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1. Introduction. In considering the homotopy classification of the maps
of a CW complex into any topological space X, we are led to the problem of
enumerating the homotopy classes of extensions of a given map u: PJ—>X
over a larger complex TOP. We examine this for the case in which L—K
consists only of disjoint cells, for maps and homotopies relative to a base point
koEK.

For a given map u: (K, ko)—>(X, x0), we define in §2 for each aEtrq(K, k0)
a homomorphism

Otu- ITliff,  U) —» Tq+l(X,  Xo)

where 5 is the function space of maps (K, ko)^>(X, x0). If L = K\Jeq+1 is
formed by attaching the cell eq+1 by a map in the class a, and if u extends
over L, then we prove that the homotopy classes (rel k0) oi extensions are in
1-1 correspondence with the cokernel of au- This may easily be generalized
to a complex P = PJU {ec-+1} such that the e5«+1 are disjoint.

The difficulty lies in computing au, even when the group iri(3, u) is known.
We show how au can be computed when K is a cluster of spheres: the result
is given in terms of a, its Hopf invariants (including the higher Hopf invari-
ants in the sense of Hilton [3]), the homotopy groups of X, and the opera-
tions of composition, suspension, and formation of Whitehead products.
This covers, for example, the case when 7 is a sphere bundle over a sphere
with a cross-section, such as the product of two spheres.

In §7 we give applications of the theory to two other problems; the
more important of these is a formula for expanding a Whitehead product of
the form [a o y, /?]. It should be noted that the Whitehead product we use
(§4) differs from that defined by J. H. C. Whitehead by a sign.

2. Homotopy groups of function spaces. Let K be a CW complex. The
function space XK of maps ( = continuous functions) is given the compact-
open topology. Then the natural function 0: X<-KXT)—+(XK)T, given by

(*/) (0 (*)=/(*,<), kEK,tET,
is a homeomorphism if P is a CW complex such that KXT, given the product
topology, is also a CW complex (the proof is elementary; cf. [2] and [9] for
other cases in which 0 is a homeomorphism). Notice that if 7 is the unit
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58 W. D. BARCUS AND M. G. BARRATT [May

interval, then KXI is always a CW complex. It is convenient to identify
XKx' and (XK)' by means of 6.

Notation. A fixed base point will always be chosen in each space, and
denoted by a subscript 0: thus, &o£7£, x0£X. The only exception is that
0 = (0, • • • , 0) will be the base point in 7"; the base point in KXln will be
(ko, 0). The function space, with the compact-open topology, of maps (K, k0)
—>(X, Xo) will in the future be denoted by XK; no ambiguity will arise, since
no further reference will be made to the space of maps 7C—>X. The domain
space K will always be assumed to be a CW complex, k0 a vertex.

Let u: (K, k0)-^(X, x0) be a map; it follows from the first paragraph of
this section that we may equally well represent elements of iri(XK, u) as
homotopy classes of maps

F:I^XK such that 7(0) = u = 7(1),

or

F: (KXI, hXI) -> (X, xo) such that F(k, 0) = u(k) = F(k, 1),      k £ K.

Therefore a map g: (Q, q0)—^(K, k0) induces a homomorphism

g*:iti(XK, «)->x,(X«, ug)

by g*{£} = {F(gXl)}, where 1 is the identity map of 7 and

g X 1: (Q X 7, oo X 7) -> (K X I, h X I)

is the product map.
Now a path L in XK from w0 to ui is equivalent to a homotopy

L: (KXI, koXl)—>(X, Xo) from u0 to «i; the path L defines an isomorphism
in the usual way from the homotopy groups based at U\ to those based at
Uo: we write for this

(2.1) Lt: wi(XK, Mi) -» ti(Xk, uo).

Lemma (2.2). g*Lf = (L(gXl))fg*: iri(XK, m)-*iri(X<i, u0g).

Let go, gi: (Q, qo)—>(K, *o), and let G: (QXI, qoXI)—>(K, k0) be a homo-
topy from go to gi. Then

Lemma (2.3). gt = (uG)tg*: wi(XK, m)-^tti(Z«, ug0).

The proofs of these elementary lemmas are omitted; it is easy to deduce
from them

Corollary (2.4). If g is a homotopy equivalence, then g* is an isomorphism.

Suppose now that (Q, qo) = (S", s0), where we consider S'> = s0[Jeq as a
CW complex with a characteristic map

i": (/«, U) -» (5«, 5„)
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1958] EXTENSIONS OF A FIXED MAP 59

which is a homeomorphism of Iq — I" onto eq of degree +1. Let v: (Sq, s0)
-*(X, xo), and define tr*: (SqXl, s0XI)->(X, x0) by v*(s, t)=v(s), for sES",
tEI- We then define

(2.5) »„: 7ri(Zs9, ») -> x5+i(X, xo)

as follows: for {F} ETrx(Xs", v), »n{P} is the value of the separation ele-
ment(') d(F, v') on the cell (e9Xe1, s0X0) with the product orientation, where
e1 = I — I. It is readily verified that

Lemma (2.6). v^ is an isomorphism; and if M is a homotopy from v to v',
then fjj = v^Mt.

Now let go, gi: (Sq, so)^>(K, k0), let G be a homotopy from g0 to gi, and let
uEXK. Then

(wgo)ngo = (ugo)k(uG)tgi    by (2.3),

= («gi)iigi by (2.6).

Hence the homomorphism (wg)i,g* depends only on the homotopy class
aEirq(K, ko) of g, and we may define

(2.7) au = (ug)ng*: iri(XK, u) -> tt9+i(Z, xo).

Lemma (2.8). 7/7 is a homotopy from u0 to Ui, then aul = aUoLt.

