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Although several authors have been interested in the Hilbert
scheme Hilbd(Pz) parametrizing finite subschemes of length 4
in the projective plane ([11], [12], [ ], [F2], [Br] among
others) not much is. known about the topological properties of this
space. The Picard group has been calculated ([F2]), and the
homology groups of Hilb3(P2) have been computed ([H]). In this
paper we give a precise description of the additive structure of
the homology of 'Hilbd(Pz), applying thevresults of Birula-
Bialynicki ([B1], [B2]) on the cellﬁllar decompositions defined by
a torus action to the natural action of a maximal torus of SL(3)
on Hilbd(Pz). A rather easy consequence of the fact that this
action has finitely many fixpoints is that the cycle maps between
the Chow groups and the homology groups afe isomorphisms. In
particular there is no odd homology, and the homology groups are
all free. The main objective of this work is to compute their
ranks: the Betti numbers of Hilbd(Pz).

As a byproduct of our method we get‘simiiar results on the
homology of the punctual Hilbert scheme and of the Hilbert scheme

of points in the affine plane.



eems natural o generalize our results to any toric

]
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swmooth surface. However, we give the :esulgs only for the .
rational ruled surfaces L2 with an indicatibn of ihe necessary
changes in the procfs.

For simplicity we work over the field of complex numbers, but
with an appropriate interpretation of the word “homology" our

results remain valid over any base field.

Let P? be the projective plane over €. For any positive
integer d, let Hilbd(Pz) dencte the Hilbert‘scheme parame-
trizing finite subschemes of P? of length 'd. If &? denotes
the complement of a line in P2, let Hilbdﬁﬂz) denote the open
subschemé of Hilbd(Pz) corresponding to subschemes with support
in A2, Furthermore let Hilbauaz,O) be the closed subscheme of
Hi1b%(a2) parametrizing subschemes supported in the origin,

For any complex variety X, let H,(X) be the Borel-Moore
homology of X (homology with locally finite supports). By the
i-th Betti number bi(x) we shall mean the rank of the finitely
generated abelian group Hi(x). Let yx(X) = Z(-T)ibi(x) be the
Euler-Poincaré characteristic of X. As usual, A*(X) is the Chow
group of X, and cl:A (X)— H_(X) is the cycle map (see [Pu] ch.
19.1). |

If m and n are non-negative integers, let P(m,n) denote
the number of sequences n>by?b;?...?b, = 0 such that Zbi = M.
If n»>m, then P(m,n) = P(m), the number of partitions of m. Let

P{m,n) = 0 if m or n is negative,



(1.1) Theorem. (i) Let X denote one of the schemes Hilbd(mz),
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ﬂllba‘QQ), or Hilb {(&4,0). Then the cycle map cl:A*(x) > 2, X)

is an isomorphism, and in particular the odd homology vanishes.

Furthermore, both groups are free abelian grouvs.

(1) by, (51167 (R2)) = ) ] Plp.dy-p)P(d,)P(2d,-x,r~d,)

-

and x(Eilb%(@?)) = ] 2(a,)rpia,)p(a,).

(iv) bzp(Hilbd(Az,O)) = p(k,d-k) and y(Hi1b%a2,0)) = B(4).

Remark. The Betti numbers of Hilb®{P?) were determined bv A.

Hirschowitz ([H]). In table 1 we have listed the Betti numbers of

Ai1bd(P2) for 1<d&<i0.

k 0 1 2 3 4 5 6 7 8 2 10
d

] 1 1

2 i 2 3

3 1 2 5 6

4 1 2 © 10 13

5 1 2 6 12 21 24

6 1 2 & 13 26 39 47

7 1 2 6 13 28 4 74 83

8 1 2 6 13 29 54 24 13t 150

9 i 2 6 13 29 56 105 167 232 257
10 i 2 6 13 29 57 110 188 298 395 440

Table 1.

