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Abstract This paper presents an experimental investigation

of human control of vehicles carried out on the basis of

general theories on human movement. The longitudinal and

lateral accelerations are studied, and their relations with theo-

ries of motor optimality principles, such as minimum jerk,

minimum variance, and the two-thirds power law are

highlighted. Data have been collected during the final exper-

imental phase of the EU interactIVe project, in which a vehicle

developed by Centro Ricerche Fiat has been used to demon-

strate driver continuous support produced by an artificial co-

driver, within a shared initiative framework. 24 subjects drove

the vehicle on a test route twice: once with the system active,

the other with the system silent. The test route is composed of

urban arterials, extra urban and motorway roads, and takes

approximately 40–45min to be driven. The total database thus

amounts to ~35 h of driving data recordings, for a total of

~1.2 M samples per signal. Statistical summary data are

presented, which describe human preferred accelerations, cor-

relation between acceleration, curvature, and speed, and be-

tween longitudinal and lateral acceleration. Different driving

modalities, corresponding to different motor strategies and

primitives, are revealed. Comparisons with literature data are

also made and discussed. The summary statistics may be

useful for the design of future ADAS systems, and indeed

they have been collected for the final tuning of the interactIVe

co-driver.

Keywords Driver modeling . Intelligent vehicles . Human

machine interaction . Advanced driver assistance systems .

Man–machine systems

1 Human sensory-motor strategies

THE understanding of humanmovement plays a central role in

many application domains. Recent theories say that the human

brain motor system is active in several covert (non-executed)

motor activities, such as motion planning and observation of

other people movements (mirroring) [1–3]. It is believed that

the ability to predict how a person would move — given an

objective and in conjunction with the observation of other

people actual movements— is at the origin of the understand-

ing of intentions [4], empathy, and ultimately social interac-

tions [5]. Such a framework has also been adopted for human-

robot interactions [5, 6]. Within the EU interactIVe project [7]

the Authors adopted the same conceptual framework for de-

veloping an artificial cognitive system (named co-driver ) able

to understand the driver intentions and to produce a variety of

Driver Assistance Functions [8–10].

Several authors showed that general human sensory-motor

strategies are learnt and optimized [11–15]. Human move-

ments — as for example the task of reaching an object —

are typically carried out as optimized motor units [16, 17],

which are sent to execution in a feed-forward fashion, and

while still in execution, they may be updated. Updating cor-

rects only task-relevant deviations (i.e. the goal is pursued

from the deviated position, without returning to the previous

planned trajectory), which is known as minimum intervention

principle [12].

The optimization criterion is most often said to be mini-

mum jerk, and in facts human movements are smooth. How-

ever, further studies have shown that minimum jerk may be a

byproduct of another optimality criterion, which is minimum
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variance [15, 18]. According to this criterion, humans learn

how to control movements so that the effect of motor neuron

noise is minimized, and thus they achieve the best tradeoff

between accuracy and speed.

Human movement is also known to withstand a velocity-

curvature-acceleration constraint known as the two-thirds pow-

er law, which states that while hand-tracing an arc, the angular

velocity is limited by the two thirds power of the local curva-

ture [19, 20]. As for the jerk, this is believed to be a byproduct

of the same minimum variance principle [15, 18, 21].

The problem of producing a body movement — such as

getting a hand to a desired target — subject to the minimum

variance principle is an optimal control problem. The simula-

tion theory of cognition [1] says that humans learn forward and

inverse models of the plants they are going to control [22, 23]

(starting with, but not limited to, their own body), so that

sensorial consequences of actionsmay be predicted, and actions

that achieve desired perceptual goals may be produced [1, 3].

In this conceptual framework, the control of vehicles may be

seen as a particular case of plant control (in control theory,

“plant”means the dynamical system to be controlled), achieved

by learning forward and inverse models of the vehicle dynam-

ics. This justifies the current opinion in vehicle dynamics that

drivers have mental models of the vehicles, used to anticipate

the effect of control [24, 25]. Optimality principles that lead to

efficient control of the human body may be reasonably postu-

lated for the control of vehicles too. It is thus no surprise that

optimal control and model predictive control approaches have

been successfully used to model drivers [24, 25], including

those presented in Authors’ previous works [8, 26–30].

Moreover, road bends are driven with a limiting lateral

acceleration that decreases with curvature [28, 31–38], which

is analogous of the two-thirds power law. Some authors

explained the speed-curvature correlation as a way of mini-

mizing the effects of steering errors [32, 36], which is the same

conceptual argument of minimum variance criterion used to

explain the origin of the two-thirds power law.

There is consequently a theoretical justification for looking

at the curvature-acceleration-speed relationships as just anoth-

er facet of more general human motor optimality criteria and

put it in relation with the two-thirds power law.

