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ON THE HOTEL OVERBOOKING PROBLEM- 
AN INVENTORY SYSTEM WITH STOCHASTIC 

CANCELLATIONS* 

VARDA LIBERMANt AND URI YECHIALIt 

M hotel rooms are available at a date n periods from now. Reservations are made by 
customers for that date, which is at the peak of the high season. Typically, for such a time 
period, a policy of overbooking is exercised by the hotel management. Customers, however, 
may cancel their previously confirmed reservations at any time prior to their arrival, with no 
penalty. On the other hand, new requests for rooms for that particular date are generated 
anew. At the end of each period the hotel management reviews both the "inventory" level of 
remaining uncanceled (previously confirmed) reservations and the total number of not-yet- 
confirmed new requests. At that time a decision is made regarding the inventory level of 
confirmed reservations with which to start the next period. A decision is one of three actions: 
(i) to keep the inventory at its present level (i.e., declining all new requests); (ii) to increase the 
level of overbooking by confirming some of the new requests and, if necessary, by trying to 
obtain some additional reservations (at some extra cost); (iii) to decrease the level of 
inventory by canceling some of the previously confirmed reservations (incurring a penalty for 
each such cancellation). Each occupied room at the target day carries a given profit, while 
each unhonored reservation at that time incurs a penalty. The problem is to find the optimal 
over-booking strategy that will maximize net profit. 

For both criteria, maximization of the expected total net profit, and maximization of the 
expected discounted net profit, it is shown that the optimal strategy is a 3-region policy as 
follows: For each period there exist upper and lower bounds and an intermediate point such 
that, (a) if the overbooking level at the end of a period is greater than the upper bound, it 
should be decreased to that bound; (b) if the inventory level is below the lower bound, two 
cases may occur: (i) if the discrepancy is greater than the number of new requests, all new 
requests should be confirmed and additional reservations should be acquired such that the 
inventory level will be equal to the lower bound; and (ii) if the discrepancy is smaller than the 
number of new requests, some of the new requests are confirmed but the inventory level may 
not exceed the intermediate point; (c) if the inventory level is between the two bounds there 
are two possibilities: (i) if it is above the intermediate point none of the new requests are 
confirmed, but (ii) if it is below that point, some of the new requests should be confirmed 
provided that the new inventory level will not exceed the intermediate point. 

Introduction 

The hotel overbooking problem arises as a consequence of the option given to 
prospective guests to cancel their reservations-with no penalty-at any time prior to 
their arrival date. As a means of (partially) overcoming this problem, hotel manage- 
ments practice overbooking, expecting that, due to (probabilistic) cancellations, the 
number of actual "show ups" at a given date will be as close as possible to the hotel's 
nominal capacity. The problem then is to find the optimal overbooking policy such 
that some measure of effectiveness, say expected profit, will be maximized. 

The day-to-day handling of overbookings is a complicated and tedious task. In this 
study we focus on overbooking problems arising at a specific period of time where 
demand for rooms is high and the number of room-requests exceeds the hotel's 
nominal capacity. We restrict ourselves to a single day (e.g., New Year's Eve), or a 
given period of time which is "sold" as a single entity. We consider a hotel (or part of 
it) in which all rooms are assumed to be identical with regard to their contribution to 
the hotel's income. Several months before the target day the hotel offers an option to 
"buy" some portion of its rooms to various agents. The remaining capacity is "sold" 
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by the hotel's management itself. The agents will keep their options until some 
predetermined time before the target date, and then release the unsold rooms. (No 
direct monetary costs are involved in taking or releasing the options. It is just that 
both sides are interested in these arrangements for various reasons which will not be 
discussed here.) The time interval from the moment the agents release their unsold 
rooms until the target day is divided into n periods and at the end of each period a 
decision is made by the hotel management regarding the level of confirmed reserva- 
tions. Two competing processes are in effect: (i) customers with confirmations cancel 
their reservations in some random manner, and (ii) new requests for rooms for the 
target day are randomly generated. The hotel management wishes to keep the number 
of overbookings at a controlled level: not too high and not too low. In case it is too 
low, some or all of the new requests are confirmed. If it is still too low, an effort is 
usually made to "sell" more rooms to the above mentioned agencies or to some other 
organizations. In such situations an attractive deal is offered, usually at a lower rate 
per room, or a higher commission is given to the agents for their extra effort in selling 
rooms. We term this discount in price or the higher commission given as the cost of 
acquiring a room. If only a few prospective guests cancel their reservations and the 
number of confirmed reservations is considered too high, all new requests will be 
rejected (at no direct cost to the hotel), and an additional effort will be made to cancel 
some of the already-confirmed reservations. The hotel management will contact the 
various agents and try to persuade them to transfer some of their clients to other 
hotels. Usually, the clients are compensated by having a better room or better 
facilities and the hotel management bears the extra costs. We term such an arrange- 
ment as the penalty of cancellation of a previously confirmed rereservation. In case a 
confirmed reservation cannot be honored at the target day, a high penalty is incurred. 
In addition to legal actions that may be taken by customers or the authorities, the 
hotel management would try its best to secure an accommodation for the guest with 
the unhonored reservation. Usually the customer will be accommodated at a better 
place. 

