HILBERTE SCHBME OF POINTS IN TRE PLANE

Geir Ellingsrud and Stein Arild Strømme ${ }^{2}$

1 Matematisk institutt, Universitetet i Oslo, Blindern, Oslo 3. Norway
${ }^{2}$ Matematisk institutt, Universitetet i Bergen, 5014 Bergen, Norway

Although several authors have been interested in the Hilbert scheme Hilb ${ }^{d}\left(\mathbb{P}^{2}\right)$ paranetrizing finite subschemes of length d in the projective plane ([Il], [I2], [F1], [F2], [Br] among others) not much is known about the topological properties of this space. The Picard group has been calculated ([F2]), and the homology groups of $\operatorname{Hilb}^{3}\left(\mathrm{P}^{2}\right)$ have been computed ([H]). In this paper we give a precise description of the additive structure of the homology of $H_{i l}{ }^{d}\left(p^{2}\right)$, applying the results of BirulaBialynicki ([B1]e [B2]) on the cellullar decompositions defined by a torus action to the natural action of a maximal torus of $S L(3)$ on $\mathrm{Hilb}^{d}\left(\mathbb{P}^{2}\right)$. A rather easy consequence of the fact that this action has finitely many fixpoints is that the cycle maps between the Chow groups and the homology groups are isomorphisms. In particular there is no odd homology, and the homology groups are all free. The main objective of this work is to compute their ranks: the Betti numbers of $\mathrm{Hilb}\left(\mathbb{P}^{2}\right)$.

As a byproduct of our method we get similar results on the homology of the punctual Hilbert scheme and of the Hilbert scheme of points in the affine plane.

It seens natural to generalize our results to any toric mooth surface. Fowever, we give the results only for the rational ruled sureaces \mathbb{E}_{n} with an indication of the necessary changes in the proofs.

For simplicity we work over the field of complex numbers. but with an appropriate interpretation of the word "nonology" our results remain valid over any base Eield.

Let \mathbb{P}^{2} be the projective plane over c. For any positive integer d, let $H i b^{d}\left(p^{2}\right)$ denote the Hilbert scheme paranetrizing finite subschemes of \mathbb{P}^{2} of length d. If A^{2} denotes the complement of a line in \mathbb{P}^{2}, let $H_{i l b}\left(A^{2}\right)$ denote the open subscheme of $H_{i l b}{ }^{d}\left(\mathbb{P}^{2}\right)$ corresponding to subschemes with support in A^{2}. Furthermore let $\operatorname{Fill}^{d}\left(A^{2}, 0\right)$ be the closed subscheme of Hilb ${ }^{d}\left(A^{2}\right)$ parametrizing subschemes supported in the origin.

For any complex variety X. let $H_{*}(X)$ be the Borel-Moore homology of X (homology with locally finite supports). By the i-th Betti number $b_{i}(x)$ we shall mean the rank of the finitely generated abelian group $H_{i}(X)$. Let $x(x)=\sum(-1)^{i_{b_{i}}}(X)$ be the Euler-Poincaré characteristic of X. As usual, $A_{*}(X)$ is the Chow group of X, and $c l: A_{*}(X) \rightarrow H_{*}(X)$ is the cycle map (see [Fu] ch. 19.1).

If m and n are non-negative integers, let $P(m, n)$ denote the number of sequences $n \geqslant b_{0} \geqslant b_{1} \geqslant \ldots \geqslant b_{m}=0$ such that $\left[b_{i}=m\right.$. If $n \ngtr m$, then $P(m, n)=P(m)$, the number of partitions of m. Let $P(m, n)=0$ if m or n is negative.
(1.1) Theorem. (i) Let X derote one of the schemes Fiib ${ }^{d}\left(\mathbb{R}^{2}\right)$,
 is an isomorphisn, and in particular the ocd honology varishes.

Furthemore, both groups are free abelian groups.

and $x\left(\right.$ filb $\left.d^{\left(e^{2}\right)}\right)=\sum_{a_{0}+d_{1}+\alpha_{2}=d}=\left(a_{0}\right) p\left(d_{1}\right) p\left(d_{2}\right)$.
(iii) $b_{2 k}\left(\operatorname{Hilb}^{d}\left(\mathbb{A}^{2}\right)\right)=P(2 \mathrm{~d}-k, k-d)$ and $\quad x\left(\operatorname{Hin}^{\mathrm{d}}\left(\mathbb{A}^{2}\right)\right)=P(d)$.
(iv) $b_{2 k}\left(H i I b^{d}\left(A^{2}, 0\right)\right)=P(k, a-k)$ and $x\left(H i 1 b^{d}\left(a^{2}, 0\right)\right)=P(d)$.