The lemma follows from (2.2) and (2.6).
3. The classification theorems. We now explain the use of au in homotopy

classification. First, let L = K\Jeq+1, where eq+l has an attaching map
g: (Sq, So)—>(7C, k0) in a homotopy class a£7r9(P, k0). Then a map m: (P, fe0)
—*(X, Xo) has an extension to (L, k0) if and only if

(3.1) «*a = 0.

If this is satisfied, let/o,/i be two extensions of u such that there is a homotopy
77: (7X7, k0XI)->(X, x0) from /0 to /. Then P7=77| (KXI, k0Xl) deter-
mines an element {77} Etri(XK, u): we shall prove

Lemma (3.2). The value of the separation element d(fi,fo) on the cell (eq+1, k0)
is au{77} Eirq+i(X, Xo).

From the lemma we deduce

Theorem (3.3). Let u: (K, k0)—*(X, x0) extend to (L, k0). Then the homo-
topy classes rel ko of extensions are in 1-1 correspondence with the elements of the
cokernel of au, i.e. of irq+x(X, Xo)/auirx(XK, u).

The lemma leads in fact to a more general result: let I=IU(e«i+1J,
where the cells eqi+1 are disjoint, and each possesses an attaching map

P) Cf. Appendix.
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60 W. D. BARCUS AND M. G. BARRATT |May

g,-: (Sqi, s0)—>-(K, ko) in a class a,£irgi(77, k0). Set C(L, K) = S^+iC^. xo),
the strong sum, where the homotopy groups are indexed by the cells of
7 —77; a map u: (K, k0)^>(X, x0) extends to (L, ko) if and only if M*a,- = 0 for
all i. Then the homomorphisms («;)„ together define

au:in(XK, u) ~^C(L, K)

such that the coordinate of au(£) in irqi+i(X, x0) is (a,)u(£).

Theorem (3.4). Let u: (K, ko)-^>(X, xa) extend to (L, k0). Then the homo-
topy classes rel k0 of extensions are in 1-1 correspondence with the elements of the
cokernel of au, i.e. with the cosets C(L, K)/auiri(XK, u).

We now prove (3.2)-(3.4); we first need an elementary lemma which
will be used again later.

Let P be a finite CW complex on 7" such that 0 = (0, • • • , 0) is a vertex.
Let {a"} be the set of ra-cells of P, and let the orientation of each, given by
the chosen characteristic map c„: (7", I", 0)—>(<j", &", pa), agree with the
orientation induced by inclusion in 7". For each a let T„: (I, 0, 1)—»(£, 0, pj)
be a path in P. Suppose that h', h: (P, 0)—>(X, x0) agree on P"_1. Then the
separation element d(h', h) on (a, pj) has a value 5„£7r„(Af, hpj). Treating 7"
as a CW complex with just one ra-cell in the usual way, we also have a separa-
tion element d(h', h) on (7", 0) with a value oEnrn(X, x0).

Lemma (3.5). 5= z^,(hTa)toa, where # denotes the operation of the path on
the homotopy group, and the summation is over all a£ {an}.

Since all paths T„ for a given p„ are homotopic in 7", (hT„)t does not de-
pend on the choice of T„. Notice that an equivalent result holds with 7"
replaced by a sphere S", taking in as the characteristic map of the cell e"
= S"-s0.

The proof of this lemma is omitted.
Proof of (3.2). We identify (S", s0) with (/«+', 0), and write j=j": (Sq, s0)

-*(iq+1, 0) for the identity map. We first show that the triple (L, K, ko)
= (Iq+1, S", 0) is a universal example. Let the cell eq+l in L = KVJeq+1 have
characteristic map g: (IQ+1, S", 0)—>(7C, K, &0),and attaching map g = f | (Sq, 0).
Let el+1 = Iq+1 — S" have characteristic and attaching maps j, J, the identity
maps; and using the notation of (3.2), set fi =fig, fd=fog, H' = H(gXl),
H' =H(gXl), u' = ug. Suppose that (3.2) holds for the universal example, so
that d(fi ,fo) = W {77' j, where t is the class of /, and the separation element
is evaluated on (el+1, 0). Then if a*(/i, fo) is evaluated on (eq+1, ko) we have

d(fufo) = d(fi,fi) = iu'{H'} = u<j*{H'}
= MH'{77'} = (ug^{H(gXl)}
= (ug)tg*{H}  = a„{H},

from the definitions.
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1958] EXTENSIONS OF A FIXED MAP 61

We now prove (3.2) for the universal example by means of an explicit
construction. The separation element d(fi, fo) on (eq0+1, 0) is represented by
the map E: ((7«+1X7)\ 0)->(-X\ x0) given by

'     Mf), t=l       )pEI°+\tEI,
E(p, t) = <fi(p) =fo(p),   0<K1 [(p, o E {I*1 x iy

■      MP), t = 0.       J
Take a cellular decomposition of 7«+2= (79+1X7)' such that P+1=0We«;
7«+1 = 7«+1Ue«+1; 7 = 0UlUe'. Thus

/«+2 = (/>+i x 7 \J 0 X 7) U («"+! X 0) W (eq+1 X 1) W (e9 X e1)-

Now H agrees with E on the g-section of I'l+2, and also on the cells e?+1X0,
e8+1XL Hence, by using Lemma (3.5) for a sphere, and noting that the
orientation of eqXe1 is opposite to that induced by inclusion in Iq+2, the
separation element 7(771 (7"+1X7)', E) on (75+2, 0) is equal to minus the ele-
ment 7(77|P+1X7, p|/9+IX7) on (e"Xe\ 0). But maps of (7«+2, 0) into
(X, Xo) determine elements of irq+i(X> xo), so that the former separation ele-
ment is

{77|(P+'X7)-} - {P} =0- {P} = - {P};

and since 771 Iq+1XI = H, E\ lq+lXl = u*, the latter separation element is

d(H, u]')(e" X e\ 0) = u^{h} by definition,

= ukj*{H} =tB{77}.