Few authors have addressed the hotel overbooking problem in the literature. 
Rothstein [4] formulates the problem as a Markovian Sequential Decision Process 
where at each stage the states of the process are the number of recorded reservations, 
and the transition probabilities are determined from the customers' demand, cancella- 
tions and "no-show" probabilities. He demonstrates how an optimal booking policy, 
which maximizes the expected revenue over an n-stages problem, may be numerically 
calculated, using Howard's procedure, but the structure of the optimal booking policy 
is not studied. Rothstein also compares the hotel overbooking problem with the airline 
overbooking problem and indicates the common aspects as well as the differences 
between these two problems. Ladany, in two closely related papers [2], [3] presents a 
model for finding the maximum allowable number of bookings for single and 
double-bed rooms at each time period prior to the target day. No costs or penalties 
for management's actions regarding acquiring additional bookings or cancellation of 
confirmed reservations are imposed. A numerical example for hotel capacity of 6 
double-bed rooms and 2 single-bed rooms is given. As in [4], no attempt is made to 
study the structure of the optimal policy. 

Shlifer and Vardi [6] present a model for determining an overbooking policy for an 
airline. They study three cases of airline overbooking: (a) single-leg flight carrying a 
single type of passenger (this case resembles the model proposed by Rothstein and 
Stone [5]), (b) single-leg flight carrying two types of passengers, and (c) two-leg flight. 
They assume that all types of passengers generate the same profit for a given flight-leg 
and that the number of show-ups is normally distributed with mean and variance 
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proportional to the number of reservations. Letting the booking policy be of the form 
that puts an upper bound, N*(t), on the number of reservations on hand at time t 
before take-off, they calculate the optimal values of N*(t) for various criteria. Their 
decision rules, however, do not make use of the (probabilistic) properties of future 
demand. 

In this paper we develop an n-period control model of the overbooking problem 
where the objective is to find the strategy that maximizes net profit. We consider two 
criteria: maximization of the expected total net profit, and maximization of the 
expected discounted net profit. For both criteria it is shown that the optimal strategy 
is a 3-region policy as follows: For each period i there exists a lower bound, U*, an 
upper bound, V*, and an intermediate level, Z*, such that if Xi is the inventory level 
just prior to the beginning of the period (after cancellations by customers have taken 
place during the preceding period), and Y is the number of new requests (not yet 
confirmed) then: 

(i) if Xi + Y < U*, all new requests should be confirmed and additional ones 
acquired such that the level of inventory at the beginning of the period will be equal 
to U*. 

(ii) if U* < Xi + Y < Z1*, all new requests should be confirmed. 
(iii) if Z* < Xi + Y but Xi < VJ*, max(O, Z1* - Xi) new requests are confirmed. 
(iv) if V* < Xi, Xi - VJ* reservations should be canceled. 