Remark. The Betti numbers of Gilb$^{3}\left(\mathrm{P}^{2}\right)$ were determined by A . Hirschowitz ([f]). In table 1 we have listed the Betti numbers of Hilb ${ }^{d}\left(\mathbb{E}^{2}\right)$ for $1 \leqslant d \leqslant 10$.

\mathbf{d}	0	1	2	3	4	5	6	7	8	9	10
1	1	1									
2	1	2	3								
3	1	2	5	6							
4	1	2	6	10	13						
5	1	2	6	12	21	24					
6	1	2	6	13	26	39	47				
7	1	2	6	13	28	49	74	83	150		
8	1	2	6	13	29	54	94	131	150	257	
9	1	2	6	13	29	56	105	167	232	25	10
10	1	2	6	13	29	57	110	189	298	395	440

Tabie 1.

The Betti numbers $b_{2 k}\left(\operatorname{Fin}^{\mathrm{d}}\left(\mathbb{P}^{2}\right)\right)$ are Iisted for $1 \leqslant \mathrm{~d} \sqrt{10}$ and $0<k<d$. For $d<k \leqslant 2 d=d i m \operatorname{Hilb}^{\mathrm{C}}\left(\mathrm{p}^{2}\right)$ the number $b_{2 k}\left(\operatorname{Hin}^{d}\left(\mathrm{p}^{2}\right)\right)$ is given by Poincaré duality.
(1.2) Corollary. (Briancon; [Br] V.3.3.) Hilb $\left(\mathbb{A}^{2} .0\right)$ is irreducible.

Proof. By a result of Gaffney-Lazarsfeld (see [Ga] or [I2] theoren 2), any irreductble component of $\operatorname{Hilb}_{\left(A^{2}, 0\right)}$ has dinension at least $d-1$. From (iv) of theoren (1.l) it follows that $b_{2 k}\left(E i 1 b^{d}\left(A^{2}, 0\right)\right)=1$ if $k=d-1$ and 0 iE $k>d-1$. The corollary follows from [Fu] Iema 19.1.1.

Let s denote the graded \mathbb{L}-algebra freely generated by $c_{1} \ldots \ldots, c_{d} c_{1} \ldots \ldots c_{d}^{d}$ and $c_{2}^{\prime \prime} \ldots c_{d-1}^{n}$ where the degree of c_{1}, c_{1}^{d} and $c_{i}^{\prime \prime}$ is i. Denote by s_{k} the graded part of s of degree k.
(1.3) Corollary. If $2 k \& d$, then $b_{2 k}\left(\operatorname{Hinb}^{\mathrm{d}}\left(\mathbb{R}^{2}\right)\right)=x \mathrm{k}_{\mathbb{Z}} \mathrm{S}_{\mathrm{k}}$.

Proof. Assume $2 k \leqslant d$. Let d_{0}, d_{1}, d_{2}, p and r be indices such that the corresponding term in the expression for $b_{2 k}\left(\operatorname{Hinb}^{d}\left(\mathbb{L}^{2}\right)\right)$ in (1.1) part (ii) is non-zero. Then $p\left(2 d_{2}-x, y-d_{2}\right) \neq 0$ and $\leq-d_{2} \neq 0$. Therefore $p=k-d_{1}-r \leqslant k-d_{1}-d_{2}$ and hence $2 p \leqslant 2 k-2 d_{1}-2 d_{2} \leqslant d-2 d_{1}-2 d_{2} 6 d_{0}$. Thus $p \leqslant d_{0}-p$ and $p\left(p, d_{0}-p\right)=p(p)$. We may therefore write

$$
b_{2 k}\left(H i 1 b^{d}\left(p^{2}\right)\right)=\sum_{p, d_{1}} p(p) p\left(d_{1}\right) B\left(k-a_{1}-p\right)
$$

where $B(j)=\sum_{m} P(2 m-j, j m)$. This completes the proof since the Hilbert function of $\mathbb{Z}\left[c_{1}, c_{2}, \ldots\right]$ is $P(j)$, and that of $2\left[c_{2}, c_{3}, \ldots\right]$ is $E(j)$ 。