Hence d(fx, f0)(Iq+1, 0)=^,{77}, which proves (3.2) for the universal exam-
ple.

Proof of (3.3). The homotopy classes rel K of extensions of u are in 1-1
correspondence with the elements of 7r<,+i(^T, x0); they may be distinguished
by the separation elements of representative maps. Let fo, /i be two exten-
sions of u for which there is a homotopy H rel ko from/0 to/i. Then by (3.2),
the separation element on (eq+l, ko) is contained in auiri(XK, u). Conversely,
if fo, /i are two extensions of u such that d(fi, /„) =aM {77}, with 77: (KXI,
k0Xl)-^(X, Xo), let 77 be an extension of 77 to PX7 such that H(p, 0)=fo(p),
PEL, and define /': (L, k0)^(X, x0) by /,' (p) = H(p, 1). Then by (3.2),
d(f(, fo)=otu{H}=d(fi, fo). Hence d(fx, //)=0, and /i~/,' rel K. Since
// ~/0 rel ko, /i^/o rel k0.

Proof of (3.4). If L=K\j{eqi+l} is formed by attaching a set of cells to
K, we may alter K within homotopy type so that the base point ko lies on
the boundary of each cell; this does not change the group rri(XK, u) by more
than an isomorphism. Then, if u extends to two maps/0,/i: (L, k0)^>(X, x0),
the maps determine an element d(fi,f0)EC(L, K) such that the coordinate of
d(fi,fo) in 7Tei+](Z, xo) is d(fh fQ)(eqi+1, k0) (which may be defined in the sub-
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complex KKJeqi+1). Then it is easy to show from Lemma (3.2) by the method
used in the proof of (3.3) that /0 and /i are homotopic if and only if there
exists {77} Etti(Xk, u) such that d(fu fo)(eqi+1, k0) = (oa)u{H} tor all i. The
theorem then follows at once.

An alternative proof of the above two theorems can be obtained by con-
sidering homotopy sequences of the fibering XL—>XK induced by the inclusion
KQL.

4. The addition, product, and composition theorems. In this section we
give three theorems which are useful in the computation of the homomor-
phism au.

Let a, P£:irq(K, k0), m£Xk, ££iri(Xx, u); and let • denote the operation
Of TTl On  7Tr.

Theorem (4.1) (Addition Theorem). If a>l,

(« + 0)«(f) =«.(©+Aft);
if Q=l (so ^at w*a£7Ti(X, x0)), then

(a + /3)u(£) = «„({) + («*«) •&($).

Thus if q>l, the transformation (a, £)—->«„(£) is a pairing of irq(K, ko)
and iri(XK, u) to irQ+i(X, x0); if q = l, the transformation might be called a
crossed pairing. We shall prove the theorem later, by means of an explicit
construction.

Now let y€;irm(K, k0), 8Eirn(K, ka) be represented by maps/: (Im, Im)
—>(K, ko) and g: (In, In)—*(K, ko) respectively. Then the Whitehead product
[y, 5] is defined to be the class of the map p: (Im+n, 0) = (7mX7"U7"1X7", 0)
—>(K, ko) given by

p(s, t) = f(s), seim,tein
g(t), *£7", *£7\

Notice that because of our orientation conventions (cf. Appendix), [y, 8] is
not the same as that defined by J. H. C. Whitehead in [8]; we write the latter,
defined by using homology orientations, as [y, 8]'. The relation is easily seen
to be [y, 5] = (-l)m+"-1[y, 8]'.

Let uEXK, ££tti(Xx, u).

Theorem (4.2) (Product Theorem), [y, §]„(£) is given by

(i)        -[«*y, «„({)] + (-l)"+1[y„(5), «♦«] if m, n > 1;
(ii)       -[w*y, «.({)] + (-l)"+1[T„a),«*7«*S] ifw=l,ra>l;
(iii)      -[«*«■ «*7, «„(£)] + (-l)n+1[yu(Z),u*8] ifw>l,ra=l;

(iv)      -[u*8u*y, 8u(£)] - (-1)"+im*5- [y«(£), -(u*yu*8)]     if m = n = 1.

If we agree to use irr for r> 1 as a trivial group of operators, then (iv) is
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1958] EXTENSIONS OF A FIXED MAP 63

seen to include the other formulae. The proof will be given in §8.
Two simple consequences of (4.2) are the following:

Corollary (4.3). IfyETrx(K, k0), SEir„(P, ko), n>l, then

(yo)u(Z) = «*y •«»({) - [yu(Q, «vy ■«*«].

This follows from (4.2) (ii) and (4.1), since y-5= [y, 5]' + 5 = (-l)"[y, 5]
+ 5.

Now let a = P(8i, ■ ■ • , 5„) be a multiple Whitehead product formed from
the ordered set 5i, • • • , 5S (5,£7rni(P, k0), nt>l) by the insertion of s — 1
brackets [ ]. Let P< denote the product P(w*5i, • • • , (5j)„(£), • • • , w*5s)
formed in the same way, but with 5^ replaced by w*5y iij^i, and 5,- by (bi)u(0-

Corollary (4.4). a„(£) = 5Z.- + P.-, where the signs are determined by P and
the integers «,-.

The proof is by repeated application of (4.2) (i). For example,

[Si, [02, «,]]„(*) = [«*8i, M2, (8i).£]]
+ (-lH«*5i, [(«,)„{, m*S3]]
+ (-l)n'+n^l[(8iU, [u*82,  «*«,]].