It is interesting to note that a somewhat similar form of an optimal strategy has been 
derived by Fukuda [1] for an inventory model where disposal of surplus items is 
possible and any excess demand is to be backlogged. For his problem, Fukuda shows 
that the optimal policy for the single period model is a two-region policy such that if 
the. inventory level, X, is greater than some specific number, V, then X - V items 
should be disposed; but if X < V, nothing should be done. For the n-period model he 
demonstrates that a simple three-region policy is an optimal one for the minimization 
of the expected discounted cost. 

The presentation in this paper develops as follows: we first describe the mathemati- 
cal model. Then we consider the expected total net profit criterion and with the aid of 
two lemmas develop the theory assuming that the new requests at each period are 
ignored (Theorem 1). In Theorem 2 we drop this restriction and derive the general 
results. The discounted case is considered in Theorem 3. 

The Model 

Let M be the number of rooms available at the target day, T days from now. 

Suppose that the hotel management makes decisions regarding the overbooking 
inventory level of confirmed reservations at specified times 

T = tn > tn- I > > t, > to = ?, 

where to = 0 is the target day. 
A decision at time ti (i = n, n - 1, .1. , 2, 1) is one of three possible actions: 
(i) to increase the level of overbooking; 
(ii) to cancel confirmed reservations subject to a cancellation penalty; 
(iii) to keep the inventory at its present level. 

Action (i) may be achieved in two steps. At first, new requests that have been 

accumulated since the last decision point are confirmed. Then, if necessary, some 
additional reservations are acquired. The second step, however, is associated with an 

acquiring cost. If either action (ii) or (iii) is taken, all new requests are declined and 

consequently lost. 
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Customer Cancellation. A customer may cancel his reservation with no penalty at 
any time prior to the arrival date. 

Notation. 

ao-The profit from an occupied room (at time to = 0). 

ci-The cost of acquiring a reservation at time ti (i > 1). 

bi-The penalty for cancellation of a confirmed reservation at time ti. (bo is the 
penalty of not honoring a confirmed reservation at the target day.) 

Zi-The inventory level of confirmed reservations at time ti - 0, immediately after 
one of the three aforementioned decisions has been made. 

Xi-The inventory level at instant ti + 0, i.e., at the end of time interval (ti+ 1, ti) and 
just before taking an action at time ti. 

Yi-The number of new requests for rooms accumulated during the time interval 

(ti, ti. 1). Yi is random at time ti but is known at time ti- . 

Qi( )-The distribution function of Yi. 
Pi-A random variable such that Xi = Pi +1 1. 
Fi ( )-The distribution function of Pi, possesses a finite mean, E(Pi), and is defined 

and positive over (0, 1). 

G1(Z)-The expected total net profit realized over the time interval (ti, 0] starting 
with inventory level Z and following an optimal strategy. 

Note that Zi, Xi and Yi are assumed to be continuous variables. This assumption is 
made for ease of representation. Results similar to the ones developed in this paper 
can also be derived for descrete variables. 

The Problem. Find an optimal booking policy that will maximize the expected net 
profit (or the discounted net profit) realized over the period [T, 0]. 

Expected Total Net Profit 

In this section we derive the optimal n-period strategy for the expected total net 
profit criterion. We formulate the decision problem as an n-stage dynamic program- 
ming problem. In Lemmas 1, 2 and in Theorem 1 the optimal strategy is derived 
under the restrictive assumption that the random new requests arriving during each 
time period are ignored. In Lemma 3 and Theorem 2 we drop this restriction and 
prove the optimality of the 3-region policy stated above. 