The reason for giving this corollary is the following. Let $\pi: Z \longrightarrow \operatorname{Hilb}^{\mathrm{d}}\left(\mathbb{P}^{2}\right)$ be the universal famiy and let $\psi: Z \longrightarrow \mathbb{R}^{2}$ be the
natural map. Then $E_{i}=\pi_{*} \psi^{*} 0_{\mathbb{P}^{2}}(i)$ are vectorbunciles of rank a on milb ${ }^{\text {E }}\left(\mathrm{P}^{2}\right)$. me chern classes of E_{0} : E_{1} and E_{2} are natural candidates for algebrt generators of the Chow ring of filibl${ }^{2}\left(\mathbb{P}^{2}\right)$. One verifies that $c_{1}\left(E_{2}\right)=2 c_{1}\left(E_{1}\right)-c_{1}\left(E_{0}\right)$. The algebra s therefore maps surjectively onto the subaigebre of $A^{*}\left(\operatorname{Hin}^{\mathrm{d}} \mathrm{Q}^{2}\right)$) generated by the Chern clesses of the Eis. The corollary can thus be regarded as eviunce for the following conjecture
(1.4) Conjecture. $A^{*}\left(H i b^{\circ}\left(\mathbb{R}^{2}\right)\right)$ is generated as a z-algebre by the Cnern-classes of E_{0}, E_{1} and E_{2}.

We end this section by recalling two results which are fundamental for this work.

Following Fulton ([Fu] example 1.9.1) we say that a schene X has a cellullar decomoosition if there is a filtration $x=X_{n} \supset X_{n-1} \supset \ldots \partial X_{0} \supset X_{-1}=\emptyset$ by closed subschenes with each $X_{i}-X_{i-1}$ a disjoint union of schemes $U_{i j}$ isomorphic to affine spaces $A^{n_{i j}}$. The $U_{i j}$'s will be called the ceils of the decomposition.
(1.5) Proposition. Let x be a scheme with e cellullar decomposition. Then for $0 \leqslant i \leqslant d i m$ is
(i) $\mathrm{H}_{2 i+1}(\mathrm{X})=0$
(ii) $H_{2 i}(X)$ is a Z-module freely generated by the classes of the closumes of the i-dimensional celis. (iii) The cycle map cl: $A_{*}(X) \rightarrow E_{*}(X)$ is an isomorphism.

For a proof of this proposition see [Eu] chapter 19.1.
Let X be a variety with an action of Φ_{m} and let x be a fixpoint. Then there is an induced action of \mathbb{G}_{m} on the tangent space $\mathrm{T}_{\mathrm{X}} \mathrm{X}$. The part of $\mathrm{T}_{\mathrm{X}, \mathrm{X}}$ where the weights of \mathbb{C}_{m} are positive is denoted by $\left(\mathrm{T}_{\mathrm{X}, \mathrm{X}}\right)^{+}$. The following theorem is proved in [B1] and [B2].
(1.6) Theorem. (Birula-Bialynicki). Let X be a smooth projective variety with an action of G_{m}. Suppose that the fixpoint set $\left\{x_{1} \ldots . x_{n}\right\}$ is finite, and let $x_{i}=\left\{x \in X \mid \lim _{t \rightarrow 0} t x=x_{i}\right\}$. Then
(i) X has a cellular decomposition with cells X_{i}. (ii) $\mathrm{T}_{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{i}}=\left(\mathrm{T}_{\mathrm{X}, \mathrm{X}_{\mathrm{i}}}\right)^{+}$.
§2.
From now on we fix a system of homogeneous coorainates $T_{0} \cdot T_{1} \cdot T_{2}$ of \mathbb{R}^{2}. Let $G \subseteq S L(3, C)$ be the maximal torus consisting of all diagonal matrices. We denote by $\lambda_{0}, \lambda_{1}, \lambda_{2}$ the complex characters of G such that for any $g \in G$ we have $G=\operatorname{diag}\left(\lambda_{0}(g), \lambda_{1}(g), \lambda_{2}(g)\right)$. Then G acts on \mathbb{P}^{2} via $g_{i}=\lambda_{i}(g) T_{i}$, and on points (a_{0}, a_{1}, a_{2}), this action is given by $g\left(a_{0}, a_{1}, a_{2}\right)=\left(\lambda_{0}(g)^{-1} a_{0}, \lambda_{1}(g)^{-1} a_{1}, \lambda_{2}(g)^{-1} a_{2}\right)$. The fixpoints are clearly $P_{0}=(1,0,0), P_{1}=(0,1,0)$ and $P_{2}=(0,0,1)$.