The Betti numbers bzk(Eilbd(PZ)} are listed for 14d<i0 and
O<k<d. For d<k<2d = dim Hilb®(®?) the number b, (Hilb%(P2))

given by Poincaré dualityv.

.
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(1.2) Corollary. {(Briancon; [Br] v.3.3.) ai1b%(@Z,0) is irre-

ducible.

Proof. By a result of Gaffnev-Lazarsfeld (see [Ga] or [I2] theorem
2), any irreducible component of Hilbd@%z,ﬂﬁ has dimension at
least d-1. Prom {(iv) of theorem (1.1) it follows that
bék(Hilbﬁ(Az,O)) =1 if %k = d-~1 and 0 if %k>d-1. The corollary

follows from [Fu] lemma 19.1.1. l

Let S denote the graded zéalgebra freely generated by
CyeoeesCyqr c%;e@.,cé and gg,.,.,cgm} where the degree of ¥y ci

a3

and c; is 1. Dencte by = the graded part of 5 of degree k.

(1.3) Corollary. If 2k<d, then b, (Hilb®(B2)) = rk,s, .

Proof. Assume 2k<d. Let dgs diy dzg p and r be indices such
that the corresponding term in the expression for bzk(Hilbd(@z)}
in (1.1) part {(ii) is non-zero. Then P{Zdzmrir=d2}$0 and rwdzéﬁg
Therefore p = k—diwrék-&1“d2 and hence
2p<2k—2d]w2&2<d42dim2d2éﬁo. Thus p<dy~p and P(p,dgup) = P{p).

We may therefore write

b2k(H11b§(P2)) = 3 P{§)P(dz§5€kmdimp)
P,d,
where B(j) = ] P(2m~j,j~m). This completes the proof since the
m

Hilbert function of Z[ci,cggme@] is P{3j) and that of

zlbz,c3,...] is B(3). | | o

The reason for giving this corcllary is the following. Let

m:Z—*‘Hilbdépz) be the universal family and let ¢:7-— P? be the



* . "
natural map. Then €, = 7_0 092(1) are vectorbundles of rank 4

bt

Y. P ‘ . . - .
on EHilb*{P<). The Chern classes of Eqe Ei and F are natural
. . o - . G | .
candidates for alcebria generators of the Chow ring of Hilb =2y,

One. verifies that c](:q) = zc](El)wci(Eﬁ)g The zlgebra S there-
£

. . . - - - o T ey s

fore maps surjeciively conto the subalgebra of A (Hilb (P<)

rated by the Chern classes of the [;'s. The corollary can thus be

regarded as evidence for the following conjecture

{(1.4) Conjecture. AT (Hi1p® (®2)) is generated as a Z-algebra by

the Chern—-classes of GEg, E1 and E,.

We end this secticn by recalling two results which are
fundamental for this work.

.

Following Fulton ([Pu] example 1.9.1) we say that a scheme X

a

has a cellullar decomoosition if there is a2 filtration

-

X=X, 22X , 2..2X; 32X, = @ by closed subschemes with each

-1

a disjoint union of schemes U,. isomorphic to affine

Xi—X. lj

i-}
spaces A 3. The Uij's will be called the cells of the decom-

position.

(1.5) Proposition. Let X be a scheme with 2 cellullar decomposi-

e

+tion. Then for 0<i<dim X

(1) H, (X) =0

i+l

(ii) Hzi(X) is a Z-mcdule freely generated by the classes of the

closures of the i-dimensional cells.

(1iii) The cycle map cl:A (X)— E (X) is an isomorphnism.




For a proof of this proposition see [Fu] chapter 19.1.
Let X be a variety with an action of ¢ ~and let x be a

fixpoint. Then there is an induced action of @m on the tangent

: 'S wpn & o b = y
space Tx,x' The part of Tx,x where the weights of Gm are

‘o, + . .
positive is denoted by (TX x) . The following theorem is prowved
14

in [B1] and [B2].