LEMMA 1. Let Z be the level of inventory at time tl, and let G1(Z) be the expected 
net profit. Then G1(Z) is maximized at the inventory level Z* where 

[ao/(ao + bo)]E(PI)=' p dFI(p) (1) 
M/Z. 

and the maximal expected net profit, GI(Z*), is given by 

GI(Z*) 
= (ao + b )M[I - F1(M/Z*)]. (2) 

PROOF. The net profit realized at time to = 0 is aoPlZ if P1Z < M, and is 

aoM - bo(PIZ -M) if PIZ > M. 
Since, for ao > 0, Z* should be at least M, the expected net profit is given by: 

G1(Z) = / aopZ dFI(p) + a[aM - bo(pZ-M ) ] dF1(p). (3) 

G1(Z) is differentiable and concave. Hence, if it possesses a maximum, it is a unique 
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one. Differentiating G1I() results in 

G'(Z) = - (ao + b0) p dFI(p) + a0E(PI). (4) 
M/Z 

Letting GQ(Zr) = 0 yields (1), while (2) is obtained by substituting (1) into (3). 
Our next lemma will specify the single period (= last period) optimal strategy if no 

new requests are accepted after tl, at which time one of the three possible actions 
specified above has to be taken. The costs involved are cl > 0 and b, > 0 for a unit 
increase or a unit decrease in the overbooking level, respectively. We further assume 
that a0E(PI) > cl and bOE(PI) > bl. These assumptions are natural ones, since 

a0E(PI) is the expected profit realized at time to from a single standing reservation at 
time t1. If this quantity is smaller than cl, then there is no point in increasing the 
inventory level. Similarly, the cancellation cost bl should not exceed the expected loss, 

bOE(PI), due to an overbooking at time to. 

LEMMA 2. Suppose at time t1 there are X1 uncanceled reservations left, and assume 
that no new requests are accepted during the time interval (tl, 0]. Then there exist 
numbers U* and V*, independent of X1, such that U* < Z* < V*, and the optimalpolicy 
is as follows: 

(i) if X1 < U*, the inventory level should be increased to U*. 
(ii) if U* < X1 < V*, nothing should be done. 
(iii) if X1 > V*, the inventory level should be reduced to V*. 

PROOF. We distinguish between the two possibilities: X1 S Z* and X1 > Z*. 
Suppose X1 < Z*. Then it does not pay to cancel reservations since G1(Z) is 
increasing for Z < Z*. Thus, suppose that the number of reservations is increased by 
S such that X1 + S = U. The expected total net profit will be GI(XI + S) - c,S and 
we wish to find S > 0 so as to maximize {GI(XI + S) - cIS}. Since X1 is a given 
number, the above is equivalent to finding U so as to 

Maximize (G1(U) - cl U}. 
U > XI 

The function H(U) = G1(U) - cl U is concave with a unique maximum. Denote this 
maximum by U*, where U* satisfies 

Gl(U*) = c >0. (5) 

Moreover, from Lemma 1, G'(Z*) = 0, and G'(.) is a monotone decreasing function 
(G1 is concave); hence, U* < Z*. It follows that if X1 < U*, the inventory level 
should be increased up to U*; if U < X1 < Z*, no action should be taken. This 
completes part (i) and the left hand side of part (ii) of the theorem. 

If X1 > Z*, then, similarly it does not pay to increase the level of reservations, since 
G1(Z) is decreasing for Z > Z* and it costs cl to acquire a new reservation. Thus, 
suppose that we decrease the inventory level by S such that X1 - S = V. In this case 
our objective is to MAXV<X,{G(V) + b1V}. H(V) = G1(V) + b1V is a concave 
function with a unique maximum, V*, such that 

G;( V*) -b, (6) 

and V* > Z*. It follows that if X1 > V*, the inventory level should be reduced to V*, 
and if Z* < X1 < V*, nothing should be done. This completes the proof. 

It is of interest to point out the intuitive meaning of results (5) and (6). cl is the 
marginal cost of increasing the inventory level. Thus, since G is concave with a 
monotone decreasing derivative, it pays to increase the number of reservations only as 
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long as the marginal cost of doing it is not greater than the marginal increase in profit. 
A similar argument explains result (6). 

COROLLARY 1. 

(i) f 'ml ur,p dFI(p) = [a0E(PI) - cl]/(ao + bo). 
(ii) f/1 /vP dFI(p) = [a0E(PI) + bl]/(ao + bo). 