Let L be the line $T_{2}=0$, and put $F_{0}=\left\{P_{0}\right\}, F_{1}=L-P_{0}$. and $F_{2}=\mathbb{Q}^{2}-L$. Then $F_{i} \cong A^{i}$, and they define a cellullar decomposition of p^{2}. The one-parameter subgroups $\phi: G_{m} \rightarrow G$ inducing this cellullar decomposition are those of the type $\phi(t)=\operatorname{diag}\left(t^{W_{0}}, t^{W_{1}}, t^{W_{2}}\right)$ where $w_{0}<w_{1}<w_{2}$ and $w_{0}+w_{1}+w_{2}=0$. The action of G on \mathbb{P}^{2} induces in a natural way an action of G on Hilb ${ }^{d}\left(\mathbb{P}^{2}\right)$. If $\mathbb{Z} \subseteq \mathbb{P}^{2}$ corresponds to a fixpoint of this action, clearly the support of Z is contained in the fixpoint set $\left\{P_{0}, P_{1}, P_{2}\right\}$ of G. Hence we may write $z=z_{0} U_{1}, U Z_{2}$ where Z_{i} is supported in F_{i} and corresponds to a fixpoint in Hilb ${ }^{d^{i}\left(\mathbb{P}^{2}\right)}$, where $a_{i}=$ length $\left(O_{Z_{i}}\right)$.
(2.1) Lemma. The action of G on $\operatorname{Hilb}^{d}\left(\mathbb{P}^{2}\right)$ has only finitely many fixpoints.

Proof. A point of $\operatorname{Fiilb}^{\mathrm{d}}\left(\mathbb{P}^{2}\right)$ is a fixpoint if and only if the corresponding ideal I in $\mathbb{C}\left[T_{0}, T_{1}, T_{2}\right]$ is invariant under G. which is the case if and only if I is generated by monomials. These ideals obviously form a finite family.

It is well known that $\operatorname{Hin}^{d}\left(\mathbb{P}^{2}\right)$ is smooth and projective ([Gr], [F1]). Hence (1.5) and (1.6) apply to the action of any sufficiently general one-paraneter suogronp of G on $\operatorname{Hind}^{d}\left(\mathbb{P}^{2}\right)$. anc we have proved the statements in (1.1) part (i) concerning Hilb ${ }^{d}\left(p^{2}\right)$. To prove the rest of (1.1) it remeins to count the cells of a given dimension. For this purpose we use a decomposition of the Hilbert scheme which we now procesc to cescribe.

For any $Z \subseteq \mathbb{P}^{2}$ of finite length d we can write z ungueIy as a disjoint union $Z=Z_{0} U Z_{j} U Z_{2}$ where each Z_{i} is a closed subscheme of \mathbb{P}^{2} supported in F_{i}. Put $d_{i}(Z)=$ length $\left(O_{Z_{i}}\right)$. For any triple $\left(d_{0}, d_{1}, d_{2}\right)$ of non-negative integers with $d=d_{0}+\tilde{a}_{1}+d_{2}$. we define $w\left(d_{0}, \tilde{d}_{1}, d_{2}\right)$ to be the (locally closed) subset of Hilb $b^{d}\left(\mathbb{R}^{2}\right)$ corresponding to subschemes z with $d_{i}(Z)=a_{i}$ for $i=0,1,2 . \quad$ Clearly Hilb ${ }^{d}\left(\mathbb{P}^{2}\right)=\underset{d_{0}+d_{1}+d_{2}=d}{U} W\left(d_{0} ; d_{1}, d_{2}\right)$.

Let ϕ be any one-parameter subgroup of G respecting the celluilar decomposition $\left\{F_{0}, F_{1}, F_{2}\right\}$ of \mathbb{P}^{2}. Then ϕ inauces a cellullar decomposition of $H i l b^{d}\left(\mathbb{P}^{2}\right)$, and $W\left(d_{0}, d_{1}, d_{2}\right)$ is a union of cells from this decomposition. In fact, let z be in $W\left(d_{0}, d_{1}, d_{2}\right)$ and wite $z=z_{0} U Z_{1} U z_{2}$. Then, as $t \rightarrow 0, \phi(t)\left(z_{i}\right)$ approaches a subscheme supported in P_{i}. Thus $W\left(d_{0}, d_{1}, C_{2}\right)$ has a cellullar decomposition and (1.5) applies to it.

$$
\text { since } w\left(d_{0}, d_{1}, d_{2}\right)=w\left(d_{0}, 0,0\right) \times w\left(0, d_{1}, 0\right) \times w\left(0,0, d_{2}\right) \text { we get }
$$

(2.2) Lemma. $b_{2 k}\left(\operatorname{Hilb}^{d}\left(\mathbb{R}^{2}\right)\right)=$

$$
d_{0}+\sum_{1}+a_{2}=d p+q+r=k \text { } b_{2 p}\left(w\left(d_{0}, 0,0\right)\right) b_{2 q}\left(w\left(0, d_{1}, 0\right)\right) b_{2 r}\left(w\left(0,0, d_{2}\right)\right)
$$