(1.€) Theorem. (Birula-Bialynicki). Let X be a smooth prcjective

variety with an action of Gm’ Suppose that the fixpoint set
T

{x‘,...,xn} is finite, and let Xi = {x€X|lim tx = xi}. Then
t-+0

(1) X has a cellullar decomposition with cells X,

. _ +
(i4) Tx.,x. - (Tx,x.) *
i7i




§2.

| From now on we fix a system of homogeneous cocrdinates
TyeTy1T, of P?. Let G = SL(3,C) be the maximal torus con-
sisting of all diagonal matrices. We denote by AgrM A, the
complex characters 0of G such that for any géG we have

g = diag(xo(g},k](g),kz(g)). Then G acts on P? via

gT, = xi(g)Ti, and onr points (aoga],az), this action is given by

1

g(aola‘iaz) = (ko(g)nlagi ;\-1 (g)u]a«!;?\.z(g)“ az)- The ,fiXPOintS area

clearly P,y = (1,0,0}, P, = (0,1,0) and Py = {(0,0,1).

Let L be the line T, = 0, and put F, = {Po}, F, = L-Pg,

2
and Fz = P2-L. Then Fiqu, and they define a cellullar decom=
position of P2. The one-parameter subgroups ¢:6_ » G inducing
this cellullar decomposition are those of the type
o(t) = diag(t¥0,+¥1,t¥2) where w.<w;<w, and w.twy+w, = O.
4 0" "2 (A b _

The action of G on P? induces in a natural way an actiocn
of G on vHilbd(Pz)g If 2 < P2 corresponds to a fixpoint of
this action, clearly the support of 'Z 1is contained in the
O'P]'Pz} of G. Hence we may write 2% = 2,U%,UZ,
where Zi is supported in Pi and corresponds to a fixpoint in

fixpoint set [P
4, '
Hilb J'(11?2)‘, where di = length(oZ V.
. i

(2.1) Lemma. The action of G on Hilbd(Pz) has only finitely

many fixpoints.

Proof. A point of Hilbd(PZ) is a fixpoint if and only if the
corresponding ideal I in C[TO,T],sz is invariant under G,
which is the case if and only if I is generated by monomials.

These ideals obviously form a finite family.



L - . ers 1.0 . . .
It is well known that Hilb (P?) is smcoth and projective
([éx], [F1]1). Hence (1.5) and (1.€} apply to the acticn of anv
4 Eog & J
sufficiently general one-parameter supgroup of G on Hilb (P2),
ané we have proved the statements in (1.1) par: (i) concerning
¢ d . 13 . £ 2 g, e . . o=
Hilb (P<). To prove the rest of {1.1) it remains to count the
cells of a given dimension. For this purpose we use a decomposi-
tion of the Hilbert scheme which we now preoceed to
2] » . - s . s
For any 2 < P< of finite length d we can write I unigue-

ly as a disjoint union 2 = Z_UZ,UZ where each Zi is a closed

subscheme of P? supported in Fi- Put @,(2) = length(g, ). For

ke

any triple (do,d],dz) of non-negative integers with 4 = do+d]+dz,
we define W(do,d],dz) to be the (locally closed) subset of

. 4.4 . . )
Hilb (P?) corresponding to subschemes Z with d,(z) = d, for

a
i=0,1,2. Clearly Hilb (P?) = U W(dg,dy,dy) .
d,+d,+d,=d

Let ¢ be any one-parameter subgroup of &G respecting the
celluilar decomposition {EO,Fl,Fé} of P2. Then ¢ induces a
cellullar decomposition cf Hi1p9(P2), and W(dy,4,,d,) is a union
‘of cells from this decomposition. In fackt, let Z be in

w(ao,d d,) and write 2z = 2,UZ

1 071
approaches a subscheme supported in P,. Thus W(do,d1,dz) has a

UZ.. Then, as t-0, ¢(t)(Zi)

cellullar decomposition and (1.5) applies to it.

