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On the homomorphism between the equivariant SK ring
and the Burnside ring for involution
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(Received November 28, 1984)

1. Introduction.

Let G be a finite abelian group, A(G) the Burnside ring and SK_{*}^{G} the
G-equivariant “cutting and pasting ring” In [3] Kosniowski proposed

that we have a homomorphinsm SK_{*}^{G}arrow A(G) and what we can say about
this homomorphism. In this note, we consider the case of G=Z_{2}

Let y=[Z_{2}]\in SK_{0}^{Z_{2}} , y_{i}=[RP(R\cross\tilde{R}^{l})]\in SK_{i}^{Z_{2}} for i\geqq 0 and \alpha=[RP^{2}]\in

SK_{2} then we have the following relations.
THEOREM 3. For any integers m, n\geqq 0 ,

(1) y^{2}=2y (2) yy_{2m+1}=0 (3) yy_{2m}=\alpha^{m}y (4) y_{2m}=y_{2}^{m}

(5) y_{2m+1}y_{2n}=y_{2m+2n+1}+\alpha^{m}y_{2n+1}-\alpha^{m+n}y_{1}

(6) y_{2m+1}y_{2n+1}=\alpha^{m+n}y_{2}+\alpha^{mn+1}y2+\alpha^{nm+1}y2+y2-m+n+12\alpha^{m+n+1}y, as ring

structure of SK_{*}^{Z_{2}} .
This theorem is proved by using results of Kosniowski (Theorem 1 and

Corollary 2). Moreover, we have the next corollary.

COROLLARY 4. As SK_{*} -algebra SK_{*}^{Z_{2}}\cong SK_{*}[y, y_{1}, y_{2}, y_{3}]/\mathscr{I} , where \mathscr{I}

is an ideal generated by the above relations with 0\leqq m, n\leqq 1 .
Let \phi : SK_{*}^{Z_{2}}arrow A(Z_{2}) be a natural map \phi([M])=[M] . Then \phi is a

well-defined SK_{*} -algebra homomorphism. Where we regard A(Z_{2}) as SK_{*}

-algebra induced by \phi .
Let A_{1}=\alpha y_{0}-y_{0}

;
B_{1}=\alpha y-y, C_{1}=y_{1}-2y_{0}+y, D_{1}=y_{2}-y_{0} and E_{1}=y_{3}-y_{1} .

Then we have the following theorem.
THEOREM 10. If \mathscr{L} is the SK_{*} -subalgebra of SK_{*}^{Z} generated by \{ A_{1} B_{1}

C_{1} D_{1} E_{1}\} then the sequence
0^{->}\mathscr{L}^{l}arrow SK_{*}^{Z_{2}}arrow A(Z_{2})arrow 0\phi

is a short exact sequence and splits as ring, where \iota is an inclusion
homomorphism.

This theorem is obtained by the tom Dieck’s formula (Proposition 5),

linear algebra and the relations of Theorem 3. We consider the structure of
SK_{*}^{Z_{2}} in section 2, and we shall prove the theorem 10 in section 3.
Throughout this paper G always denotes a finite abelian group.
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2. The structure of SK_{*}^{z_{2}} .
In this section, we first recall some basic facts about the SK_{*}^{G} , and then

we determine the SK_{*} -algebra structure of SK_{*}^{Z} .
Let M^{n} be a closed n-dimensional smooth G-manifold. Let L\subset M

satisfy the following properties,
(1) L is a G-invariant codimension 1 smooth submanifold of M ,
(2) L has trivial normal bundle in M , and
(3) the normal bundle of L in M is equivariantly equivalent to L\cross R

with trivial action of G on the real numbers R .
If we cut M open along L, we obtain a manifold M’ with boundary

\partial M’=L+L . Then by pasting these two copies of L together via some other
equivariant diffeomorphism we obtain a closed n-dimensional G-manifold
M_{1} . We say that M_{1} has been obtained from M by equivariant cutting and
pasting.

DEFINITION 2. 1. If M_{1}^{n} has been obtained from M^{n} by a finite sequence of
equivariant cuttings and pastings, then we say that M_{1} and M are SK^{G}

equivalent.
This is an equivalence relation on the set of n-dimensional G-manifolds.