This reduces our problem to the calculation of the Eetti numbers of $w\left(a_{0}, 0,0\right), w\left(0, a_{1}, 0\right)$ and $w\left(0,0, a_{2}\right)$.
§3.
The spaces $W(0,0,0), W(0,0,0)$ and $\bar{W}(0,0,0)$ aze all contained in Filb ${ }^{\text {d }}\left(p^{2}\right)$. In the previous section we saw that they are unions of cells from a cellullar decomposition of Hilb ${ }^{(1)}$ 2). The cells contaired in $W(0,0,0)$ (resp. W(0,d,0), w(0,0, 0$)$) are exactly those corresponaing to fixpoints supported in $p_{0}\left(r e s p . P_{1}, p_{2}\right)$. We are thus reduced to the study of G-invaritant subschemes of \mathbb{P}^{2} concentrated in one fixpoint of G. Any such subschemes is contained in a c -invariant affine plane. Hence we are interestec in idetis of $R=\mathbb{C}[x, y]$ ozinite colength, invariant under the action of a two-dimensional torus T given by $t . x=\lambda(t) x$ and $t \cdot y=\mu(t) y$, where λ and μ are two linearly indepencent characters of T. We shall also denote by λ and μ the elements in the representation ring of T induced by the corresponaing one¿imensional representations.

Let I be such an ideal. Then since I is T-invariant, it is generated by monomials in x and y. Hence the number $b_{j}=\inf \left\{k \mid x j_{y} k_{f I}\right\}$ exists for each inceger $j \geqslant 0$. cjearly $b_{j}=0$ if $j \gg 0$. Let x be the least integer such that $b_{r}=0$. The b_{j} form a non-increasing sequence and

$$
\sum_{j=0}^{\sum_{j} b_{j}=\operatorname{length}(R / I)=d . ~}
$$ Furthemore $\underline{v}^{b_{0}}, x y^{b_{1}} \ldots \ldots x^{j} y^{b} \ldots . . . x^{r}$ is a (not necessarily minimal) set of generators for I. Note thet this sets up a one-one correspondence between T-invariant ideals of colength d in R and partitions of d.

For any ordered pair $a=(c, \beta)$ of integers let $R[\alpha, \beta]$, also denoted $R[a]$, be the R module R with the action of T given by t. $x^{m} y^{n}=\lambda(t)^{m-\alpha} \mu_{\mu(t)^{m-\beta_{X}} m_{y} n}$. In the representation ring of T we may write $R[\alpha, \beta]=\int_{\substack{p \geqslant-\alpha \\ q \geqslant-\beta}} \lambda^{p_{\mu} q}$.
(3.1) Lemma. There is a T-equiveriant resolution

$$
0 \longrightarrow \underset{i=1}{\sum} \mathbb{R}\left[-\underline{n}_{i}\right] \xrightarrow{M} \underset{i=0}{\Gamma} R\left[-\underline{-}_{i}\right] \rightarrow I \longrightarrow 0
$$

where $\underline{n}_{i}=\left(i, b_{i-1}\right)$ and $\underline{a}_{i}=\left(i, b_{i}\right)$. If $a_{i}=b_{i-1}-b_{i}$ for 1sisr then

$$
M=\left(\begin{array}{cccccc}
x & 0 & \cdots & \cdots & \cdots & 0 \\
y_{1} & x & 0 & & & \vdots \\
0 & y^{e_{2}} & x & & & \vdots \\
\vdots & 0 & & & & 0 \\
\vdots & & & & & \vdots \\
0 & \cdots & \cdots & \cdots & y_{r}
\end{array}\right]
$$

Proof. This amounts to checking that M is equivariant and that the maximal minors of M are $y^{b_{0}} x_{i y^{b_{1}}}^{b_{1}} \ldots x^{j^{b_{j}}} \ldots x^{r}$, which is straightforward.
(3.2) Lemma. In the representation ring of T we have the identity

$$
\operatorname{Hom}_{R}(I, R / I)=\sum_{1 \leqslant i<j \leqslant I} \sum_{s=b_{j}}^{b_{j+1}^{-1}}\left(\lambda^{i-j-1}{ }_{\mu}^{b_{i-1}-s-1}+\lambda^{j-i} i_{\mu}^{b_{i-1}-s}\right)
$$

Proof. First we prove that $\operatorname{Hom}_{R}(I, R / I)=E x t_{R}^{1}(I, I)$ in a Teequivariant way. The T-equivariant exact sequence

$$
0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0
$$

induces a T-equivariant sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(I, R / I) \rightarrow \operatorname{Ext}_{R}^{1}(I, I) \rightarrow \operatorname{Ext}^{1}(I, R) \rightarrow \operatorname{Ext}{ }^{1}(I, I / I) \rightarrow 0
$$