We now use (4.1) and (4.4) to simplify au when a=/3o<p, (^Etrn(K, k0),
<PEtrq(Sn, So)). To express the result we need certain of the higher Hopf in-
variants of cj> (cf. [3]); the definition of these depends on a choice of basic
products cOiEtrri(Sn\/S^, s0), «:=2, as defined and ordered in [3], with
co_2 = in, «_i = tn, respectively the generators of ir„(5"V5o, so) represented by
maps of degree +1 of 5" onto Sn and S^. Then it is shown in [3] that

CO

(4.5) (t" + t") o 4, = i" o <p + to o cj> + 23 «»o 77,(</>),
0

where Hi(cj>)ETrq(Sri) is termed a higher Hopf invariant of cp.
For elements y, 5 in the homotopy groups of any space F, define induc-

tively cr0(y, 5)= [7, S], • • • , ap(y, 5)= [y, ov_i(y, 5)]. Then it follows from
the ordering in<tn chosen above that o"j,(t", tn) is a basic product of weight
p + 2 for p^O. If <r„(iB, i") =o>ip, write Bp(cj>) = Hiv(cj>), the corresponding
higher Hopf invariant. Let 5* be the suspension homomorphism.

Theorem (4.6) (Sphere Theorem). Let cj>Eirq(Sn), n^2, vEXs", and
let f E-Tn+i(X, Xo). PAew

co

^t-rKf) = f 0^*0 + E (-l^+v^t", f) o5*5p(0).
0

In particular, the sphere theorem allows us to compute any homomor-
phism of the fundamental groups of the loop spaces wi(QnX, v)—>iri(llqX, vf)
induced by a map /: Sq—*Sn.
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Let |8, cp, u, £ be as above, and let b: (Sn, s0)^>(K, k0) be a representative
map for p\ Then it follows from the definitions that

(4.7) (0o *)„(£) = 4>ub(ub)rlputt).

Theorem (4.6), together with (4.7), yields

Corollary (4.8) (Composition Theorem).
CO

(j8o *)„({) = ft,({) o5*0 + zZ (-l)H-iffp(«,/8, pu(i)) oS*Bp($)-
0

In particular, if g<3ra-2, then Bp(4>)=0 for all p>0, and Bo(<p)=H(<j>),
the generalized Hopf invariant. The formula then reduces to

(4.9) 08 o 4>)u(k) = Putt) o 5*0 - [utfi, ̂ tt) ] o 5*77(0).
Proof of (4.1). Let a, b: (Sq, so)-+(K, ko) represent a, /3 respectively. De-

noting by i = iq: (I", Iq)—>(S", 50) a characteristic map for the cell eq = Sq — s0
as before, we can represent a+/3 by c: (Sq, s0)—>(K, ko), defined by

ci(h, ■ ■ ■ ,tq) = ai(2h, ti, ■ ■ ■ , tq) if h S 1/2
= bi(2h - 1, h, ■ • • , tq) ith^ 1/2.

Let F: (KXI, koXl)->(X, x0) represent ££7r,(XA', u); then

(4.10) (a + 0)„({) = d(F(c X 1), u>(c X l))(eq X e\ s0 X 0),

where el = I — I.
Let the subsets I\, I\<Z.Iq be determined by hSi/2, ti^ 1/2, respectively,

and define cells ai, a2C79X7 as the interiors of I\XI, IlXl, with base points
p1 = 0 = (0, • • • , 0), p2 = (l/2, 0, • • • , 0) respectively. Let T be a path from
0 to p2 given by T(t) = (t/2, 0, ■ ■ ■ ,0). Applying (3.5) to the separation ele-
ment in (4.10), we obtain

(a + /?)„(£) = d(F(ci X 1), «Kd X  l))(<n,   Pi)
+ («*(« X l)T)td(F(ci X 1), u<>(ci X l))(<n, pj)

= autt) + (uci T)t(3utt).

If q> 1, uciT is the constant path; if a =1, it represents w*a. This proves (4.1).
In order to prove (4.6) we need the following lemma:

Lemma (4.11). Let<p€iirq(Sn, s0), r£x„+i(X, xn). Then

4>*t(*o)*\?) = f ° 5*4>-
Proof. Let F: (S"XI, s0XI)-*(X, x0) represent (xa)^ (so that F(SnXl)

= x0), and let r: 5*X7—>5i+1 be the identification map, of degree +1, which
pinches Skxi^JsaXl to a point. Then the following diagram commutes,
where/ represents 0, and F' = Fr~l:
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/ X  1 F
(Sq X/,5«X/WsoX 7)-► (S« X I,S"XIVJsaXI) -*J.X, xo)

ir {r      ^^F'

(S"+\ so)-—-► (S"+\ Jo)

Clearly

f = (xo)n{7} = d(F, »o)(e" X e\ sQ X 0) = {P}.

And similarly

4>X(>{F} = d(F(fX 1), Xo(/X l))(eq X e\ s0 X 0)
= {F'(Sf)} = {F'} oS*tf> = f oS*4>.

Proof of  (4.6).  Let g: 5"-^5"V5" represent tn + t", and  let  u=v\fx0:
S"VSo*->X. We identify

niX^yf'i, u) = ^(X5" ») + 7n(Xs", x0)

in the natural way, so that elements of the group may be written (v^rj,
(x0)^lf), for t], %EirnMX, Xa); and we further abbreviate this notation to
(v, f). It is easily verified that

(4.12) il(v, f) = 77,        ("o)u(v, f) = f.
Then

((f + r0) o0)u(o, f) = *„B(«g)71(" + to)«(o, f)
(4.13) = </>„ff(Mg)7Y by (4.1), (4.12),

= 0ti'=i f by (2.6), (2.8) since v ̂  wg.

On the other hand, we have the expansion of (4.5)
CO

(4.14) (t" + t") o 4> = T o 4> + to o ct> + 2Z «< ° 77,(0),
0

and we may apply the addition theorem to the left-hand side of (4.13) in
this expanded form. Since w*i" = 0, it follows from (4.4) that the expression

(wo H{(4>))u(0, f) = (77,(4>))*0(x0>V-)u(0, f)
is 0 if Wi involves tn more than once. By definition {o-„(i™, t")}, p=— 1, 0,
1, ■ • • consists of those basic products which involve t" only once. If a>,p = o-„,
then writing Pp(0) =Hip(4>), we have by induction

Op(t , t0)„(0, f)  =   —   [«*t , (7p_i(t  , t0)„(0, f)]

= (-l^V^t", (^«(0,f))
= (-1)      crp(v*", f),
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using (4.12) and the fact that w*i" = o*tn. Hence

(ap(", Jo) o Bp(<b)U0, f) = (5p(0))IO(o:o)^1((-l)P+1aP(j;*tn, f))
(^-15) „,P+1      ,       n       .        „   „   ,   .