PROOF. Applying equation (4) with U* and V*, and using results (5) and (6), 
yields (i) and (ii), respectively. 

REMARK 1. Lemma 2 holds for any concave function G. If each of the functions 

HJ(U) and H(V) possesses a maximum, then exactly the same results apply. If H(U) 
[H(V)] does not have a maximum, then, since H(U) -> - o [H(V)- + ox] as U-> oc 
[V - oo], it is a monotone decreasing [increasing] function and hence U* = 0 [V* 

REMARK 2. Although it is somewhat simpler to assume linear cost functions (cU 
and bV) for acquisition or cancellation of reservations, respectively, Lemma 2 and the 
following theorems remain true for appropriate (but otherwise arbitrary) convex 
functions, c(U) and b(V). 

In Theorem 1 we ignore the flow, Yi, of new requests during each time interval 

(ti, ti- 1). In Theorem 2, however, we relax this assumption and show that the structure 
of the optimal policy derived in Theorem 1 holds true for the general case. 

THEOREM 1. Assume that no requests arrive during the time intervals (ti, ti- ) for 
i= n, n - 1, ... , 2, 1. Then (a) for any i, there exist numbers Ui*, Z1*, and Vi* 
(Ui* < Z1* < Vi*) which determine a 3-region optimal policy with the following actions at 
time ti: 

if Xi < Ui*, the inventory level should be increased to Ui*. 
if Uj* < Xi < Vi*, nothing should be done. 
if Xi > Vi*, the inventory level should be decreased to Vi*. 

(b) the optimal values Ui*, Z7* and VJ* satisfy 

Gi'(U*)= ci, Gi'(Zi*)=0 and Gi'(V*)= -bi. 

PROOF. The proof will be carried out by induction. For i = 1, claims (a) and (b) 
were derived explicitly in Lemma 2. Assume now that the optimal policy at time ti 
(i > 1) is as stated in (a) with U"* and Vi* satisfying (b). We wish to show that claims 
(a) and (b) also hold for time ti+I. Define Gi+I(Z) for i = 1, 2, . . . , n - 1 recursively 
as a consequence of the following facts: if Z is the inventory level at time ti+l , then 
the number of reservations at the end of the interval (ti+1, ti) is Pi+ IZ. By the 
induction assumption, if P1 1Z < Ui*, we increase the number of reservations up to 

Uj* (at a unit cost of ci per reservation). If U"* < Pi+ IZ < Vi*, nothing is done; and if 

Pi+ IZ > V/*, P+1 IZ - Vi* reservations are canceled at a penalty of bi per reservation 
canceled. Thus: 

G+(Z) fmin(Ui*/Zl ')[G(~)-c(f p) F1p Gi + I 
mn(u ,1 [ Gi ( Uj* )ci ( Uj* -pZ )]dFi + I (P) 

+ fmin( V*/Z,)G (pZ )dF i(p) 
min(U'*/Z, 1) 

I [ Gi ( Vi* )bi (pZ - V* )]dFi + I (P) 
min( Vi*/Z, 1 ) 

We now show that Gi+ (Z) is concave and satisfies claim (b). At the same time part 
(a) of the theorem will be proven. 

G1(Z) was shown to be concave, satisfying (b). Assume that G1(Z) is concave and 
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satisfies claim (b). Then, differentiating Gi +I with respect to Z yields 

Gi'+,(Z) = c1f '/p dFi+l(p) + fv/ pGJ/(pZ) dFi+I(p) 
U*/Z 

- biJ p dFi + I (p) 
P7$/Z 

Differentiating again, and using the induction assumption that Gi'(U,*) = ci and 
G'.(r*)= -bi, one gets 

Gi( f(Zp) = /p2Gy(pZ ) dFi+ I(p). 