The last map of this sequence is an isomorphism because

$$
E y t_{R}^{\frac{1}{R}}(I, R) \cong E x+2(R / I, R) \cong E x t 2(R / I, R / I) \cong E x L_{R}^{2}(I, R / I)
$$

To compute $E x t{ }_{p}^{i}(I, I)$ we use the T cquivapiant complex

$$
E_{0}^{V} \otimes E_{1} \rightarrow\left(E_{0}^{V} E_{0}\right) 0\left(E_{1}^{V} \otimes E_{1}\right) \xrightarrow{B} E_{1}^{V} O E_{0}
$$

 The cokernel of B is Ext leI, I) the middle homology is $\operatorname{Hom}_{R}(I, I)=R$, and A is injective. Hence in the representation ring we get the formula
$\operatorname{Ext}_{R}^{\frac{1}{R}}(I, I)=$

and $I_{i j}=R\left[n_{i}-\underline{a}_{j}\right]-R\left[n_{i}-\underline{n}_{j}\right]-R\left[\underline{a}_{i-1}-\underline{a}_{j}\right]+R\left[\underline{a}_{i-1}-\underline{n}_{j}\right]$. Then, regrouping the terms in the formula above, it is easily verified
 that $\underline{n}_{i}=\left(i, b_{i-1}\right)$ we get

$$
\begin{aligned}
& =\sum_{q>b_{i-1}^{-b_{j-1}}} \lambda^{i-j-1} \mu^{q}-\sum_{q>b_{i-1}-b_{j}}^{\lambda^{i-j-1} \mu^{q}} \\
& =\sum_{s=b_{j}}^{b_{j}^{-1}} \lambda^{i-j-1} b_{i-1}-s-1 .
\end{aligned}
$$

In a similar way one checks that $I_{i j}=\sum_{s_{j}=b_{j}}^{b-1} \lambda_{j}^{j-1}{ }_{j}^{s-b_{i-1}}{ }_{j}$.
$\$ 4$.
We nch proceed to compute the Betti numbers of w(0,0,d), w(0,d,0) and $W(\mathrm{a}, 0,0)$. We start with $\mathrm{w}(0,0, \mathrm{~d})$.

As all the subschemes of p^{2} corresponding to zoints in W $(0,0, d)$ are contained in the effine plane spec $\mathbb{C}\left[\frac{\mathrm{T}_{0}}{\mathrm{~T}_{2}}, \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right]$ we put $x=\frac{T_{0}}{T_{2}}$ and $y=\frac{T_{1}}{T_{2}}$. In the computation in $\$ 3$ we may take $T=G$; then $\lambda=\lambda_{0} \lambda_{2}^{-1}$ end $\mu=\lambda_{1} \lambda_{2}^{-1}$.

Cnoose a one-paraneter subgroup $\phi: \theta_{m}+G$ given by $\phi(t)=\operatorname{diag}\left(t^{w_{0}}, t^{w_{1}}, t^{w_{2}}\right)$ where $w_{0}<w_{1}<w_{2}$ and $w_{0}+w_{1}+w_{2}=0$. Then $\lambda \circ \phi(t)=t^{W_{0} W_{2}}$ and $\mu \circ \phi(t)=t^{W_{1}-W_{2}}$. More generaily, for any character $\lambda^{\omega_{\mu}^{\beta}}$ of G we have $\lambda^{\alpha} \mu^{\beta} o \phi(t)=t^{\alpha\left(w_{0}-w_{2}\right)+\beta\left(w_{1}-w_{2}\right)}$. Fick a cell u from the cellullar decomposition of Hilb ${ }^{d}\left(\mathbb{P}^{2}\right)$ desined by ϕ, contained in $W(0,0, d)$. We want to compute its dimension. The cell U corresponds to a fixpoint of G in Hilb $\left(\mathbb{P}^{2}\right)$, contained in spec $\mathbb{C}\left[\frac{T_{1}}{T_{2}}, \frac{T_{1}}{T_{2}}\right]=\operatorname{spec} \mathbb{C}[x, y]$, hence to an invariant ideal I in $\mathbb{C}[x, y]$. According to (1.2),
$\operatorname{dim} U=$ dim T^{+}where T is the tangent space of $\operatorname{Hilb}^{d}\left(\mathbb{P}^{2}\right)$ at the fixpoint. There is a canonical G-equivariant identification $T=\operatorname{Hom}_{R}(I, R / I)$ where $R=C[x, y]$ (see [Gr]). We may assume that $\frac{W_{2}-W_{0}}{W_{1}-W_{1}} \gg 0$. Then any one dimensional representation $\lambda^{\alpha} \mu^{\beta}$ occurring in $\operatorname{Hom}_{R}(I, R / I)$ has a positive weight with respect to ϕ if and only if $\alpha<0$, or $\alpha=0$ and $\beta<0$. It follows from (3.2) that