As for what concerns the longitudinal control, the acceler-

ations used in human driving may also be found in some

previous studies of Adaptive Criuse Control (ACC) systems

[39, 40], while correlations between longitudinal and lateral

acceleration are pointed out in other papers [28, 41–43]. The

data collected and presented in the present work will be com-

pared to this literature references in the following sections.

As a final theoretical consideration, it is worth recalling the

hierarchical nature of human behaviors, of which driving is

one case. The recently proposed Extended Control Model

(ECOM) [44, 45] explains the driving action as a combination

of a number of concurrent processes, hierarchically organized.

High-level processes are long-term tasks that control low-

level tasks—such as tactical maneuvering—which in turn

control motor primitives that are simple perception-action

units. The ECOM model may be seen as an evolution of

precedent models such as the Michon model [46], framed

within embodied cognition . Regardless of the number and

nature of the model layers (the ECOM assumes 4 layers),

the important point is that higher levels in the cognitive

architecture switch on and off different motor primitives.

One may thus observe different ways of driving (either motor

units or entire behaviors) depending on ECOM states and

goals at the various layers. An important example will be

discussed hereafter.

2 Experiment description

2.1 Test route

The test route is depicted in Fig. 1 and is available interac-

tively on a map online [47]. It is made of urban arterials, extra-

urban roads and motorways, with roundabouts, ramps, and

intersections. The course starts at CRF headquarters (a ) and

follows the letters in alphabetic order to g , then returns to a .

The motorway section is c -d -e .

The total route length is 53 km, which are typically driven

in 40–45 min. The main track characteristics are listed Table 1.

2.2 Test vehicle

The test vehicle is one of the demonstrator vehicles developed

within the interactIVe project [7], namely the CRF one. It is a

Lancia Delta with a co-driver [8–10].

Fig. 1 Test Route. An online version is available [47]
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The co-driver is an artificial cognitive system, which im-

plements the mirroring mechanism posited in above cited

theories on human empathy [1–6]. The co-driver can be

described as a human-like tutor, who compares the driver

behavior to own-generated optimal behaviors. The mirroring

of observed behaviors lets the co-driver understand the inten-

tions of the human driver (ruling out intentions that do not

match the observed behavior). It may thus suggest corrections

for fixing or improving maneuvers that are improperly exe-

cuted by the human driver, while preserving his original

intention. This function has been named Continuous Support

[8], and it essentially uses the co-driver as a peer.

The test vehicle is equipped with a perception platform

collecting data from a number of sensors:

– one laser scanner, one long-range forward-looking radar,

and one camera are combined to provide a description of

front objects;

– a camera-based lane recognition system is combined with

digital maps and GPS signals to produce a description of

the surrounding road geometry;

– side-mounted ultrasonic sensors, and rear-looking short-

range radar detect side and rear obstacles;

– finally, on-board sensors collect information about ego

motion.

For the purpose of this work, only the data provided by the

latter system—which are listed in Table 2—are of interest.

These signals are collected with a regular sampling rate of

10 ms, then sent to the perception platform. In turn, the percep-

tion platform produces a description of the ego-state, the envi-

ronment, and obstacles, which is sent to the co-driver, with an

irregular refresh rate of approximately 100 ms. The signals are

preprocessed on the 10 ms side: all signals are filtered with a

first order low-pass digital filter with a cut-off frequency of

20 Hz, except the steering rate signal, which is cut at 5 Hz.

For the purposes of the present work, a subset of the

available signals is extracted from the co-driver logs according

to the entries reported in Table 2. Given the average refresh

rate of 100 ms, there are approximately 25,000 samples for

every signal and for every trip (i.e. a database of nearly 1.2

million samples per signal).

2.3 Subjects

Twenty-four subjects drove the test track twice. For each

driver, in one run the Continuous Support system was active

but silent, in the other run the system-human interactions were

active. Half of the subjects, randomly selected, drove first with

the co-driver system turned on, the other half began with the

system turned off.

Statistical data about test subjects and test modality are

given in Table 3.

3 Acceleration

3.1 Lateral acceleration, curvature and speed

Figure 2 gives a comprehensive view of the lateral accelera-

tion versus speed for all runs and subjects.