Since W(de,d d2)=w(do,0,0)xw(0,d!,Q)XW(O,O,dz) wa getb

15

L4

(2.2) Lemma. b2k(HilbdﬂP2))

) T b, (W(d.0,0))b, (W(0,4,,0))b. (¥(0,0,d.)).
dg+d +d,=d p+g+r=k 2 0 2q 1 2r 2

This reduces our problem to the calculation of the Betti numbers of

W(d,,0,0), W(0,&, ,0) and W(0,0,d,).



(2]
(934

2

he spaces W(4,0,0), wW({0,8,0) and W(0,0,4) are all contained in

s
Hilbd(Pz). In the previous cection we saw that they are unions of
cells from a cellullar decomposition of HilbﬁPEL The cells con=~

tained in W(d,0,0) (resp. W(0,d,0)}, wW(0,0,8)) are exactly those

corresponding to fixpoints supported in Py (resp. P?’ P,). e

[

- - < . 5 . < - ]
are thus reduced to the study of G-invariant subschemes of P~

concentrated in one fixpoint'of G. Any such subschemes is con-
tained in a G-invarianﬁ affine plane. Hence we are interested in
idezlis of R = C[x,y] of ﬁiniﬁe colength, invariant under the
action of a two-dimensional torus T given by +.x = A(t)x and
t.yv = pl{t)y, where A and g are two linearly indepencdent charac-
ters of T. We shall also denote by A and p the elements in
the representation ring of T induced by the corresponding one-
dimensional representétions.

Let I be such an ideal. Then since I is T-invariant, it

is generated by monomials in x and y. Hence the number

bj = inf{k[xjykéI} exists for each integer j>0g' Clearly bj = 0
if 3>>0. Let r be the least integer such that br = 0. The
bj form a ncn-increasing sequence and z bj = length(R/I) = d.
. §=0
b,

' bo bl J J r . s .
Furthermore v Y,%xv 1,.¢:,X°Y “5cc6,X is a (not necessarily mini-

°

mal) se: of generators for I. Note that this sets up a one-one

correspondence between T-invariant ideals of colength d in R and
partitions of d.

For any ordered pair a = (¢,B) of integers. let R[«,B],

also denoted R[a], be the R-module - R with the action of T

. . mn m- a n-g m n . . .
given by t.x' vy = A{t) n(t)’ Bx‘y . In the representation ring
of T we may write Rfe,5]= ) AP,

pr=a



(3.1) Lemma. There is a T-eguivariant resolution

i= i=0 =
‘ , = i . id d, = {i,b.). I e, = - £
where n, (l,bl_]) an (i, l) _é_ bl—l b for

1<i<r then p N
b ¢ 0 © = ¢ o s e O
e L]
yilx 0 .
M o= 0 y%2 g .
Lo '
. 0
. X

®r
0 4 @& % e » ¥ & y N
o , o

Proof. This amounts to checking that MM is equivariant and that

. D,
. . b b . ,
+he maximal minors of M are vy 0,xv 1,0..,x3y 3, ...,x%, vhich is

straightforward. : 0

(3.2) Lemma. In the representation ring of T we have the identi-

4
bj+1—?

Hoan(IlR/I) = 2 2
1<icj<sr s=

. b, _ N
(lejalu i-1 +A3=1u i=-1 ).

b.
J

‘Proof. First we prove that HomR(I;R/I)=Exté(I,I) in a T~equi-

¢

variant way. The T-equivariant exact seguence
0— I— R—> R/I—> O
induces a T-eqﬁivariant sequence
0— Hom,(I,R/I)— Exté(I,I)—* Ext!(I,R)— Ext}(I,R/I)— 0

The last map of this sequence is an isomorphism because



ring we get the formula

xt1(1,1) =

Ex R( )

R+ ] R[m,-d.1- [ RB;-n.]- ] RM-d.1+ ] Rl@;-a, I
l<i<r =~ 1¢i,j<r * 0<i,jcr —+ 737 qcicr 3
0<j<r : 0<3i<r

