa.

Let (S, e, <o) be a finite totally ordered graded set of homogeneous generators for
R as a fc-algebra. Let N denote the nonnegative integers, write S = {xi,..., xm}
with Xi <o Xj if i < j, and let C = Nm. Let g : fc[xi,..., xm] —> R be the surjection
and write xa for x"1 • • • x^*" in fc[xi,..., xm] when a = (ati,..., am) G C. G is a
monoid under addition and e: G —> N is given by e(a) = aie(xi) +-1- ame(xm)
if a = (e*i,..., otm). We adopt Macaulay's reverse lexicographic ordering G: for
a = («!,...,am) and ß = (ßi,...,ßm), set a < ß if |a| < \ß\. When |a| = \ß\,
set a < ß if and only if otj > ßj for some j while a¿ = /3¿ for i < j. This ordering
makes (G, <) isomorphic as an ordered set with the natural numbers.

Write aAß if and only if xa divides x® in fc[xi,... ,xm]. The relation A is a
partial ordering on C and aAß if and only if ß = a + 7 for some 7 G C. Note that
for any 7, a < ß implies a + 7 < ß + 7 and aAß implies (a + 7)A(/? + 7).

Macaulay set L = {a G C \ g{xa) <£ Spa,n(g(x13) | ß < a)} and observed that
{g{xa) I a G L} is a fc-basis for R. Furthermore, a G L and ßAa imply ß G L.
Define the (commutative) associated monomial ring to R relative to (5, e, <o) to be
the quotient ring A = k[xi,..., im]/[i^ | ß <£ L]. Because the images of xa, a G L,
are a fc-basis for A, Ha(z) = HR{z), an analog of (12). We prove next an analog
of Lemma 3.4.

LEMMA 4.1. Let (S,e, <o) be a finite ordered graded set of generators for the
commutative connected graded k-algebra R, and let A be the associated monomial
ring. There is a spectral sequence starting with Tor, „(fc,fc) and converging to
Tor, ,(fc, fc). In particular,

Bimk(TorRq(k,k)) < Dimk{TorA<g(k,k))
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for each p and q. Equivalently, we have coefficientwise inequality in PR(y,z) <
Pa(v,z).

PROOF. Let R+ = Ri © R2 © R3 © ■ • • = ker(e: R -> k) and let
(22) 0 do^° k dl^° R+ £ R+ 0 R+ £ R+ 0 R+ 0 R+ £• ■ ■ ■

with
n-l

(23) dn(ui 0 • • • ®un) = E(_l)J_lui ® " ' ® Wjtty+i 0 •• ■ ®un
j=i

be the chain complex obtained from the bar resolution, where

Tor^„(fc, fc) sa ker(dp)/im(dp+i).
Taking C, g, L, A, as above and L+ — L - {(0,..., 0)}, let wa = g(xa) for a G L,
so {u)Q(1) 0 • • • 0 wa(n) I a(¿) G L+} is a basis for (R+)®n. Set Wn = {R+)®n and
for a G G,

Wn,Q = Span{uiQ(1) 0 • • • 0 toQ(n) | a(i) G L+, a{x) +-h Q(n) = a}.

Note that Wn = 0a€C7 Wn,a for each n.
For a,ß G L, consider the product waWß in R.  If a + ß G L, then wawp —

g(xa)g(xß) = g(xa+ß) = wa+ß. Ifa + ß^L, then

WcxWß = g{xa+0) G Span{g(x7) | 7 < a + ß}

= Span{u;^ | 7 G L,7 < a + ß}.

Furthermore, a + ß G" L if and only if xa+ß is zero in the commutative associated
monomial ring A. Summarizing, we have
(24) { WaWß = Wa+ß    if xCix<3 = Xa+ß m A'

\ wQWß G Span{u>-, | 7 G L, 7 < a + ß}    if xaxß = 0 in A.
The key observation for the proof is that (22) is filtered as a chain complex by

C. Let Fntß = Ç&a<0 Wn,a. lfw = wa{1) 0 • • • 0 wa(n) G Wn,ß, then
7»-l

dn{w) = ^2,(-l)3~1Waw 0  ■■■®Wau)Wau + 1) 0  •••®lüQ(n),
3=1

and in view of (24), each summand belongs to Fn-Xß. Since (G, <) is isomorphic to
the natural numbers, the filtration {-F»,*} gives rise to an ordinary spectral sequence
of graded fc-modules converging to H*(W*, d*) — Tor» „(fc, fc).

To recognize the initial term of the spectral sequence,  note that it equals
H,(W*,d»), where

71-1

dn{w) = E(-l)J~lw«(1) ®---®»(w<*uvu>au+1-))® ■■■®wain),
3=1

and
I \ _ J  Woc+ß     if WaWß = Wa+ß in R,

P(wa,wß) - j 0 if WaW/j G Span{^ \1<a + ß}inR.

In view of (24) and (23), (W»,dt) is isomorphic to the chain complex which is like
(22) but is obtained from the bar resolution for A instead of R. The initial term of
the spectral sequence is precisely Tor» „(fc,fc).
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THEOREM 4.2. Let R be a nonregular commutative Noetherian connected
graded k-algebra. There exists a constant c = c(R) such that p < qo(p,R) < cp
for all p > 0.

PROOF. Letting A be the commutative associated monomial ring relative to
some finite generating set (S, e, <o), we have qo(p, R) < qo(p,A) for each p by
Lemma 4.1, so it suffices to prove the result for commutative monomial rings. Back-
elin [4] has recently shown that any commutative Noetherian connected graded ring
whose ideal of relations is generated by monomials has a rational double Poincaré
series. In particular, it has the form

for some integers {apq} almost all zero, where m = #(5). Let

c(A) = sup{l; q/p | apq ^ 0} < co.

Formal expansion of the right-hand side of (25) shows that a nonzero term bpqypzq
in Pa(v,z) — 1 must have q/p < c — c(A) and consequently qo(p, A) < cp, as
desired.
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