Levinson [37], page 58, recommends a lat=(k /v )
2 with k =

36 m3/2/s2, as a criterion for the accepted lateral acceleration,

a lat, as function of speed, v, for the average driver. A second

criterion for 85th percentile driver is given as k =42 m3/2/s2. A

maximum value for lateral acceleration also holds, which is

Table 1 Test track main characteristics

Straight road (radius > 2 km) 27.8 km

Large radius bends (2 km > radius > 0.5 km) 20.6 km

Curves (0.5 km > radius > 100 m) 2.7 km

Curves (100 m > radius >50 m) 912 m

Curves (radius <50 m) 821 m

Speed limit < 50 km/h 7.2 km

Speed limit 50–90 km/h 10.3 km

Speed limit 90–110 km/h 5.4 km

Speed limit 110–130 km/h 29.5 km

Table 2 On-board ego-motion signals

Signal Description Units

ECUtime ECU time ms

cycleNumber Perception Platform cycle count

VLgtFild Filtered longitudinal velocity

from odometer

m/s

ALgtFild Filtered longitudinal acceleration m/s2

ALatFild Filtered lateral acceleration m/s2

YawRateFild Filtered yaw rate rad/s

SteerWhlAg Filtered steering wheel angle rad

SteerWhlAgSpd Filtered steering wheel rate rad/s

SteerTorque Filtered steering column torque Nm

GasPedPos Filtered gas pedal position %

BrakePedPos Filtered master cylinder pressure Nm

BrakePedalSwitchNCSts Brake pedal pressed

(1 pressed, 0 released)

ActGear Actual gear

IndTurnComm Indicator turn command

(0: off, 1: left, 2: right)

egoLatitude GPS latitude deg

egoLongitude GPS longitude deg

GPSspeed GPS velocity m/s

GPScourse GPS velocity direction

(clockwise from north)

rad
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amax=0.4 g (~3.92m/s2). Levinson’s recommendations are, in

turn, based on the Battelle study [48].

The dashed line in Fig. 2 represents a modified Levinson’s

criterion that proves to better fit the envelope of lateral accel-

erations presented in this study. It has the following equation:

alat ¼
a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− v=v0ð Þ2
� �2

þ 2 v=v0ð Þ2
r ð1Þ

with a0=5.22, v0=14.84.

At a first glance, however, both criteria fail to describe

driver lateral accelerations at high speed. To clarify this find-

ing, the parabolas representing road bends of radius 600m and

10 m, respectively, are also plotted on the same chart. If a

vehicle were moving at constant curvature, its lateral acceler-

ation ad different speeds would indeed fall onto a parabola on

the a vs. v chart.

On the left side of the parabola corresponding to 10 m

radius bends there are virtually no observations, because that

is the minimum radius experienced in the test track. On the

other hand, points laying under the parabola corresponding to

600 m radius bends represent the large- and very-large radius

bends found along the motorway and along some part of

extra-urban roads (Table 1).

These observations point to the conclusion that human

drivers actually use (at least) two different driving modalities

(i.e. two ECOM states), for motorway-like scenarios and for

windier/slower roads. In the latter case, speed and curvature

co-vary.

1) The two-thirds power law

The two-thirds power law refers to the experimental obser-

vation about the regularity and smoothness that is apparent in

human and primates movements [19, 20]. It was found that

speed and curvature in hand movements are correlated, such as:

v ¼ αρ
−1=3 ð2Þ

That is, the velocity v at which the path is traced (for

example during handwriting) is proportional to the path cur-

vature ρ , raised to −1/3. The exponent would be −2/3 if the

left side of equation (2) were the angular speed, hence the

“two-thirds power law” name.

The constant α may change for different classes of motor

primitives. In fact, the two-thirds power law, initially discov-

ered for hand movements, was later found to describe many

other body movements such as foot trajectories, eye and

speech movements and human locomotion [49].

Note that the Levinson’s criterion would read as v =α’ρ
-1/4

i.e., with an exponent −1/4 very close to the two-thirds power

law. Note also that in human locomotion exponents between

−1/3 and −1/4 are observed in place of the strict −1/3 of the

original law [49].

Table 3 Drivers data

Driver Gender Age

classa
Km/year

driven

Road

conditionb
Co-Driverc Driving

exp’ce. (y)

1 f 3 10,000 w d 0 1 28

2 m 3 20,000 w w 1 0 25

3 m 2 30,000 w w 1 0 14

5 f 2 8,500 d d 0 1 18

6 m 2 15,000 d d 0 1 23

7 m 3 15,000 d d 1 0 20

8 f 2 15,000 d d 0 1 23

9 m 2 12,000 d d 0 1 25

10 f 2 15,000 d d 0 1 18

11 m 3 16,000 d d 1 0 32

12 m 3 20,000 d w 0 1 31

13 m 2 35,000 d d 1 0 25

14 f 3 10,000 d d 1 0 30

15 m 2 30,000 d d 0 1 25

17 f 2 22,000 d d 0 1 13

18 f 2 30,000 d d 1 0 12

19 f 2 3,000 d d 1 0 19

20 f 2 5,000 d d 1 0 9

21 f 2 15,000 d d 1 0 19

22 m 3 12,000 w d 1 0 37

23 m 2 15,000 d d 0 1 17

24 f 2 20,000 d d 0 1 11

a 2: age 25–44 years, 3: age 45–64 years
b d: dry road; w: wet road
c 0: co-driver silent; 1: co-driver is active

Fig. 2 Lateral acceleration versus speed for all runs and subjects. The

curve labeled as “Levinson” is the Levinson’s criterion
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According to recent studies [15, 18, 21], the two-thirds

power law is considered as a consequence of optimality prin-

ciples that generate human motion, and in particular of the

minimum variance principle. In short, in order to improve

movement accuracy, while preserving average speed, it is

convenient to increase speed in straighter arcs and reduce it

along curvier ones. Again, as above noted, different motor

primitives may have different α .