F <igg< £ix K,, = ~d -Rin.-n_. = ~d, + .~n,

For 1<i<j<r define K, REEJ 4. JIRR, n, ] R[§J 4] R[gj 0, ]

T —_ b = b - 3 - . @ ]
and Ly R[Ei gj] R[gi Ej] R[gi 9 £ [a ;j] Then
regrouping the terms in the formula above, it is easily verified
that Extl(7,1) Yy K,.+L... Now using that 4, = (3,0.) =and
R 1<ici<r + —J 3
€3
that n, = (i,b; ;) we get
. _— _
Kij= ) PP - Y ST ) AP+ X. elpuq
p?i=g-1 p2i=1 pri=j=1 pri-3
P - » - >1 =P, b, ,-b,
E bi—1 bj-? d bl—l bj—] E Di-l bj 9 i=1 bj
= 3 h1~3~1uq -3 yi-3-1 a )
? - > o
*b; 7Py >b; 7Py
. =1
_ 35‘ Ji=3=1 Pioym ST
s=b,
J
Dj—lm1 .1 S7b;
In 2 similar way one checks that Lij = Y AT - O

Extg (I,R) = Ext2(R/I,R) = Ext2(R/I,R/I) = Extl(I,R/I).
To compute Exté(z,l) we use the T equivariant complex
A B
v v Vv
. s E N -‘ ——cn o
E, @K, (B, &2, )o(E, 68, ) E] GE g
r r
where E, = @ R[-&. and E, = © R{-n,]. The maps A and B
. i=0 * i=1
i . VoL . . <
are given by & = (id &M, M O;aﬁ ) and B = (M eid, ,~id @),
| | Eg B | ’ R
The cokernel ¢f B is EﬁwQ(i T}, the middle homclogy is
HomR(I,I) = R, and A 1is injective. Hence in the representation



g4,
We now proceed to compute the Betti numbers of W(0,0,4), wW(0,4,0)
and W(&,0,0). We start with WwW(0,0,d).

As all the subschemes of P? corresponding to points in

, T, T
W(0,0,d) are contained in the affine plane 3pec C{§9,¥l] we put
2 T2
TO T'g
¥ =z and y = z-. In the computation in §3 we may take T = G;
2 =2
=1 =1
= AR and p = Py o
then A \0\2 and g k] 5
Choose a one-pavrameter subgroup ¢:Gm+G given by
a W, W, W .
${z) = @iag(t 0,£ 1,£72) where Wo<Wy <W, and wptwy+w, = 0. Then
W =W Wy =W
Nod(e) = £ 0792 ang poe(t) = £ 1 "2, More generally, for anv

character Xaus of G we have Rapﬁo¢(t)

—ra Y -
= po(wg=wy i+h(w, way.
Pick a cell U from the cellullar decomposition of Hilbd(Pz)
defined by ¢, contained in W(0,0,d4). We want to compute its

‘dimension. The cell U corresponds to a fixpoint of G in

T, T
Hilbd(Pz), contained in Spec C[%lgﬁl] = Spec C[x,vy], hence to an
2 72

invariant ideal I in ¢€[x,v]. According to (1.2),

dim U = dim T where T is the tangent space of HilbdﬂP2) at
the fixpoint. There is a canonical G-equivariant identification

T=HomR(I,R/I) where R = €[x,y] (see [Gr]). We may assume that

W2 "\,VO
wWiTv,

in HomR(I,R/I) has a positive weight with respect to ¢ if and

>>0. Then any one dimensional representation x“pB occurring

only if «<0, or e =0 and B<0. It follows from (3.2) that

bj—iﬁ'i b, ,=g-=1 by 11

' s r .
T = ] pooatmatiy il + 1071w TN
1<i<j<r S::bj j:

r
The nunber of summands in the first sum is )

r r
¥ b;_1 = d and in the second sum there are Yy (b, .-b.) = b
i=1 - =

+
summands. Therefore dim U = d4dim T = d+b0a
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In order to comoute cne of the Betti numbers of W(0,0,d), say
bzk(W(0,0,d)}, we have +to count the number of cells of dimengion

X. Since there is a one-cne correspondence between invariant

s

partitions b.Ob.>...3b = 0
s 0 71 T

of 4, Dzk(W(0,0,d)) iz the number of partitions of 2d-k in

ideals of C{x,y] of colength d an
parts bounded by k=d. We have proved

(4.1) Proposition. bzk(W(0,0,d)) = P(2d-k,k-d).