By the induction assumption, G' <0, and hence, G7+1(Z)<0. That is, Gi+I is 
concave. Moreover, G1+l possesses a maximum since, for Z = U*, G'+1(U*) 
- c1E(Pi+ I) > 0 and, for Z -x co, G,'+ 1(Z) < 0. Hence, there exists Z7.+1 that satisfies 
GI (Z7*1) = 0 

Suppose Xi +, is the inventory level just prior to time ti+1. As in Lemma 2, if 
Xi+ I < Z,* 1, it does not pay to cancel reservations. Suppose we increase the inventory 
level up to Ui+ . Then, we wish to find 

Max {-ci+1Ui+1+Gi+1(Ui+1)}. (7) 

Considering Remark 1, there exists Ui*+ I such that if Xi+ I < U,*+ 1, the inventory level 
is increased to U,*+ 1. This shows the first part of claim (a). 

Differentiating the term in brackets in (7) yields claim (b) for U.*+l . Since, for 
ci1+ > 0, Gi'+I(U.*+1) > 0, it follows that U,*+I < ZS*+1. A similar argument regarding 
V,*+ 1 completes the proof. 

We now generalize Theorem 1 for the case where the Yi+ 1 new requests for booking 
which flow into the system during time interval (ti+,I ti) are taken into consideration. 
A decision at time ti is one of the following three actions: (i) confirming some or all of 
the YiE+1 new requests (where no costs are involved); (ii) increasing the inventory level 
by more than Yi +I (at a cost of ci for each reservation in excess of Yi+ 1); (iii) 
declining all Yi+ 1 new requests and canceling some of the already confirmed reserva- 
tions at a penalty of bi per cancellation. 

LEMMA 3. For fixed y, define 

GI(Z'Y)=|( Y)/ a0(pZ +y) dF1(p)+ aoMdFI(p) G1(Z,y) f (M-y)/Z 

+M-Y/Z 

+fA [aoM-bo(pZ-M ) ] dFI (p), 
M/Z 

and let 

EYGI(Z, Y1) =f G1(Z,y) dQI(y) 

be the expected value of G1(Z, Y1) with respect to Y1. Then, EyG1(Z, Y1) is a concave 
function of Z. 

PROOF. For fixed y, differentiating twice with respect to Z, yields 

G"'(Z,y) = [-ao(M -y)2/Z3]tf((M -y)/Z) - [b0M2/Z3]f1(M/Z) < 0 

where f1( ) is the probability density function of P1. Since Q1( ) is a distribution 
function, it readily follows that foG1(Z, y) dQ1(y) is concave. Q.E.D. 
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Note that EYIG1(Z, Y1) = G1(Z), the expected net profit, when the new requests are 
taken into account. 

THEOREM 2. Allowing the possibility of flows of requests, Yi's, during the time 
intervals (ti, ti- 1), i = n, n - 1, n -2, . . ., 2, 1, there exist numbers Ui*, Zi*, Vi* satisfy- 
ing Uj* < Z1* < VJ* and Gi' (Ui*) = ci, Gi'(Zi*) = 0, G1*( Vi*) =-bi, such that the optimal 
strategy is a 3-region policy as follows: 

(i) if Xi + Yi+ I < Ui*, all new requests should be confirmed and additional U'* - Xi - 

Yi+I reservations acquired. 
(ii) if U"* < XiYi ?+ I < Zi*, all Yi1I new requests should be confirmed. 
(iii) if Zi < Xi + Yi +1 but Xi < Vi*, max(O, Z1* - Xi) new requests are confirmed. 
(iv) if Vi* < Xi, Xi - VJ* reservations should be canceled. 

PROOF. Consider period 1. Let Z1 be the inventory level after an action has been 
taken at time tl, and suppose that Y1 new requests have arrived during (tl, to). If at 
time to = 0 the number of uncanceled bookings, P1Z1, is less than M, then min(M - 

P1Z1, Y1) reservations out of the new Y1 should be confirmed since the total number 
of confirmed reservations at that time may not exceed M. If, on the other hand, 

PIZ, > M, none of the Y1 new requests will be confirmed. Hence, the net profit 
realized at time to = 0 is a0(PIZ, + Y1) if PIZ, + Y1 < M; it is a0M if M - Y1 < PIZ, 
< M, and is equal to aoM - bo(PIZ, - M) if PIZ, > M. Thus, for given Y1 = y, the 
net profit is G1(ZI, y) defined in Lemma 3 and the expected net profit is Gi(ZI) 
- EyG1(ZI, Y1). 