To explain the inverse relation between speed and curva-

ture observed in driving,Winsum and Godthelp [32] proposed

that speed modulation aims at minimizing the effects of

steering errors. Interestingly this is the same concept of the

minimum variance principle. Reymond and others [36]

reformulated the idea in terms of safety margins producing a

theoretical equation that they found to fit data collected on a

circuit with 7 drivers.

However, Reymond’s equation and data do not agree with

data found in this study: firstly, they predict and observe

maximum lateral acceleration in the range of 7–8 m/s2 at

low speed, whereas our data and data from Battelle are limited

to ~4 m/s2. Secondly, they predict that lateral acceleration

becomes exactly zero at approximately 35 m/s, which is

contradicted by data reported in Fig. 2.

The hypothesis that the two-thirds power law holds also for

driving is hereafter assumed as a convenient way to interpret

recorded data. The difference with human body movements is

that now the brain is controlling a different plant, i.e. the

vehicle. If the law is a byproduct of motor optimality princi-

ples, it is plausible that the very mechanism that produces the

two-thirds law for the human body also produces something

quite similar when controlling a vehicle.

To support this hypothesis, the Fig. 3 is presented, where

local path radius is plotted versus speed in a log-log chart.

Red and black points represent the populations for data

collected during trips with co-driver on and off, respectively.

Also, the horizontal line at 300 m radius is drawn to

conveniently divide two regions, corresponding to roads of

higher and lower curvature, respectively. These regions are

indicated with different colors in Fig. 1 (more precisely, a map

point is considered to belong to a low curvature segment if no

radius of curvature smaller than 300 m has been or will be met

in 10 s). Roads that qualify as having low curvature with this

definition are the motorway and some nearly straight seg-

ments with no roundabouts on the extra urban roads. High

curvature roads are traits including or nearby curves and

roundabouts.

The two-thirds power law, which accounts for 0.999

quantile of roads of high curvature only, is also plotted, both

for the data population with co-driver on and off. The dot-

dashed line plots the Levinson’s rule, which is clearly less fit

to the experimental observations.

As a side note, few straight lines in the top left region of the

log-log chart are due to malfunctioning of the vehicle sensor

system that was not updating the sole value of the instant yaw

rate. These acquisition errors only affect the yaw rate channel,

and for a subset of samples that collects less than 0.1 % of the

whole dataset.

Figure 3 provides the basis for a number of considerations.

Firstly, it is worth noting that there are denser horizontal

clouds of points at discrete radii, which are the most frequent

radii in the track (curvature is not uniformly sampled as said in

Table 1). The rightmost and topmost cloud is the motorway,

with curvature radii greater than 600 m radius (except one

short trait near Pinerolo).

Secondly, the two-thirds power law curve describes only

the frontier of low clouds. There are points laying left to it. For

example, let us consider the rather dense cloud at 50 m radius.

It touches the two-thirds curve at about 14 m/s, but, left of it,

there were recorded situations at which the same curve was

driven at lower speed. In other words, the two-thirds power

law holds for the fastest maneuvers, and describes situations in

which speed must be modulated according to curvature, but

for slower trajectories there is no longer such need to adapt

speed to the curve. Consequently, one may argue that on the

left of the curve there is a transition zone to constant speed

motor primitives, and only at the clouds frontier the motor

primitives follow (2).

Finally, the motorway scenarios (the topmost and rightmost

cloud) are all of the constant speed type. They trespass the

two-thirds law curve drawn in Fig. 3 (which holds for high

curvature). It is here supposed that in motorways, where lanes

are wider, the speed accuracy tradeoff is shifted in favor of

speed, still withstanding law (2) but with a larger value of α .

This however could not be observed because nobody drove

fast enough to needmodulating the speed inmotorway curves.

2) Human lateral acceleration in curves

Given the above considerations, the two-thirds law is here

adopted to describe extreme maneuvers in roads with high

Fig. 3 Curvature versus velocity chart, in double log scales, shows that

the two-thirds power law may describe the fastest maneuvers. Red points

and black points were collected with co-driver on and off, respectively
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curvature (Figs. 1 and 3). The coefficient representing the

quantile 0.999 of data is:

α ¼ 3:70 m2=3=s ð3Þ

It has to be remarked that, even if the above has been found

with a user group of mixed characteristics, there still might be

some skewing factor, such as the nationality (drivers are all

Italians), the use of the very same car, or limitations in the

scenarios (e.g., curvatures, road widths, etc.) covered by the

test track.