Remark. This concludes the proof of theorem (1.1) part (iii) since

W(0,0,d)5Hi1p (A2).

Next we turn to W(d,0,0). Subschemes of P2 corresponding

to points in W(d,0,0) are supported in P.. 1In particular they

o

T] T2 T] T2
are contained in Spec GETS,TE]. Put x = TE and y = TE, In the

computation in §2 we may take T = G, A = x116], and p =-x2ha‘.

Choosing a one=-parameter subgroup ¢ with 'w0<w]<w2 and

W.I =W

2

o >>0, and reasoning as above, we get
0

. ... d .
where T is the tangent space to Hilb (P2) at the fixpoint

corresponding to the partition b, »b

Peeed?d =0 of d. Hence the
0 r

1

r r
dimension of the corresponding cell is ) Y (b,
i=l i

-b.) =
j=ivr 37 X

ETQi = d-b,. This gives

(4.2) Proposition. b2k(W(d’O’o)) = P(k,d-k).




Remark. This proves theorem (1.1) part (ii) since

J ~
Ww(d,0,0)=Hilb (A%, 0).

L)
The lest case to treat is W(0,4,0). This time we put x = ;%,
T
2 B -1 . _ -1
y = E‘-? A= /\07\] e and p sz] .
As usual, let ¢ be a cne-parameter subgrcup of G with
Wq Wy <V . Let x“uﬁ e a one-dimensional representation of G

with aB<0. Since w0~w1<0 and w2-w1>0 the weight of K?us

with respect tc ¢ 1s positive if and only if «<0 and §>0.

Using this and (3.2) it is easily verified that

b -1 -

el o o b- "'S-']
Z A1=3 ]!J» i=1

where T is the tangent space of Hilbd(Pz) at the fixpoint

corresponding to the partition b0>b1>"'>br = 0 of d. Hence all

the cells in W(0,d4,0) =zre of dimension d, and we get

0 if k#d
P(d) if k=d°

(4.3) Prooositicn. bZk(W(Oadvo)) =

Substituting the expressions of (4.1), (4.2) and (4.3) in the
formula in lemma {(2.2) we get theorem (1.1) part (ii). This con-

cludes the proof of (1.1}.



s
()]
&

Denote by En the rational, ruled surface P(Opl@qpl(-n)). A
maximal torus T of the avtomorphism gfoup of E, is of dimension
two and has four fixpoints on En. It is easily checked that for
an appropriate class of one-parameter subgroups of T, the weights
von the tangent space of Fn at two of these fixpoints are of
opposite sign, and at the two remaining fixpoints, the two weights
are respectively positive and negative. Thus the corresponding
celiullar decomposition of Fn contains a point, two copies of

Al, and an A?. Adapting the proof of (1.1) to this situation we

get

(5.1) Theorem. The cycle map cl:A*(Hilbd(Fn))ﬂ+ H*(Hilba(Fn)) is

———

an isomorphism, and in particular the odd homology vahishes. The

homology groups are free abelian groups. Furthermore,

.y 30 VY
bzk(Hllb (Fn;) =

! ) P(p,d,~p)P(d,)P(d,)P (24 -1, r-d,)
d0+d l+d 2+63$d p‘%‘r'—"k“a l_dz “

and

... d _
y{Hilb (@n)) = y P(dO)P(d1)P(d2)P(d3).

1<}
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