Now, from Lemma 3, G1(Z) is concave. Hence, by Remark 1, and following the 
reasoning of Lemma 2, there exist numbers U*, Z* and Vl* (depending on Q1( )) 
comprising a 3-region optimal strategy where G'(Ul*) = cl, G'(Vl*) = -b1, and 
GQ(Z*) = 0. Also, by differentiation, it readily follows that Z* satisfies 

aoE(P,)I(ao + bo) 

=f p FdFi(p)+ (ao/(ao +bo))f [fM/ZX p dFI(p)l dQ1(y). 
M/Z. =O (M-y)/ZI 

Let G1(Z) be the expected net profit over (ti, 0] if the inventory level at time ti = 0 is 
Z and optimal overbooking strategy is followed thereafter. Assume that G1(Z) is 
concave with a maximum at Z1* and the optimal strategy at time t1 is a 3-region policy 
with boundaries Uj* and VJ* (Ui* < Z'* < Vi*) such that Gi(Ui*)= ci, and Gi'(Vi*)= 
- bi. We now show that Gi+l(.) also possesses the properties of Gi(.). Let Z be the 
number of confirmed reservations at time ti+I - 0. At time ti + 0 the system may be 
found in various states: 

(a) if Pi + 1Z K Ui* then there are three possibilities: 
(1) Yi 1+ + Pi+ 1Z < Ui*. In such a case the inventory level should be increased 

to Ui*. 
(2) Ui*?SYi+ +1' P1+Z?SZ1". This implies that all Y1+1 reservations should be 

accepted. 
(3) Z"* < Yi+I + Pi+IZ. This event dictates that Z,?' - Pi.+IZ requests out of 

the Y + 1 new ones should be accepted such that the inventory level will become equal 
to Zi. 

(b) if U'* < Pi+IZ < Zi*, two cases may occur: 
(1) Yi~+Pl +1i+Z K Z1". This implies that all Y1+1 new requests are accepted. 
(2) Z/* < Yi+I + Pi +IZ. Only Z* - Pi+IZ requests out of the Yi+I are ac- 

cepted. 
(c) if Zl" < P1 -IZ < Vi* nothing should be done. 
(d) ifVi*?SPi+ 1Z, P1i1Z - Vi* reservations should be canceled. 
The explicit expression for Gi+ 1 should be written separately for each of the 
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following three cases depending on the actual value, y, of Yi 1: (i) y < Ui*, (ii) 

Ui* < y < Zi*', (iii) Zi* < y 
For the case where y < Ui* we have: 

Gi+ I(Z ) = ( y [ Gi( Ui* )ci( Ui*- y -pZ ) ] dFi+ j(p) 
p=o 

min ((Z,!-y)/Z, Ui*/z) G(+Zd 1p 
X i+ (*y/zu Z 

Gi (y + pZ ) dFi + l (P) 
(U* -y)/Z 

+ f u*/z Gi(Z* ) dFi+ 1(P) 
min ((Z -y)/Z, U*/Z) 

+ rax ((Z~'- y)/IZ, Ui*/ Z) +p)d+() +mX(z-)zu 
Z Gi(y + pZ ) dFi+ I(P) 

U/ Z 

Z*/Z 

+ fz,/Z Gi(Z ) dFi+ 1(p) 
max ((Z* -y)/Z, U*/ Z) 

+ f Gi(pZ) dFi+ 1(p) + f[G Gi(JVi* -bi(pZ -Vi*)] dFi+ 1(p). 
z*/Z v/Z 

For both possibilities, Zi* - y < Ui*, or Zi* - y > Ui*, we derive: 

Gi+,(Z) = cf p(dFY)Z dF+(p) + X y) i'(y +pZ) dFi+I(p) 
o (~~~~U*_y)/Z 

+ f 'z/ pGi'(pZ ) dFi +1 (p) - bi p dFi + 1 (p). 
Z*/Z ~~~~~V*/Z 

Taking the second derivative of Gi+I (Z) while using Gi'(Zi*) = 0, G( Ui*) = ci, and 