Figure 4 presents the lateral accelerations for roads of high

curvature. It is equivalent to Fig. 1, except that data of low

curvature segments are stripped off and that the acceleration is

shown with sign (positive accelerations are left curves). The

chart looks asymmetric because radii and frequencies of

curves to the left are different than to the right. Most of the

track is indeed driven in both directions, but ramps and

roundabouts are asymmetric. In particular, all roundabouts

are sharp left curves. The two-thirds power law, the Levinson,

and the modified Levinson criteria are also shown.

Figure 5 is the same but for the roads of low curvature, and it

shows that in this case the driving modality is constant speed .

3) Human longitudinal acceleration

Figures 6 and 7 show the longitudinal acceleration versus

speed for high and low curvature roads, respectively. The

whole data set (all drivers, all runs) is here considered.

Unlike lateral acceleration, longitudinal acceleration ap-

pears to be, at least at this global level, loosely related to

Fig. 4 Lateral acceleration versus speed in high-curvature roads. Speed is

modulated according to curvature and acceleration is limited by (1) or (2)

Fig. 5 Lateral acceleration vs. speed in roads of low curvature. Acceler-

ation is proportional to the square of speed, meaning that driving occurs at

constant velocity

Fig. 6 Longitudinal acceleration versus speed in high-curvature

scenarios

Fig. 7 Longitudinal acceleration versus speed in motorways and similar

(low-curvature) scenarios
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speed. The causes for longitudinal acceleration may be curves

(need to adapt speed) or may be others (e.g. speed limits,

obstacles, traffic etc.). Figures 6 and 7 give an overall picture

of longitudinal speed changes with no distinction for the

cause.

The maximum forward acceleration declines slowly with

speed. For the high-curvature scenario, the longitudinal accel-

eration is less than about 2 m/s2 at 0.01 percentiles. For

motorways, and low curvature roads in general, the maximum

observed acceleration is about 1 m/s2 at 0.01 percentiles.

Braking deceleration also looks fairly constant. For high-

curvature scenarios (Fig. 6) it is about −2 m/s2 at 0.01 percen-

tiles, but there is a tail of rare events, where greater decelera-

tions may be observed. Figure 7 shows a neat boundary

corresponding to the gas pedal completely released and no

brake (engine braking condition). This state happens frequent-

ly enough to produce a denser region of points in the chart of

Fig. 7, and in the right part of Fig. 6, at around -0.5 m/s2, and

decreasing with speed according to the aerodynamic drag.

Below that condition, decelerations result by true braking

action.

Figure 8 shows the distribution density of longitudinal

acceleration with no distinction for speed (in force of the weak

speed dependency above discussed). The two curves are for

the two types of scenarios.

Table 4 gives an analysis of the longitudinal accelerations

in a form comparable to [40]. The row for the complete dataset

is comparable to Table 4 in the cited paper. Note that data for

the complete set is a weighted average of different driving

conditions (e.g., high and low curvature regions), which are

quite different. Note that Table 4 also lists the observed

accelerations for the same ranges of speed listed in [40],

Table 5.

According to [40], 90 % of observed longitudinal accel-

erations for the complete dataset fall into the -1.03÷0.91 m/s2,

whereas data of this paper indicate the interval −0.89÷0.96 m/s2.

Braking decelerations are also reported in Table 4 to be

compared to Table 8 of the same paper. A fair agreement

between these data can be observed, although the different

testing conditions, vehicle type, nationality, data set dimen-

sion, and test track type can easily explain the differences

among the distributions, even more when considering the

marked difference in distribution when classifying different

track segments on the basis of the local curvature.

3.2 The g-g diagram

Figures 3, 4, 5, 6, and 7 do not reveal existing correlations

between longitudinal and lateral acceleration. Indeed, maneu-

vers that withstand the two-thirds power law have a distinctive

pattern: decelerate-steer-accelerate. Such pattern is otherwise

not observed in constant speed maneuvers.

To reveal how lateral and longitudinal accelerations are

correlated, a useful chart is the g-g diagram [28, 41–43].

Fig. 8 Distribution kernel density estimate of longitudinal acceleration

for all data (dotted line), for low-curvature roads (solid), and for high-

curvature roads (dashed). The peak at about −0.35 m/s2 corresponds to

motor brake action

Table 4 Analysis of longitudinal

accelerations Percentile Min. 5 % 25 % 50 %. 75 % 95 % Max.