= (-1)      <rp(»*i ,f)o5*5p(0)
by (4.11).

Applying the addition theorem to the left-hand side of (4.13), expanded
as in (4.14), and using (4.12) and (4.15) to calculate the terms, we obtain
the expression in Theorem (4.6).

5. Examples. Using the notation of (3.3), let L = KKJeq+1, where the class
of the attaching map is a£7ra(77, k0), and let u: (K, ko)—>(X, x0) have an ex-
tension over L. Then to classify the extensions of u, we must compute au;
and the theorems of the preceding section allow this to be done in certain
cases. In particular, if we know the homomorphisms (8t)u for certain elements
8t(E:irnt(K, ko), then we may compute au for any a formed from the 8t by
the operations of addition, formation of Whitehead products, and composi-
tion with elements of homotopy groups of spheres. In the special case K
= 5niV • • • V5"r, Hilton has shown that all elements of the homotopy
groups of K can be so formed from the generators tni, • • • , i"r.

As an example, let K = Sm\/Sn, with mSn, and suppose for simplicity
that q<3m — 2. Let v, w denote the classes of v = u| Sm, w = u\Sn respectively.
We identify

in(XK, u) = vi(Xsm, v) + ^(X5", w)

in the natural way. Abbreviating (17, f) = (^1»7, wjj"1?). ^£irm+i(X, x0),
r£?r»+i(-X\ Xo), we compute au(y, £)E.irq+i(X, x0). Leaving aside the cases
m = 1 or ra = 1,

t,(K) = irq(Sm) + xt(S*) + [tm, 1"] OTa(5»+"-1);

let a = an+ai+[i,m, iB]o/3, where ai£irg(5m), a2£7r3(5"), pEirq(Sm+n-1).
Then

<*u(v, r) = («0.fa, f) + (**)»(v, ir) + ([»", i']ofi)u(v, f).
Now from (4.6)

(<*i)u(v, f) = 1 o5*ai — [v, v] o5*77(ai),

(«»)«(i», f) = f o5*a, - [«, f] o5*F(a2)

and from (4.2) and (4.8), since 0 is a suspension,

(h^lo^WU) = (-hf] + (-l)»+i[i,,co])o5*0.
This determines olu(v, f) as a sum of these expressions. If m = n = l, then au
can be found by the addition theorem. It m = l<n, then a is a sum ^£,-ai,
£.£tti(51), «,-£7rg(5n). a„ is then given by the addition theorem and (4.3).
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As a special case of the example, we consider maps S^XS^—>5", n>,2;
here a= [tn, t"]. If v, w have degrees p, q respectively, p, q^O, we say that
an extension of u is of type (p, q). The obstruction to such an extension is
M*[l"> Li]=Pl[''n, l"]. Suppose that u has an extension: then the homotopy
classes of extensions are in 1-1 correspondence with Tr2n(Sn)/<xu(v^1'irn+i(Sn),
w^V„+i(5")). The subgroup contains only the elements 0, q[in, 77], p[i", 77],
if n S: 3, where 77 is the generator of 7r„+i(5n). Now Hilton and Whitehead have
shown [4] that [i", 17] ?^0 if and only if «=1 mod 4. Hence, using known re-
sults on Whitehead products,

Example (5.1). There exist maps S^XS^^S", re^2, of type (p, q), p, q^O,
if and only if n is odd, and either pq is even or 7r2n+i(Sn+1) has an element of
Hopf invariant 1. Suppose that p, q, and n are such that maps do exist. Then
the homotopy classes of such maps are in 1-1 correspondence with the ele-
ments of ir2n(Sn) if p and q are both even, or if n= — 1 mod 4; otherwise they
are in 1-1 correspondence with the elements of

Sr2„(5»)/[l», Tn+l(Sn)]   =   *2n(S")/Zi.

Other examples are easily given; for instance
Example (5.2). The identity map Sn—>S" always extends to maps

SnXSn~1—>5"; the homotopy classes of extensions are in 1-1 correspondence
with the elements of 7r2„_i(5")/[tn, Trn(Sn)]^S*ir2nMSn).

Example (5.3). Let u be a map of Sl\/Sl into the real projective plane
which is nontrivial on both circles. Then there are two homotopy classes rel So
of extensions of u to S1XS1.

6. An application: the group of homotopy equivalences. We shall outline
an application of the above methods to the group of homotopy classes of
homotopy equivalences of a space with itself, denoted Eq.

Let K be a 1-connected CW complex, and let K\Jeq+l be formed by at-
taching a cell eq+x, g>dim K, with ctEirq(K) the class of the attaching map
and a£7r9+i(PJWe5+1, K) the class of the characteristic map. Let

i:KCKVJ eq+1

be the inclusion, and define a homomorphism

d*: i*wq+i(K) -* Eq(K \J C+1)

as follows: d*(0) is the homotopy class of an extension g of i such that
d(g, l)(eq+1) =l3, where 1 denotes the identity map of K\Jeq+l. Since g>dim K
if / is a homotopy equivalence of KUeq+l, then /*3 = e(/)a, where e(/) = +1.
We also define homomorphisms

/: Eq(K W eq+1) -► Eq(K),       j*: Eq(K W eq+l) -> Eq(Sq+1),

byj*{f} = {f\K},j*{f}=e(f)Lq+\
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Theorem (6.1). The following sequences are exact:

HTq+i(K)-► Eq(K yj eq+l) ——> Eq(K), ii 2a ^ 0;

Hwq+i(K)-► Eq(K \J eq+i)-* Eq(K) + Eq(Sq+1),    it 2a = 0.