Gi'(Vi*)= -bi we get 

Gi+ l(Z) = f(Z*Y)/Zp2G,"(y + pZ) dFi+; (p) + v*/z 2G"(pZ)dF1 i(p). 
(Ui*-y)/Z /Z 

Since G(.) < 0, it follows that G 1(Z) < 0, i.e., Gi+ 1 is concave fory < Ui*. 
Following a similar analysis it may be shown that Gi+i( ) is concave when 

Ui* < y < Zi* or when Zi* < y. The detailed calculation, however, will be omitted. 
Considering Remark 1, it follows that there exist numbers U.*+ , Zl.*+ Iand Vj*+I 

(U.*+1 < Z.*+1 K< VJ*+ 1) which determine a 3-region policy as stated in the theorem, and 

satisfy Gi+ I(Ui*+ 1) = ci+ 1 Gi'+ (Z1*+ 1) = 0, and Gi'+ I(Vi*+ 1) = -b+ 1. This completes 
the proof. 

Expected Discounted Total Profit 

In this section we show that the three-region structure of the optimal policy prevails 
for the expected discounted total profit objective function as well. The results are 
summarized in Theorem 3 below. For ease of presentation (as we did in developing 
Theorem 1), we ignore the flow of new requests Yi during period i. However, as was 
shown in Theorem 2, the analysis may be carried out without this restriction. 

THEOREM 3. Let /Pi E (0, 1) be the discount factor for period i and, for the time interval 

(ti+ 1, 0], let Gi1 I(Z) be the maximal expected discounted net profit. Then, there exist 
numbers Ui*(/3i) and Vi*(P/3), i = 1, 2, . . . , n, which determine a 3-region optimal policy 
(in the sense of Theorems 1 and 2) satisfying Gi'( U1"'( /)) = c1/ f3 and G'( V1*( /3)) = 

- bi//31 
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PROOF. Let X1 be the inventory level just prior to making a decision at time ti, 
and let G1(Z) and G1(Z*) be given by equations (3) and (2), respectively. Then, as in 
Lemma 2, if X1 < Z* we wish to find U* = U*(,() so as to 

Maximize -c1 U + P Gl(U)} (8) 

and if X1 > Z* we wish to find V* = V*'(/1) so as to 

Maximize {b1V+ PI G1(V)} (9) 

Since G1(.) is concave the 3-region optimality is readily established with G((U*) 
= cl/13 and G'(V*) =-bl/l. 

To develop the induction step, assume that Gi(.) possesses the required properties 
and write: 

Gi+ 1(Z) = I - ci1(Ui* -pZ) + /iGi(Ui* ) dFi+ 1(p) 

+ f /ZPi Gi(pZ ) dFi+ I(P) 
U*/z 

+ f [bi(pZ - Vi*) + /iGi(Vi*J)] dFi+1(p) 

Differentiating twice with respect to Z and substituting Gi'(Ui*) = ci/3i and Gi'(Vi*) 
= - bP/fi, yields 

Gi+ (Z)= f 1 p/2G (PZ) dFi+ 1(p). 
U*/Z 

Since, by assumption, Gi(.) is concave, it follows that so is qi+ i( ). Now, if Xi+ I is the 
inventory level at time ti +I our problem is similar to (8) and (9) above, with the index 
i + 1 replacing the index 1. It readily follows that G1'+ I(U*+- ) = ci+ I/ /i +I and 
Gi ( V*+ 1) = -bi + I/ /Pi + 1. This completes the proof. 

Discussion 

We have studied a restrictive model of the hotel overbooking phenomena. Many 
extensions may now be carried out. Examples are: (1) where lengths of reservations 
are for periods of several days rather than for a single day; (2) when dealing with 
several types of rooms rather than with a single type; and (3) for finding the 
appropriate allocation of rooms among the various agents. 
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