Accel’n (m/s2)

- High-curvature −8.87 −1.63 −0.35 0.06 0.65 1.38 4.43

- Low curvature −4.90 −0.38 −0.05 0.09 0.24 0.56 2.42

- All data −8.87 −0.89 −0.12 0.09 0.30 0.96 4.43

- 0–40 km/h −8.87 −1.79 −0.39 0.04 0.60 1.49 4.43

- 40–70 km/h −4.77 −1.24 −0.26 0.11 0.47 1.13 3.25

- Over 70 km/h −4.90 −0.38 −0.05 0.09 0.23 0.55 2.06

Braking (m/s2)

- All data −8.87 −1.61 −0.44 −0.26 −0.09 −0.01 0

- Under 40 km/h −8.87 −2.22 −1.14 −0.47 −0.11 −0.02 0

- 40–70 km/h −4.77 −1.72 −0.72 −0.32 −0.18 −0.03 0

- Over 70 km/h −4.90 −0.54 −0.32 −0.16 −0.06 −0.01 0
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Figures 9 and 10 show the g-g diagram for the high and low

curvature scenarios, respectively.

Figure 9, for high curvature low speed scenarios, looks

noticeably asymmetric, due to asymmetry of the test track

and due to the presence of roundabouts. In Fig. 9, positive

lateral accelerations mean leftwards curves, and roundabouts

are all leftwards. In particular, the island in the middle of the

right half of the chart centered at ~2.5 m/s2 is caused by

roundabouts.

Percentile contour plots reveal interesting features. Lets

first consider the inner contour, corresponding to 99.9 % of

driving time (0.1 percentiles label). This shows a distinct

mushroom shaped pattern. The mushroom stipe corresponds

to braking. At 0.1 percentiles (99.9 % of driving time) braking

occurs between approximately −0.5 m/s2 and −2 m/s2. The

corresponding lateral acceleration is smaller than 0.5 m/s2.

This means that for most of driving, braking occurs without

significant lateral accelerations.

The mushroom cap, from −0.5 m/s2 to 2 m/s2 longitudinal

acceleration, occurs when the accelerator is used and brake is

not. In this modality, longitudinal accelerations are combined

with much higher lateral accelerations, up to about 4 m/s2,

especially in roundabouts. During 99.9 % of driving in these

conditions, accelerator is used in combination with steering,

unlike braking, which as said occurs without significant

steering.

Following the ECOM or Michon frameworks, we may

argue the existence of different behaviors and/or motor prim-

itives at the monitoring/regulating/tracking levels of the

ECOM architecture (or Michon’s operational/tactical levels).

One uses the brake without significant lateral acceleration.

Another combines the use of the accelerator and the steering

wheel for speed-curvature coordination. This latter includes as

a sub-modality, in which the accelerator is fully released (i.e.

saturation of deceleration, or engine braking) that is used so

often to be noticeable. As a consequence, speed modulation in

curvy roads is limited by engine braking saturation, and

produces the mushroom shapes of the g-g diagrams (one

Table 5 Percentiles of

user descriptors 5 % 50 % 95 %

α .m2/3/s) 3.06 3.34 3.60

a (m/s2) 3.66 4.49 5.53

b (m/s2) 2.42 3.10 4.12

c (m/s2) −5.27 −3.86 −3.09

Fig. 9 g-g diagram for high-curvature scenarios

Fig. 10 g-g diagram in low-curvature (high speed) scenarios

Fig. 11 Parameterization of driver g-g diagrams for the whole dataset

(lateral acceleration is in modulus). The black triangle represents maxi-

mum accelerations a , b , and c , while red circles are points that remain

outside the fitted triangle (see Section IV)

164 Eur. Transp. Res. Rev. (2014) 6:157–170



may argue that in electric vehicles, in which the electric engine

may also brake, this shape should not be observed).

Let us now consider the points between 0.1 and 0.01

percentiles, or 0.09 % of driving time (i.e. what lie between

Fig. 12 Typical trajectories in the

g-g diagram for various maneuver

types. From top to bottom:

roundabouts (row 1 and 2),

motorways (row 3), right bends or

right-left-right bend sequences

(row 4), sudden brake maneuvers

with no steering (row 5),

combined braking with right

steering (row 6)
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99.9 % and 99.99 %). These are less frequent events, which

however take place several times in a travel. For these, the

mushroom shape turns into a more rounded shape, in partic-

ular for the left part of Fig. 9, which represents curvy roads

without roundabouts. These are typical brake-steer-accelerate

maneuvers that are produced close to the region of validity of

the two-thirds power law, i.e. when speed and curvature must

co-vary. However, the right part of Fig. 9 shows that the way

in which speed and curvature co-vary along roundabouts is

different. This can be explained with the fact that yield signs

typically precede the entrance in roundabouts. Thus, before

entrance there can be no co-variation, and the mushroom stipe

shape is preserved on the right parte of Fig. 9.

Even if more rare, there thus exist behaviors, in which

brake and steer are combined.

Lets now consider the low-curvature high-speed roads

(Fig. 10). Firstly it can be observed that the mushroom is more

symmetric than in the previous case. Separation between the

mushroom cap (use of accelerator only) and its stipe (braking)

is also clearer. Moreover, a faint cloud of points representing

the engine braking condition is also visible.