From Lemma 7 of [6] it follows that the image of j* is the set of classes
{h} such that h*a= +a; denote this subgroup by Eqe(K). The image of
j*+j* is then Eqe(K) +Eq(Sq+1), if 2a = 0. The kernel of d* is

i*wq+i(K) r\aiTi((K U e5+1)x, i)

where the base point k0G.K is any point of eq+1. Methods were given in the
previous sections for calculating at if A' is a bunch of spheres, so that in this
case we can find Eq(KKJeq+l) up to extension.

The operations of Eqe(K), or Eqe(K) +Eq(Sq+1), on i*irq+i(K)/i*irq+i(K)
r\ct(iri are given as follows: Let y Girq+i(K),\f/ = {h} EEq(K), ei«+1£Ea(S«+1).
Then

(i)   If 2a 5^0, then i/--(7*7) =1*^*7;
(ii)   If 2a = 0, then (\p, et9+1) • (i*y) = ei*/t*7.

The extension is not known to us, in general.
7. Further applications. In this section we shall show how the theory of

§§2-4 can be applied to obtain information about Whitehead products.

Theorem (7.1). If yGirq(Sm), then in irq+n-i(Sm\/5") we have [imo7, t"]
= [i- i"]o5**-17+I;(-l)('+1)("+V('M, i")oStlBv(y), for m, n>l,

where o-p+i(im, i") araa* Bp(y) are defined as in (4.6).

Proof. Using the elementary relation

(7.2) ki1]-*1-*-*. for, £ x,(5-),

to expand both sides of the identity (t1 • tm) o y = t1 • (im 07), we obtain

(7.3) ([im, t1] + tm) 07 = [i-oy, t1] -fi-o).

Now as shown in the addition theorem, if u^XK, ££7ri(Xx, u), then the
transformation (u, £):irq(K, ko)-*irq+i(X, x0) given by (u, £)a = a„(£) is a
homomorphism for q>l. Taking K = Sm\/S\ X = Sm\/S2, u such that M*tm
= Lm, M*t' = 0, and f such that C(£) = 0, ii(£) = i2, and applying (u, £) to both
sides of (7.3), we obtain by use of the composition theorem

CO

(- [1- t2] + 0) 05*7 + E (-1)P+VP(0 + r, - [1- i2] + 0) o5*5p(7)

= - [ro7,t2] +0;

using the definition of ap+i(im, t"), this yields the equation in (7.1) for the
case w = 2.

We can now prove (7.1) by induction on ra. Suppose that (7.1) holds for
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n, and apply (u, ij) to both sides of the equation, with K = Sm\/S", X
= Sm\/Sn+1, u such that «*im = tm, w*in = 0, and £ such that C(£)=0, in(£)
= tn+1. We obtain

r m n+l-, r m     n+ln n- [t   o y, t     J = - [t , t     Jo 5*y

+ Z(-1) (-1)     °>+i(' > «    )o5*PJ,(7)
0

which yields the required equation for n + l. This proves (7.1).
Theorem (7.1) may be used as a universal example to derive

Corollary (7.4). If yEirqiSm), aGir»(I), t3Eirn(X), m, n>l, then
[aoy, p]=[a, /3] o Sf ly + Zo" (-l)(*+1>("+1VP+i(a, |3) o ST^M-

The corollary generalizes a formula of G. W. Whitehead [5, (3.59)] for
the case in which y is a suspension.

As a further application, we give a simple inductive proof of the Jacobi
identity for Whitehead products in irv+q+r-i(SvV' Sq\JSr) (cf. [3] et al.).
With our conventions for the Whitehead product, the identity is given by

Theorem (7.5).

i-iy+Hl*,»«], d + (-i)(r+iHk, *j, t«]
+ (-l)(*fM[t«. *'].''] =0, P,q,r^2.

Proof. It is elementary that the following relation holds in ir2(S2\/Sl\/Sl):
i1, W, io]= U1!-2, t1^]- Expanding both sides by (7.2),

(7.6) [[t , t0], i ] + [t , t0] = [[t , t ] + t , [t0, t ] + t0J.

Choosing K = SWSlVS\ X = S2VS20\/S2 uEXK such that m*i2 = i2,
«*4 = 4, uW = 0, ZEirx(XK, u) such that t2(|) = (t2)u(£) =0, 4(£)=t2, and
applying (tt, £) to both sides of (7.6) we obtain - [[t2, i2,], t2]= [t2, [i2,, i2]]
+ [[t2, i?], ^] which yields (7.5) ior p = q = r = 2.

Suppose inductively that the identity of (7.5) holds for p, q, r. Taking
K = S*VSq\/S*, X = SvySq\/S*+1, uEXK such that tt*i" = i*>, «*i« = i«,
tt*i' = 0, and £Eiri(XK, u) such that i£(£) =4(£)=0, £(£) = ir+1, by applying
(w, £) to both sides of the equality in (7.5) we obtain the same equality with
r replaced by r + 1. This proves (7.5).

The proof could equally well start with the relation i1- [tj, t}]= [t'-tj, t1 • tj]
which can be verified purely formally.

Notice that if we apply homomorphisms (u, £) to both sides of (7.6) with
u and £ appropriately chosen to raise the dimensions of t2 and i2,, but leave
i1 fixed, then we obtain a generalization of the Jacobi identity for the case
in which one factor is of dimension 1; this can be written
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+ (_i)(f«,[[.., ti], tP] + [[ti, ,.*], [t«f ,i]] = o.

Equation (7.7) also follows directly from the properties of the operation of
7Ti, in the manner of (7.6)

Theorem (7.5) is a universal example for the Jacobi identity in the
homotopy groups of any space.

