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On the homomorphism between the equivariant SK ring
and the Burnside ring for involution

By Hiroaki KosHIKAWA
(Received November 28, 1984)

1. Introduction.

Let G be a finite abelian group, A(G) the Burnside ring and SK§ the
G-equivariant “cutting and pasting ring”. In Kosniowski proposed
that we have a homomorphinsm SK $—A(G) and what we can say about
this homomorphism. In this note, we consider the case of G=2,.

Let y=[Z,]ESK¢:, y:= [RP(RXR))|€SK?#: for i=z0 and a=[RP?] €
SK, , then we have the following relations.

THEOREM 3. For any integers m, n=0,

D y*=2y (2 Wewn=0 3)  yem=am™y 1) %m=3%

(B)  Yem+1Ven = YVomszntr T & ™ Vons1— a™ "y

6)  VomsVonsi=a™ ™ +a™ Fltaty P4y I —2a™™y, as  ving
structurve of SKZ-.

This theorem is proved by using results of Kosniowski (Theorem 1| and
Corollary 2). Moreover, we have the next corollary.

COROLLARY 4. As SK ,-algebra, SKZ:=SK , [, 2, Y2, 35]/.#, where &
is an ideal generated by the above relations with 0=m, n=<1.

Let ¢ : SK2*—>A(Z,) be a natural map ¢([M])=[M]. Then ¢ is a
well-defined SK ,-algebra homomorphism. Where we regard A(Z,) as SK«
-algebra induced by 6.

Let Ai=ayo—%, Bi=ay—y, CG=»—2%+y, Di=%—% and E;=3;— .
Then we have the following theorem.

TuroreM 10. If & is the SK . -subalgebra of SK ¢ generated by {A,, B,
C,, D, , E} then the sequence
0 7>SK 25 A(Z )0
is a short exact sequence and splits as ring, wheve  is an inclusion
homomorphism.

This theorem is obtained by the tom Dieck’s formula ([Proposition 9,
linear algebra and the relations of [Theorem 3. We consider the structure of
SK Z in section 2, and we shall prove the theorem 10 in section 3.
Throughout this paper G always denotes a finite abelian group.
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2. The structure of SK%,

In this section, we first recall some basic facts about the SK'$, and then
we determine the SK , -algebra structure of SK Z.

Let M"™ be a closed n-dimensional smooth G-manifold. Let LC M
satisfy the following properties,

(1) L is a G-invariant codimension 1 smooth submanifold of M,

(2) L has trivial normal bundle in M, and

(3) the normal bundle of L in M is equivariantly equivalent to L X R
with trivial action of G on the real numbers R.

If we cut M open along L, we obtain a manifold M’ with boundary
oM’=L+ L. Then by pasting these two copies of L together via some other
equivariant diffeomorphism we obtain a closed #n-dimensional G-manifold
M,. We say that M, has been obtained from M by equivariant cutting and
pasting.

DEFINITION 2. 1. If M7} has been obtained from M *by a finite sequence of
equivariant cuttings and pastings, then we say that M, and M are SK¢
equivalent.

This is an equivalence relation on the set of #-dimensional G-manifolds.
The equivalence classes form an abelian semigroup if we use disjoint union
as addition. The Grothendieck group of this semigroup is then dentoted by
SKS. If G={1}, then SK¢ is denoted by SK,. The equivalence class
containing the G-manifold M is denoted by [M]. SK¢ is defined as 3,=,
SKS. Then SK¢ is a module over the SK ,=3,.,SK,, where SK, is the
integral polynomial ring on the real projective space [RP?], (cf.[3]2.5.1)
The module operation is given by [RP2|™"[ M"]|=[(RP?»™x M"], where we
consider (RP? ™ has the trivial G action and (RP?» ™x M " has the diagonal
G action. Moreover, SK¢ is a graded ring with multiplication by [M™]
[N?]=[M™N"|, where M™xX N" has also the diagonal G action. The
zero element of SK ¢ is the class of empty set [#] and the identity element
is [pt], where pt is a point with trivial action.