The equivalence classes form an abelian semigroup if we use disjoint union
as addition. The Grothendieck group of this semigroup is then dentoted by
SK_{n}^{G} . If G=\{1\} , then SK_{n}^{G} is denoted by SK_{n} . The equivalence class
containing the G manifold M is denoted by [ M] . SK_{*}^{G} is defined as \Sigma_{n\geqq 0}

SK_{n}^{G} . Then SK_{*}^{G} is a module over the SK_{*}=\Sigma_{n\geqq 0}SK_{n} . where SK_{*} is the
integral polynomial ring on the real projective space [RP^{2}] , (cf. [3]2.5.1 )
The module operation is given by [RP^{2}]^{m}[M^{n}]=[(RP^{2})^{m}\cross M^{n}] , where we
consider (RP^{2})^{m} has the trivial G action and (RP^{2})^{m}\cross M^{n} has the diagonal
G action. Moreover, SK_{*}^{G} is a graded ring with multiplication by [ M^{m}]

[N^{n}]=[M^{m}\cross N^{n}] , where M^{m}\cross N^{n} has also the diagonal G action. The
zero element of SK_{*}^{G} is the class of empty set [\phi] and the identity element
is [pt] , where pt is a point with trivial action.

For G=Z_{2} the SK_{*} module structure of SK_{*}^{Z} has been determined by
C. Kosniowski as follows.

THEOREM 1. (KOSNIOWSKI [3] 5. 3. 7.) SK_{*}^{Zi} is a free SK_{*} module with
basis \{[Z_{2}], [RP(R\cross\tilde{R}^{i})] : i\geqq 0\} , where \tilde{R} denotes the real numbers with
Z_{2} acting via multiplication by -1.

COROLLARY 2. (KOSNIOWSKI [3] 5. 3. 7.) Let M, M’ be n-dimensional Z_{2} -

rmnifolds and let F_{0} F_{1} \ldots F_{n}(F_{\acute{0}} , F_{1}’ \ldots.F_{\acute{n}}) be the fixed point sets of
M(M’) of codimension 0, 1, \cdots . n respectively. Then M and M’ are SK^{Z_{2}}
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equivalent if and only if \chi(M)=\chi(M’) and \chi(F_{i})=\chi(F_{i}’) for i=0,1 , \cdots

n, where \chi(M) is Euler characteristic of M.
Now, we can determine the ring structure of SK_{*}^{Z_{2}} by making use of the

above results. We denote y=[Z_{2}]\in SK_{0}^{Z_{2}} , y_{i}=[RP(R\cross\tilde{R}^{l})]\in SK_{i}^{Z_{2}} for
i\geqq 0 and \alpha=[RP^{2}]\in SK_{2} . Then we have the following relations.

THEOREM 3. For any integers m, n\geqq 0 ,
(1) y^{2}=2y (2) yy_{2m+1}=0 (3) yy_{2m}=\alpha^{m}y (4) y_{2m}=y_{2}^{m}

(5) y_{2m+1}y_{2n}=y_{2m+2n+1}+\alpha^{m}y_{2n+1}-\alpha^{m+n}y_{1}

(6) y_{2m+1}y_{2n+1}=\alpha^{m+n}y_{2}+\alpha^{mn+1}y2+\alpha^{nm+1}y2+y2-m+n+12\alpha^{m+n+1}y, as ring
structure of SK_{*}^{Z_{2}} .

Proof. Compare the Euler characteristics of the fixed point sets of both
sides of these equalities. Then we can obtain the above relations by
Corollary 2. q . e . d .

Next we consider the SK_{*} -algebra structure of SK_{*}^{Z_{2}} . Then we can
reduce the relation (5) to the following.

(5’) y_{2m+3}=y_{3}y_{2}^{m}-(y_{3}- \alpha y_{1})\sum_{i=1}^{m}\alpha^{i}y_{2}^{m-i} for m\geqq 1 .
This is proved by induction on m. Therefore any element of SK_{*}^{Z} can be
expressed as a SK_{*} -polynomial of y, y_{1} . y_{2} , y_{3} with relations of Theorem 3.
And y, y_{1} , y_{2} , y_{3} have no any other relations, because Euler characteristics of
fixed point sets are SK^{Z_{2}} invariant. So we have next corollary.

COROLLARY 4. As SK_{*} -algebra SK_{*}^{Z_{2}}\cong SK_{*}[y, y_{1} y_{2} y_{3}]/\mathscr{I} , where \mathscr{I}

is an ideal generated by the relations with 0\leqq m, n\leqq 1 of Theorem 3.