8. Proof of the product theorem. We shall now prove Theorem (4.2). As
universal examples for K, y, and 8 we take Sm\/Sn, im, and tn respectively.
Then if K, y, and 8 are arbitrary, there is a map h: 5mV5"—>7C such that
/i*im = y and h*in = 8. Since

h, 8]u = (h*[i , t ])„ = [t , t ]Uhh*,

and 7«=C/s*, 8u = i"»h*, one verifies immediately that Theorem (4.2) for the
general case follows if we have proved it for the universal example.

Let w: Sm-*X, v: Sn->X define u = w\/v: Sm\JSn->X; we identify
Ti(Xsmvsn, u)=in(Xsm, w)+iri(Xsn, v) under the natural isomorphism, so
that there is a natural isomorphism (to7"\ v^1): irm+i+irn+i—*iri(Xsmvs'', u),
where irk = irk(X, xj). Let

k = [im,   t"]„(wr1, vf1): ""m+1 + 7r„+i—>7rm+n;

let o), v denote w*im, v*in, and let X£irm+i, p£xn+i. Then Theorem (4.2) for the
universal example can be written

(i) k(\, P) = - [co, p] + (-IJ-mIA, v] iim,n> 1,
(ii) K(\, p) = - [co, P] + (-l)"+1[X,co-,] ifm=l,»>l,

(iii) k(\, p) = - [vo=, P] + (-1)"+1[X, v] if m > \,n = 1,

(iv) k(\, p) = — [v-u, p] — v- [X, — (co-v)] if m = ra = 1.

We write the fundamental group additively, and shall first deduce (8.1)
(iv) from the addition theorem. In this case Sm\/Sn = S1\/Sl, and we set
i = t™, i' = i". Then for

£ = (wr% vmxp) £ ti(Xs^s\ u),

it is clear that iu(£) =X, t„'(£)=p. Now [i, i'] = (i' + t) -(i + t'), and

(»' + 0.tt) = •«'(*) + «•»'•«.(!) = p + "-x.
Since

(-(• + O + (t + 0)-tt) = (-('+ 0).(€) + (-(« + "))•(' + 0.(0,
(-(i + 0).(8 = - (-f-c*)-(x + «.-p).

Therefore
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«(x, p) = [h i'].(«) = ((»' + 0 - (t + o).tt)
=  p +  K-X  —   (V + W) •((-!»  -  W)-(X + CO-p))

(8.2)
= v ■ (X — (co — v — co) • X) + p — (v + co — v) • p

=   - V-[\, W ( — «/)]  -   [p, *•«].

This proves (8.1)(iv).
We can now suppose that m+n>2; if we prove that

K(°, p) = - [w, p] if » > 1,

= — [vo, p] if n = 1,
it will follow that

k(X, 0) = [t , t ]„(«m X, vn 0) = ((-1)    [t , t ]).(wi, X, vn 0)
=   (_l)m„+l[„jX]       0J.      (_l)»fl[w.v>X]

= (-1)"+1[X, v]    or    (-1)"+1[X, »•?]

according as m>l or m = l. Then (8.3) implies that k(X, p) =/c(X, 0)+k(0, p)
is given by (8.1)(i), (ii), or (iii), and we need only prove (8.3).

Consider the case (X, x0) = (Sm\/Sn+1, s0), w=jm, the identity map of Sm,
v = So, p = tn+1, where m, n^l and m+n>2; we prove by considering repre-
sentative maps that

Lemma (8.4). In this case k(0, tn+1) = — [tm, in+1].

Proof. [im, in] is represented by p: im+n = (ImXl")'->Sm\/Sn,

Piy, y') = im(y) if y E lm, y' E /»,
= in(y') if y E lm, y' E 7".

Define maps P, P: ((SmVS") XI, ^oX7)-^(5'"\/5n+1, s0) by

E(z, t) = z, zESm,tE I,
= so, zE Sn;

F(z, t) = z, z E Sm,
= in+1iiin)-1iz), 0, iG 5".

Then   F(pXl),  P(pXl): (P"+"X7,   0X7)^(5«"V5"+1,   s0)   agree  on   /»+»
X7W0X7; and since Prepresents (O'm)^_10, j0VlB+1)Giri(Zsmvs", M), we have

<t(0, c»+1) = <7(F(p X 1), (P(p X l))((P»+» - 0) X 7, 0 X 0).

Extend F(pXl), E(pXl) over p"+n+1 = /"•+"X7W7m+nX7 to 7,  P respec-
tively, as follows: for yEIm, y'EIn, tEI define

F(y, y', t) = t»(y) if y' E /»,
= i"+1(>'', 0 = so if y G /"*;
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and the same for E. F and E are readily seen to be the canonical maps repre-
senting [im, in+l] and [im, 0] respectively; also, F and E agree on 7",+"X7U0
X7. Setting em+n+1 = Im+n+1 — 0, and applying Lemma (3.5) as in the proof
of (3.2), it follows that d(F(pXl), E(pXl))=d(F\lm+nXI, E\tm+nXl) on
((/•»+»-0)X7, 0X0) is equal to -d(F, E)(em+"+\ 0). Thus

K(o, t»+i) = - d(F, E)(em+"+l, 0) = - ({7} - {E}) = - {F}  =  - [i">, i»+i]

which proves (8.4).
The space Sm\/Sn+l in (8.4) is a universal example for the case v = xa; for,

given any [X, Xo), w, p, there exists g: (Sm\/Sn, So)—>(X, x0) such that
g\(Sm, so) =w and |g|5"+1}=p.

Corollary (8.5). k(0, p) = — [co, p] ifv = x0, with X, w, p arbitrary.