$$
T^{+}=\sum_{1 \leqslant i \leqslant j \leqslant r} \sum_{s=b_{j}}^{b_{j-1}^{-1}} \lambda^{j-j-1} \mu_{i-1}^{b_{j}-s-1}+\sum_{j=1}^{r} \sum_{s=b_{j}}^{b_{j-1}^{-1}} \mu^{s-b_{j-1}}
$$

The number of summands in the first sum is $\sum_{i=1}^{r} \sum_{j=i}^{r}\left(b_{j-1}-b_{j}\right)=$ $\sum_{i=1}^{r} b_{i-1}=d$ and in the second sum there are $\sum_{j=1}^{r}\left(b_{j-1}-b_{j}\right)=b_{0}$ sumands. Therefore $\operatorname{dim} U=d i m T^{+}=d+b_{O}$.

In order to comoute one of the Betti numbers of w(0,0,d), say $D_{2 k}(W(0,0, d))$, we nave to count the number of cells of dimension k. Since there is a one-one coriespondence between inveriant ideals of $C[x, y]$ of colength a and partitions $b_{0}>b, y, \ldots b=0$ of $d, b_{2 k}(W(0,0, d))$ is the numoer of partitions of $2 d-k$ in parts bounded by k-d. We have proved
(A. 1) Proposition, $b_{2 k}(\operatorname{Ni}(0,0, a))=P(2 d-k, k-d)$.

Remark. This concludes the proof of theoren (l.1) part (iii) since $W(0,0, d)=H i 10{ }^{\mathrm{d}}\left(a^{2}\right)$.

Next we turn to $W(d, 0,0)$. Subschemes of p^{2} corresponding to points in $W(d, 0,0)$ are supported in P_{0} In particulay they are contained in $\operatorname{spec} C\left[\frac{T_{0}}{T_{0}}, \frac{T_{0}}{T_{0}}\right]$. Put $x=\frac{T_{1}}{T_{0}}$ and $y=\frac{T_{2}}{T_{0}}$. In the computation in $\S 2$ we may take $T=C_{1} \lambda=\lambda_{1} \lambda_{0}^{-1}$, and $\mu=\lambda_{2} \lambda_{0}^{-1}$.

Choosing a one-parameter subgroup ϕ with $w_{0} \leqslant w_{1} \leqslant w_{2}$ and $\frac{W_{1}^{-W}}{W_{2}-W_{0}}>0$, and reasoning as above, we get

$$
m^{+}=\sum_{1 \leqslant \pm<j \leqslant \Sigma} \sum_{s=b_{j}}^{b} \lambda^{j-i_{H}} s-b_{i-1}
$$

where T is the tangent space to hilb (02) at the fixpoint corresponding to the partition $b_{0} \geqslant b_{1} \not \ldots \geqslant b_{r}=0$ of d. Fence the dimension of the corresponaing cell is $\sum_{i=1}^{T} \sum_{j=i+1}^{T}\left(b_{j-1}-b_{j}\right)=$ $\sum_{i=1}^{x} b_{i}=d-0_{0}$ This gives
(4.2) Proposition. $S_{2 k}(W(d, 0,0))=P(k, d-k)$.

Remark. This proves theorem (1.1) part (ii) since $\left.W(a, 0,0)=4 i 1 b A^{2}, 0\right)$.

The lest case to treat is $W(0,0,0)$. This tine we put $x=\frac{0}{T_{1}}$. $y=\frac{T_{2}}{T_{1}}, \quad \lambda=\lambda_{0} \lambda_{1}^{-1}, \quad$ anc $\mu=\lambda_{2} \lambda_{1}^{-1}$.