3. The relations between SK_{*}^{Z_{2}} and A(Z_{2}) .
Let M and N be the closed smooth G-manifolds. We define another

equivalence relation as follows.
M–N if and only if the H fixed point sets M^{H} and N^{H} for all subgroups

H of G have the same Euler characteristics \chi(M^{H}) and \chi(N^{H}) . Denote
by A(G) the set of equivalence classes under this equivalence relation, and
denote by [ M]\in A(G) the class of M (we use conveniently same notation
as the element of SK_{*}^{G} ). The disjoint union and the cartesian product of
G-manifolds induce an addition and multiplication on A(G) . Then A(G)
becomes a commutative ring with identity [pt] .

DEFINITION 3. 1. We call A(G) the Burnside ring of G.

Let M be a G manifold and H be a subgroup of G. Then we define
M_{H}=\{x\in M|G_{\chi}=H\} , where G_{x} denotes the isotropy group at x . Now we
note that we consider only G a finite abelian group. So the next formula is
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the special case of tom Dieck’s one ([2], 5. 5. 1)

PROPOSITION 5. Additively, A(G) is the free abelian group on [ G/H]
and any element [ M]\in A(G) have the relation

[M]= \sum_{H\subset G}\chi(M_{H}/G)[G/H]

By this formula, we have the following.
LEMMA 6. A(Z_{p})\cong Z[x]/(x^{2}-px) for any prime integer p.
Proof. A(Z_{p}) is a free abelian group generated by [Z_{p}] and [ Z_{p}/Z_{p}] . We

set x=[Z_{p}] , 1=[Z_{p}/Z_{p}] . Then x^{2}=[Z_{p}\cross Z_{p}]=\chi(Z_{p})[Z_{p}]=px , because the
action of Z_{p} to Z_{p}\cross Z_{p} is the diagonal, q . e . d .

DEFINITION 3. 2. Let [M]\in SK_{*}^{Z_{2}} , then [M] can be naturally regarded
as the element of A(Z_{2}) . We denote this correspondence by \phi : SK_{*}^{Z_{2}}arrow A

(Z_{2}) . Then \phi is a well-defined ring homomorphism by Corollary 2.
By this ring homomorphism, the generators of SK_{*}^{Z_{2}} are mapped as

follows.
LEMMA 7. \phi(y)=x, \phi(y_{2n+1})=2-x, and \phi(y_{2n})=1 for n\geqq 0 , where

x=[Z_{2}] and 1=[Z_{2}/Z_{2}] .
Proof. \phi(y)=x is a trivial. Next we recall y_{2n+1}=[RP(R\cross\tilde{R}^{2n+1})] .

Let \phi(y_{2n+1})=a+bx for a, b\in Z. Then \chi(RP(R\cross\tilde{R}^{2n+1}))=0 and \chi(RP

(R\cross\tilde{R}^{2n+1})^{Z_{2}})=2 , so a=2 and b=-1 . Therefore \phi(y_{2n+1})=2-x .
Similarly we obtain \phi(y_{2n})=1 . q . e . d .

Next let us calculate Ker \phi .
LEMMA 8. Ker\phi is generated by \{\alpha^{i}y_{2j}-y_{0} \alpha^{k}y_{2l+1}-2y_{0}+y, \alpha^{m}y-y\} ,

where i, j, k, l\geqq 0 (except for i=j=0) and m\geqq 1 .
Proof. For any fixed n\geqq 0 , let [ M] be in Ker\phi and let it be the SK_{*}

linear combination as follows,
[M]=_{0\leqq i+j\leqq n} \sum a_{i}^{\gamma}\alpha^{i}y_{j}+\sum_{0\leqq k+l\leqq n}b_{k}^{l}\alpha^{k}y_{2l+1}+_{0\leqq m\leqq n}\sum c_{m}\alpha^{m}y, for a_{i}^{J} , b_{k}^{l} , c_{m}\in Z.

Now \phi(\alpha)=1 , so by Lemma 7,
\phi([M])=\sum_{0\leqq i+j\leqq n}a_{i}^{J}+2\sum_{0\leqq k+l\leqq n}b_{k}^{l}+(\sum_{0\leqq m\leqq n}c_{m}-\sum_{0\leqq k+l\leqq n}b_{k}^{l})x.

Then we have the conclusions by the linearly independent solutions of
next simultaneous equations.

\{

\sum_{0\leqq i+j\leqq n}a_{i}^{j}+2\sum_{0\leqq k+l\leqq n}b_{k}^{l}=0

\sum_{0\leqq m\leqq n}c_{m}-\sum_{0\leqq k+l\leqq n}b_{k}^{l}=0 . q . e . d .