For G=2,, the SK , module structure of SK Z has been determined by
C. Kosniowski as follows.

THEOREM 1. (Kosntowskr [3] 5.3.1.) SK Z is a free SK , -module with
basis {[Z,], [RP(RXR)];i=0}, where R denotes the real numbers with
Z , acting via multiplication by —1.

COROLLARY 2. (Kosniowskr [3] 5.3.7.) Let M, M’ be n-dimensional Z ,-
manifolds and let F, , F,, -, F,(F§, F{, -, F;) be the fixed point sets of
M(M") of codimension 0,1, -+, n respectively. Then M and M’ are SK?:
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equivalent if and only if x(M)=x(M") and x (F)=x(F7) for i=0,1, -,
n, wheve x (M) is Euler characteristic of M.

Now, we can determine the ring structure of SK Z: by making use of the
above results. We denote y=[Z,]€SK#:, v.=[RP(RxR)|SK?: for
120 and a@=[RP?*]&SK,. Then we have the following relations.

THEOREM 3. For any integers m, n=0,

(D ¥*=2y 2 Wmar=0 Q) Wm=a™ @) Bw=y¥

(B YemirYon=Yomszni1 + & ™oni1—a™ "y,

(6) y2m+1y2n+1:am+ny2+a,my £z+1_+_a,ny ;n+1+y 5n+n+1_2a,m+n+1y, as ring
structure of SKZ-.

Proof. Compare the Euler characteristics of the fixed point sets of both
sides of these equalities. Then we can obtain the above relations by
Corollary 2 q.e.d.

Next we consider the SK ,-algebra structure of SKZ:. Then we can
reduce the relation (5) to the following.

() Yemis=3y5— (—ay) 2 Lia’yy ™ for m=1.

This is proved by induction on m. Therefore any element of SK Z can be
expressed as a SK ,-polynomial of v, v, , ¥, , v with relations of [Theorem 3.
And y, ., ¥, , y5 have no any other relations, because Euler characteristics of
fixed point sets are SK?* invariant. So we have next corollary.

COROLLARY 4. As SK , -algebra SKZ%=SK [y, v, ¥, %]/ .7, wheve #
s an ideal gemevated by the relations with 0<m, n<1 of Theorem 3.

3. The relations between SKZ: and A(Z:).

Let M and N be the closed smooth G-manifolds. We define another
equivalence relation as follows.

M ~ N if and only if the H -fixed point sets M and N ¥ for all subgroups
H of G have the same Euler characteristics ¥ (M) and x (N¥). Denote
by A(G) the set of equivalence classes under this equivalence relation, and
denote by [ M ]€A(G) the class of M (we use conveniently same notation
as the element of SK$). The disjoint union and the cartesian product of
G-manifolds induce an addition and multiplication on A(G). Then A(G)
becomes a commutative ring with identity [p¢].

DEeFINITION 3. 1. We call A(G) the Burnside ring of G.

Let M be a G manifold and H be a subgroup of G. Then we define
M,={xeM|G,=H}, where G, denotes the isotropy group at x. Now we

note that we consider only G a finite abelian group. So the next formula is
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the special case of tom Dieck’s one ([2], 5.5.1)
PropoSITION 5. Additively, A(G) 1s the free abelian group on [G/H |
and any element [ M €A(G) have the velation

(M=% x(M,/G)[G/H]

By this formula, we have the following.
LEMMA 6. A(Z)=Z[x]/ (x?*—px) for any prime integer p.
Proof. A(Z,) is a free abelian group generated by [Z,] and [Z,/Z,]. We
set x=[2,], 1=[2,/2Z,]. Then x*=[Z,XZ,|=x(Zy|Z,] =px, because the
action of Z, to Z,X Z, is the diagonal. q.e.d.

DEFINITION 3. 2. Let [M]ESKZ:, then [M] can be naturally regarded
as the element of A(Z,). We denote this correspondence by ¢ : SKZ:—A
(Z,). Then ¢ is a well-defined ring homomorphism by Corollary 2.

By this ring homomorphism, the generators of SKZ%: are mapped as
follows.