By looking at themushroom stipe, it is apparent that, during

braking, very little lateral acceleration is used. Conversely,

when considering the mushroom cap, its diamond shape sug-

gests that co-variation of lateral and longitudinal acceleration

is linear in the acceleration phase. Such a linear relationship

may indeed be noticed, although less clearly, in Fig. 9, where

the mushroom cap at 0.01 percentiles is fairly straight on the

right side only, whereas it is truncated on the left side.

The characteristic shape suggests a method to parameterize

the g-g diagram by means of a diamond shape, with a , b , and

c representing the maximum longitudinal, lateral and braking

accelerations as shown in Fig. 11 (see details in Sec. IV). In

facts, if the road were specular, i.e. the sign of curves, were

inverted, observations would have the opposite signs in lateral

accelerations, and would thus fill the entire diamond when

combined with the non-specular paths. In other words, the

hypothesis is that humans have isotropic motor primitives in

both directions and would produce specular accelerations for

specular paths.

Figure 12 shows the typical g-g patterns for various types of

maneuvers. The first two rows are a left turn at an intersection

(top left) and along roundabouts, which tend to be negotiated

with braking disjoined from steering on enter, and combined

acceleration-steering on exit. The last two charts in the second

row also show the right acceleration peak that precedes the

entrance link. The third row is a typical motorway scenario,

where lateral accelerations may occur without any speed

adaptation. The fourth row depicts combined right steering

and acceleration and more complex maneuvers. The fifth row

shows braking maneuvers occurring with no steering. Finally,

the sixth row shows combined right steering and braking.

Gearshifts sometimes perturb these patterns.

Of all the cases depicted in Fig. 12, rows 1, 2, 4, and 6 are

maneuvers that use combined longitudinal and lateral accel-

eration. The remaining rows represent unrelated longitudinal

or lateral maneuvering.

Figure 13 shows how g-g diagrams change with speed. At

very low speed (0÷5 m/s, top left) there is virtually no lateral

control. In the urban speed range (5÷15 m/s, top center) the g-

g diagram has its maximum extension. It then gradually

shrinks, loosing the mushroom shape at about 25 m/s, after

which the diagram flattens, with growing lateral accelerations.

4 User descriptors

In order to investigate the effects of various extrinsic and

intrinsic factors on the driving style, some quantitative indi-

cators, or descriptors, synthetically representing each trip,

Fig. 13 g-g diagram dependency

on speed
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have to be defined. From the point of view of users (or

drivers), factors can be extrinsic (co-driver Continuous Sup-

port on/off state, road conditions, day/night) or intrinsic (gen-

der, experience, car type usually driven, etc.)

User descriptors have been defined on the basis of the two-

thirds power law (the α coefficient), and on the basis of the

maximum accelerations (forward b , backward c , andmodulus

of lateral a .)

Per each individual trip (two trips per user), theα coefficient

has been calculated as the 0.999 quantile of the distribution of v

ρ
1/3 on data collected during high-curvature roads, where v and

ρ are the velocity and the curvature, respectively. Data acquired

at a velocity less than 1 m/s are discarded, and curvature data

are calculated as the ratio between the yaw rate and velocity.

The calculation of the maximum acceleration has been

assessed in a slightly more complicated way. As above

discussed (see Fig. 11) the a lgt vs. |a lat| chart is characterized

by a rhomboid shape with a maximum lateral acceleration a , a

maximum forward acceleration b , and a maximum backward

(braking) acceleration c . Per each individual trip (two trips per

Table 6 Analysis variance

(ANOVA) Response: α Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.00414 0.004136 0.6099 0.4431

Experience 6 0.34011 0.056685 8.3581 8.589e-05

Driver 17 0.96437 0.056728 8.3645 4.643e-06

Co-Driver 1 0.00477 0.004772 0.7036 0.4106

Road Cond. 1 0.00020 0.000203 0.0299 0.8643

Residuals 22 0.14920 0.006782

Response: a Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.0022 0.00223 0.0274 0.8700

Experience 6 4.7374 0.78956 9.6972 2.901e-05

Driver 17 12.2202 0.71884 8.8286 2.906e-06

Co-Driver 1 0.1090 0.10895 1.3381 0.2598

Road Cond. 1 0.0001 0.00007 0.0009 0.9764

Residuals 22 1.7913 0.08142

Response: b Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.4773 0.47727 2.4683 0.13044

Experience 6 3.3640 0.56067 2.8997 0.03083

Driver 17 8.1785 0.48109 2.4881 0.02303

Co-Driver 1 0.7241 0.72405 3.7446 0.06594

Road Cond. 1 0.2639 0.26392 1.3649 0.25519

Residuals 22 4.2539 0.19336

Response: c Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.0463 0.04633 0.0872 0.7706