Since SK_{*}\subset SK_{*}^{Z_{2}} , we may consider A(Z_{2}) as SK_{*} -algebra via \phi (cf.
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[1] Chapter 2). In this case, for [ M]\in SK_{*} , [N]\in A(Z) [ M][N]=
\phi([M])[N]=[M\cross N] and \phi is algebra homomorphism.

Now we reduce the above generators in order to get the minimal set of
generators of Ker\phi as SK_{*} -subalgebra.

Let A_{i}=\alpha^{i}y_{0}-y_{0} . B_{j}=\alpha y-jy, C_{1}=y_{1}-2y_{0}+y, D_{k}=y_{2k}-y_{0} and E_{l}=

y_{2l+1}-y_{1} for i, j, k, l\geqq 1 . Then we can reduce these relations as follows.
LEMMA 9.

(3. 1) A_{i}= \sum_{s=1}^{i}\alpha^{i-s}A_{1}

(3. 2) B_{j}=\sum_{s=1}^{j}\alpha^{j-S}B_{1}

(3. 3) D_{k}= \sum_{s=0}k1 (\begin{array}{l}ks\end{array}) D_{1}^{k-S}

(3. 4) E_{l+1}=E_{1}(D_{1}+1)^{l}+ \sum_{s=1}^{l}(D_{1}+1)^{l-s}\{E_{1}(2-\alpha^{s})+(\alpha^{s}-1)(2A_{1}-B_{1}+

\alpha C_{1}-C_{1})\} , where i, j, k, l\geqq 1 .
Proof. We can easily obtain (3. 1) and (3. 2) by induction on i and j

respectively. We have (3. 3) by the relation
D_{k+1}=D_{k}D_{1}+D_{k}+D_{1}

In order to get (3. 4), we deform E_{l+1} as follows.
E_{l+1}=y_{2l+3}-y_{1}

=y_{2l+1}y_{2}-\alpha^{l}y_{3}+\alpha^{l+1}y_{1}-y_{1}

=(y_{2l+1}-y_{1})(y_{2}-y_{0})+(y_{2l+1}-y_{1})+y_{1}y_{2}-\alpha^{l}(y_{3}-\alpha y_{1})-y_{1}

=E_{l}D_{1}+E_{l}+2_{f\acute{3}}^{\alpha}-\alpha y_{1}-\alpha^{l}(y_{3}-\alpha y_{1})-y_{1}

=E_{l}D_{1}+E_{l}+2E_{1}-\alpha E_{1}l+(\alpha^{l}-1)(\alpha y_{1}-y_{1}) ,

where \alpha y_{1}-y_{1}=2(\alpha y_{0}-y_{0})-(\alpha y-y)+\alpha(y_{1}-2y_{0}+y)-(y_{1}-2y_{0}+y)=2A_{1}-

B_{1}+\alpha C_{1}-C_{1} We set \beta=D_{1}+1 , \gamma_{l}=E_{1}(2-\alpha^{l})+(\alpha^{l}-1)(2A_{1}-B_{1}+\alpha C_{1}-

C_{1}) , then E_{l+1}=E_{l}\beta+\gamma_{t} Thus we can obtain (3. 4) by induction on l.
q . e . d .

While we have
(3. 5) \alpha^{i}y_{2j}-y_{0}=\alpha^{i}D_{j}+A_{i} and
(3. 6) \alpha^{k}y_{2l+1}-2y_{0}+y=\alpha^{k}E_{l}+2A_{k}-B_{k}+\alpha^{k}C_{1}

Therefore, by Lemma 9, we see that A_{1} B_{1} C_{1} D_{1} and E_{1} are minimal
set of generators of Ker\phi as SK_{*} -subalgebra of SK_{*}^{Z_{2}} . Then we have the
following theorem.

THEOREM 10. If \mathscr{L} is the SK_{*} -subalgebra of SK_{*}^{Z_{2}} generated by \{ A_{1}-

B_{1} C_{1} D_{1} E_{1}\} then the sequence
0arrow \mathscr{L}arrow SK_{*}^{Z_{2}}arrow A(Z_{2})arrow 0-\phi

is a short exact sequence and splits as ring, where \iota is an inclusion homO-
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morphism.
Proof. By the above argument \mathscr{L}=Ker \phi , so the exactness is trivial.

The split map \psi : A(Z_{2})arrow SK_{*}^{Z_{2}} is given by \psi(1)=y_{0} and \psi(x)=y. By

Theorem 3 and Lemma 7, we see that \psi is a split ring homomorphism.
q.e.d .
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