As usual, let ϕ be a onemparameter subgroup of G with $W_{0}{ }^{i v} \gamma^{\langle v i}{ }_{2}$. Let $\lambda^{C} \mu^{\beta}$ oe a onemimensional representation of G with $\alpha \beta \leqslant 0$. Since $W_{0}-w_{1}<0$ and $w_{2}=w_{1}>0$ the weight of $\lambda^{a} \mu^{\beta}$ with respect to is positive if and only if ceo and $\beta>0$. Using this and (3.2) it is easily verified that

$$
T^{+}=\sum_{1 \leqslant i \leqslant j \leqslant x} \sum_{s=b_{j}}^{b-1} \lambda^{i-j-1} b_{i-1-s-1}^{-1}
$$

Where T is the tangent space of $H^{d i b}\left(\mathbb{P}^{2}\right)$ at the fixpoint corresponding to the pertition $b_{0} \geqslant b_{1} \geqslant \ldots \geqslant b_{r}=0$ of d. Hence all the cells in $W(0, d, 0)$ are of dimension $d_{\text {e }}$ and we get
(4.3) Prooosition. $b_{2 k}(W(0, d, 0))= \begin{cases}0 & \text { if } k \neq d \\ P(d) & \text { if } k=d^{\circ}\end{cases}$

Substituting the expressions of (4.1). (4.2) and (4.3) in the sommula in lemma (2.2) we get theorem (1.1) part (ii). This concludes the proof of (1.1).
85.

Denote by \mathbb{E}_{n} the rational, ruled surface $\mathbb{P}\left(0_{\mathbb{Q}}{ }^{\oplus} 0_{\mathbb{Q}}(-n)\right)$. A maximal torus T of the automorphism group of \mathbb{F}_{n} is of dimension two and has four fixpoints on \sqrt{n}^{n}. It is easily checked that for an appropriate class of onemparater subgroups of T, the weights on the tangent space of E_{n} at two of these fixpoints are of opposite sign, and at the two remaining fixpoints, the two weights are respectively positive and negative. Tnus the corresponding celiullar decomposition of $⿷_{n}$ contains a point, two copies of A^{1}, and an \mathbb{A}^{2}. Adapting the proof of (1.1) to this situation we get
(5.1) Theorem. The cyele, map $c l: A_{*}\left(\operatorname{Hilb}^{d}\left(\mathbb{F}_{n}\right)\right) \rightarrow H_{*}\left(\operatorname{Hilb}^{d}\left(\mathbb{E}_{n}\right)\right)$ is an isomorphism, and in particular the odd homology vanishes. The homology groups are free abelian groups. Furthermore,

$$
b_{2 k}\left(\operatorname{Hilb}_{\left(\mathrm{e}_{\mathrm{n}}\right)}\right)=
$$

$$
\sum_{a_{0}+d_{1}+d_{2}+a_{3}=d} \sum_{p+r=d_{1}-d_{2}} p\left(p, d_{0}-p\right) p\left(d_{1}\right) p\left(d_{2}\right) p\left(2 d_{3}-r, r-d_{3}\right)
$$

and

$$
x\left(\operatorname{Hilb}^{d_{(}} E_{n}\right)=\sum_{a_{0}+d_{1}+d_{2}+d_{2}=d} P\left(d_{0}\right) P\left(d_{1}\right) P\left(d_{2}\right) P\left(d_{3}\right) .
$$

References.
[B1] Eialyricki-Birule, A.: Some theorems on actions of algeoraic groups. Annals of Mathematies, Vol. 98, No. 3 (1973) pp 480-497.
[E2] Bialynicki-Birula, A.: Sone Properties of the Decompositions of Algebraic Varieties Detemmined by Actions of a Tous. Bulletin de l'Acedemie Polonaise des Sciences. Série des sciens math. astr. et phys. Vol 24, No. 9 (1976) p. 667-674.
[F1] Fogarty, J.: Algebraic families on an algebraic surface. Amez. J. Math. 10 (1968) 511-521.
[F2] Fogarty, J.: Algebraic families on an algebraic surface II: Picard scheme of the punctual Hilibert scheme. Amer. J. Math. 96 (1979) 660-687.
[Br] Briancon, J.: Description de $\operatorname{Hilb}_{\mathbb{C}}\{\mathrm{X}, \mathrm{y}\}$. Inventiones math. 41 (1977) 45-89.
[Fu] Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag 1984.
[Ga] Gaffney, T.: Multiple points and associated ramification loci. In Singularities, Proceedings of symposia in pure mathematics of the AMS. Volume 40 , part .
[Gr] Grothendieck. A.: Techniques de construction et théorèmes d'existence en gèometrie algébrique IV: Les schémas de Hilbert. Sem. Bourbeki 221 (1960/61).
[H] Hirschowitz, A.: Le group de Chow équivariant. C. R. Acad. Sc. Paris t 298 (1984) 87.
[I]] Iarrobino, A.: Punctual Hilbert Schemes. Memoirs of the AMS, No 188 (1977).
[I2] Iarrobino, A.: Deforming complete intersection Artin algebras. In Singularities, Proceedings of symposia in pure mathematics of the AMS. Volume 40, part 1.