Experience 6 3.4178 0.56963 1.0720 0.4088

Driver 17 9.9153 0.58325 1.0976 0.4124

Co-Driver 1 0.4543 0.45432 0.8549 0.3652

Road Cond. 1 0.0045 0.00453 0.0085 0.9273

Residuals 22 11.6908 0.53140

Fig. 14 Distribution kernel density estimates for α (top) and for maxi-

mum accelerations a (lateral), b (forward), and c (braking) (bottom)
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user) the full set of points (a lgt,|a lat|) has been used to find the

values a , b , and c that minimize the objective function f :

f ¼
N

nabc
þ

a b−cð Þ

max alatð Þ max algt
� �

−min algt
�� �

�

�

�

�

�

�

�

�

�

�

ð4Þ

where N is the number of points and nabc is the number of

points inside the triangle with vertices a , b , c (where c< 0). In

each case, the number of points that remain outside the trian-

gle is assumed as an indicator of the goodness of fit.

Figure 14 reports the distribution of α in the upper chart,

and of a , b , and c in the lower chart, for the whole set of

individual test trips. The distribution estimate for α shows a

moderate skewness (0.16), while skewness is more pro-

nounced for a (0.26), b (0.51), and particularly c (−0.69).

The 5, 50, and 95 percentiles of the four descriptors are

reported in Table 5 for reference.

Finally, Table 6 reports the result for the analysis of vari-

ance for a linear model relating the four descriptors depending

on gender of the driver, driver identity, his/her driving expe-

rience (as multiples of 5 years), the road condition (dry of

wet), and the co-driver Continuous Support function status

(on or off). Interactions are neglected as suggested by data

screening here omitted for the sake of brevity.

The only factors resulting significant on all the four

descriptors are the driver experience and his/her individu-

ality, with a less pronounced significance level on the

maximum braking deceleration c . The gender is not signif-

icant, being replaced by the experience level, as already

noted in one early study on lateral accelerations in bends

[31]. The action of co-driver, in conclusion, has a limited

significance level (p-value of 6.6 %) on the maximum

acceleration b . This is not surprising, considering that the

intervention of the co-driver is a relatively rare event and

thus its effects may be masked when examining the whole

set of driving data.

5 Conclusion

This paper presents experimental measurements of vehicle

accelerations observed in human driving, and reveals the

existence of several “behaviors”. The term “behavior” is used

here in the sense of complex human sensory-motor strategies,

which can be interpreted by means the ECOM conceptual

framework as higher-level perception-action loops that acti-

vate different distinct motor primitives.

Onemajor discrimination is noticed between behaviors that

occur at constant speed (such as when the radius of curvature

is large enough that no speed adaptation is necessary, typically

along motorways) and behaviors where speed co-varies with

curvature.

The latter case fits the two-thirds power law, which de-

scribes the speed/curvature correlation of large class human

body movements. This suggests the idea that the same time-

accuracy tradeoff that make speed and curvature co-vary for

human body movements is also effective when humans are

controlling vehicles.

As for pure longitudinal control, three sub-behaviors have

been observed: 1) use of accelerator, 2) use of engine brake,

and 3) use of brake.

As for driving in conditions that need combined lateral and

longitudinal control two behaviors have been separated:. 1)

the use of combined accelerator (including engine brake

retarding) and steering wheel is regularly observed for ma-

neuvers requiring less than approximately 3 m/s2 longitudinal

deceleration; 2) instead, when longitudinal decelerations

greater than 3 m/s2 are demanded, and true braking is thus

needed, the braking action mostly occur separately from the

steering action.When real braking is necessary, human drivers

split control into two separate motor units in sequence: brak-

ing and then steering.

Comparing with the available literature, the novelty of the

present work consists in the experimental evidence that the two-

thirds power law—that was originally proposed within the

neuro-motor research fields to describe human body move-

ments—also applies to humans’ vehicle driving behaviors.

Additionally, thanks to a significantly larger dataset w.r.t.

previous works, a clearer picture with greater resolution is

obtained, and it is has been possible to perform statistical

inference tests that point out how the driving expertise is by

far the most significant factor that differentiates the driving

styles (in the sense that longer experience at driving is usually

matched by faster driving style.)

Overall the paper gives useful data to model the above

driver behaviors within ADAS applications..

As for future possible developments, we make the hypoth-

esis that both the speed-curvature co-variation at the level of

motor primitives, and the adoption of diverse sensory-motor

strategies (e.g. different sequences of motor units such as

combined deceleration-steering versus braking-steering) aim

at robust control, i.e., the minimum variance principle intro-

duced by Harris and Wolpert

What is presented in this paper is thus a first analysis of the

collected data, focused on acceleration. However, it is our

intention to analyze the data to identify motor units and

chaining of motor units (higher-level strategies), to form a

basis for testing the “robust control” hypothesis above.
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