LEmMMA 7. dV)=x, Mn)=2—x, and ¢ ) =1 for n=0, where
x=[Z,] and 1=(Z,/Z,].

Proof. ¢ (y)=x is a trivial. Next we recall y2n+1:[RP(R><]?2"“)].
Let ¢ (3on)=a+bx for a, b€Z Then x(RP(RXF"))=0 and x(RP
(RxR1)%)=2 so a=2 and b=—1. Therefore ¢ (Yoni1)=2—x.
Similarly we obtain ¢ (y,,) =1. g.e.d.

Next let us calculate Ker .
LEmMA 8. Ker ¢ is generated by {a'y;— o, a*Voi—2%+y, a™—y},
wheve 1, 7, k, [ =0 (except for i=7=0) and m=1.
Proof. For any fixed =0, let [M] be in Ker ¢ and let it be the SK ,
linear combination as follows,

[M]_ 2 a{aiyj+0§k§l§nbllzaky21+l+0§§§ncmamyx for ai:} bllzy CMEZ'

T 0=it+j=n

Now ¢ (a)=1, so by Lemma 7,
S(MD=,_2 o+ 22 pit( 2 ¢,

0<itj=n 0sk+i<n 0sm=n"M O0zk+isn

bi)x.

Then we have the conclusions by the linearly independent solutions of
next simultaneous equations.

2 gt 23 pi—g

0=si+j=n 0sk+i=n
Y
0§m§ncm Osktisn k 0 g. €. d

Since SK ,C SK %:, we may consider A(Z,) as SK ,-algebra via ¢ (cf.
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Chapter 2). In this case, for [M]€SK,, [N]€A(Z) [M][N]=
¢ ((MD[N]=[MxN] and ¢ is algebra homomorphism.
Now we reduce the above generators in order to get the minimal set of
generators of Ker ¢ as SK ,-subalgebra.
Let A;=avov—%, B=a’y—y, C=y»—2%+y, Di=3%:—3% and E,=
Vo1 —W for 1,7, B, [=1. Then we can reduce these relations as follows.
LeEmMA 9.

3.1) A= a4,
(3.2) B,— i_laf—SB

k:I k
3.3) D=5 %D

B3.4) Eu=ED+D 2 (D+ DS BQ—a)+(a'— 1D (24~ B+

aCi—C)}, where 1,7, k, [ =1.
Proof. We can easily obtain (3.1) and (3.2) by induction on 7 and j;
respectively. We have (3.3) by the relation
D...=D.Di\+D,+ D, .
In order to get (3.4), we deform E,,, as follows.
Eii=Yui3—
=Vode—alys+aty —y
= (O =) (= 30) + Qo1 —3) + 0¥ — @' (s —an) —n
=ED+E+2y—ay—a'(B—ay) —n
=ED+EA+2E —a'E + (a'=1D) (an— ),
where  ay—yn=2Cay—y) —(ay—y) +a (3 —2%+y) — (O —2y%+y)=2A,—
B+aC—C . We set g=D+1, vv=EC—a’)+(a’'—1)2A,— B, +aC,—
C)), then E,,,=E,8+7v,. Thus we can obtain (3.4) by induction on /.

q.e.d.
While we have

(3.5 av,—yw=a'D;+A,;, and

(3.6) a*yy—2%+ty=a*E,+2A.,—B,+a*C, .

Therefore, by Lemma 9, we see that 4,, B,, C,, D, and E, are minimal
set of generators of Ker ¢ as SK ,-subalgebra of SK'Z:. Then we have the
following theorem.

THEOREM 10. If & is the SK , -subalgebra of SK?Z: generated by {A,,
B, C, D, E\} then the sequence

075 SK 25 A(Z )0

s a short exact sequence and splits as ring, wherve ¢ is an inclusion homo-
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morphism.
Proof. By the above argument &= Ker ¢, so the exactness is trivial.
The split map ¢ : A(Z,)—SKZ: is given by ¢¥(1)=y,, and ¢(x)=y. By

and Cemma 7, we see that ¥ is a split ring homomorphism.
g.e.d.
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