Now let all of X, w, v, p be arbitrary. Define h=jm\Jh!: (Sm\JSn, sj)
->(5mV'S\\J'SI, sj), where h': S"-+S\\JS\ is such that h£in = %. + %. Let
v=(xo\/v)h'; then h*:iri(X&m^s>sl, wVxoVv)^Tri(Xsm^s", w\/v). We
identify the second group with iri(Xs , w)+iri(Xsn, o), and treat the first
similarly. Then it is clear from the definition of b] as a separation element,
and from the definition of h*, that

*    —i        —i       —l —l      —i
h (wk X, xo* pi, v$ pj) = (w<a, X, n (pi + pj)).

Let 717 be a homotopy rel Sm from w\jv to u = w\Jv; under the above identi-
fication Mf = ((M\ 5">)#, (M\ Sn)t). Since vk = (M\ 5")#o„ by (2.6), and (717| Sm)f
is the identity,

M$(w<* X, n (pi + pj)) = (w* X, v\ (pi + pj)).

Setting r = w\jXo\/v,
r m     n n-, r m     n. r m     n. i-m     "l,      , ^
[<■       tl +  I2]r  =   (h*[l   , I  J)r =   |l   , I   Irhh*   =   [l   , I   J„il7#/«*

and hence
. m     n, —1 —1

«(0, p) = p , <• J«(wli °> W p)

(8.6) = [i , i ]„M»A*(wii 0, £0Np, i"i 0)
[m     n n-i        —1 —1 —1

l   , ll + ll\r(w*   0, a^P, Oil   0).

Ifw^l,ra>l, then it follows from the addition theorem that [im, ti + i^jr
= Um, t?]r+ [im, i"]r- The first term yields [im, Cl]r(w^0, z^p, z^O) = - [co, p]
by (8.5), while the second term yields 0. Hence

(8.7) k(0, p) = - [co, pl formal, ra > 1.

If m>l, n = 1, then
[m      n n-, . n n       m m . n     m      n-, r m      n.

I    ,   H  +   IjJ   =   (ll  +   l2)-l      —   I      =    Ll2 " I    >   lU   +   U    >   l2j •
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Applying the addition theorem, and noting that the second term again gives
0,

r m     n nl        —1 ~l        ~* r n    m     n.        —1 —1 —1
(8.8) [t  ,11+ ii\r(wn 0, x0iip, vn  0) =  [t2t  , ix\r(wk 0, XokP, Vk 0).

Let k = l\Zjnx:(SmVSn, So)-+(S">VSnxVS2', s0), where / represents t"f", so
that rk represents v co on 5"1 and 0 on Sn. Then &*: irx(Xs"'s/S'iSs'i,r)
—>TTi(Xsmvsn, rk) is clearly such that

k*(wk 0, x0kp, v\ 0) = (/ii 0, x0kp).

Since **[i-  »"]=[£•»-, ij],
[n    m     n-t   .    —1 —1 —1   , r rn     ni       4/    —1 —1 —1

Hi, <.x\T(wk 0, XoNp, vk 0) = [t , t Jri**(wii 0, x0iip, »* 0)

= [t , t ]rt(/ii 0, Xokp) = — [f-co, p] by (8.5).

Equations (8.6), (8.8), and (8.9) yield

(8.10) k(0, p) = - [vai, p] iim>l,n=l.

Equations (8.7) and (8.10) together prove (8.3), and hence Theorem (4.2).
Appendix. Separation elements
Let 7" be the subset of Euclidean «-space consisting of w-tuples of real

numbers (yi, • • • , yn), OSyiSl, oriented by the generator of 77„(7", 7")
represented by the identity map of 7" in the cubical singular theory. Let
7n_1 be the closure of the subset of I" ior which y„ < 1, and let 7n_1 be the sub-
set of 7" for which y„ = l. If x0EAQX, then elements of irn(X, A, x0) are
represented by maps/: (7", 7", 7n_1)—>(X, A, x0), and the boundary operator

d: vn(X, A, x0) —> irnMA, Xo, Xo) = jr„_i(.4, x0)

is defined by d{f} = {/| I^1}- If we identify (5—1, s0) = (in, 0), where
0 = (0, • • • , 0), then the specification of the boundary operator determines
an orientation of S1"-1 (cf. [7, §4]). It is to be noted that this is not the
orientation given by the homology boundary.

Let ht: (In, 7", Jn~l, 0)-*(7n, 7", Jn~l, 0) be a homotopy such that ho
= identity, hx(Jn~1) =0. ht determines a 1-1 correspondence between the sets
of homotopy classes of maps g: (7", 7\ 0)—>(X, A, x0) and the elements of
irn(X, A, Xo) by {g}—^{g^i}, and similarly between the homotopy classes of
maps g': (In, 0)—*(A, x0) and the elements of irnMA, Xo). Using this cor-
respondence, we may represent elements of irn(X, A, x0) and irn-X(A, x0) by
maps of (In, 7", 0) and (In, 0) respectively.

We define separation elements as follows (cf. [l] for the original defini-
tion). Let K be a CW complex(2) and let oEK be an ra-cell with characteristic
map ca: (7", I", 0)—>(cr, a, pc), where p,Ea is a point. If/, g: (cr, p,)->(X, x0)

(2) A fixed choice of characteristic map for each cell is implied in the definition of a CW
complex.
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agree on a, they determine a separation element d(f, g)(<r, pj)^irn(X, xj),
represented by 7": (7n+1, 0)—>(X, x0),

fca(yi, ■ ■ ■ , y») if yn+i = 1,

F(yi, • • • , y„+i) = ■ /c«(yi, • • • , y») = gc,(yu • • • , y„)        0 < yn+x < 1,

■gc»(yi» ■ • • ,y») if y»+i = o.
Thus d(f, g)(<r, p,)=d(fca, gcj)(In, 0)  (we shall not bother to distinguish
between the open and the closed cell, provided this causes no confusion).

It follows from the orientation convention that if /(a) =Xo, g(a) =Xo, then
d(f,g)(v,p.)-{fc}.
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