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Summary 

A table is provided of the external and dynamical ellipticities of the 
Earth for different values of the ratio IIMb2, I being the mean moment 
of inertia and b the mean radius, on the first order Radau theory. A 
simplified model is used to find the corrections for the slight inaccuracy 
of the Radau approximation and the terms of the second order. 

The  dynamical ellipticity and J2 as given by artificial satellites are 
used to estimate IIIMb2, and it is shown that on the hydrostatic theory 
1o6J2 would be 1072.1 k 0.4, in contradiction to the direct determina- 
tion 1082.78 f 0.05. The departures from the hydrostatic state indi- 
cated by J2 and J3 imply stress differences of 4 x 107  to 8 x 107 dyn/cm2 
in the interior. 

I. The  first-order theory of the figure of the Earth, on the assumption of 
hydrostatic pressure in the interior, goes back to Clairaut, and an important 
numerical simplification was given by Radau. Theories taking account of second- 
order terms were given by Callandreau, Darwin and de Sitter. Since the work of 
Radau the results have been used chiefly to estimate the ellipticity from the pre- 
cessional constant (dynamical ellipticity); it is shown that over a wide range of 
possible structures the relation between these quantities is nearly independent 
of structure. 

Results from artificial satellites have however shown a definite discrepancy, and 
an entirely new approach has been made by S. W. Henriksen (1960). The per- 
turbations of the satellites give a very accurate determination of J, the coefficient 
of the second harmonic in the Earth’s field, and the ratio of J to the dynamical 
ellipticity H gives CIMa2, where C is the moment of inertia about the polar axis, 
izI the mass, and a the equatorial radius. Now the mass, the radius of the sphere 
of equal volume b, and the mean moment of inertia I are presumably nearly un- 
alterable, and I/Mb2 can be found from C/Ma2 with a second-order error. With 
this value the theory can be used to estimate all of e, J and H and compared with 
observation. However Henriksen appears to have used de Sitter’s formulae, in 
which there are some numerical mistakes (Jeffreys 1953). 

The Radau first-order theory puts a certain function I,$(?) equal to I ;  this 
approximation is very close through. the whole range of 7. I shall speak of this as 
the simplified theory. The  corrections needed are for the slight difference between 
I,$ and I and for the second-order terms. It seems desirable that they should be 
presented in three parts: [ I )  an interpolable table of e and-H in terms of 1/Mb2 
based on the simplified theory, (2) an estimate of the correction for I,$-- I, (3) an 
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On the hydrostatic theory of the figure of the Earth I97 
estimate of the effects of second-order terms. Since (2) and (3) are small it will be 
enough to evaluate them for any approximate model. With this method there will 
be no need to carry out the full calculation for every new model that may be sug- 
gested. 

2 .  On the simplified theory 

and its value at the surface is 

where 

the parameter 7 is defined by 

r de 
v = - -  e dr 

to five significant figures. We have also 

I find the following values; suffix o indicates the simplified theory. 

Table I 
3 1  V d I )  Iooeo(1) Ioo(eo(1) -am) IOOHO 

2 Mb2 
- -  

0.48 0.6900 0.32061 0.14812 0.30858 
0 ‘49 0.6256 0.32848 0.15599 0.31835 
0.50 0.5626 0.33657 0.16408 0.32816 
0.51 0.5006 0.34490 0’17241 0.33806 
0.5;: 0.4400 0.35346 0.18097 0.34802 

These values of e, J and H are really the terms of order m in the complete ex- 
pansions in powers of m. 

3. When r] is found, for any distribution of density, e follows by integration 
except for a constant factor. Bullard (1948) used a distribution based on one of 
Bullen’s (the same, I think, as the one I interpolated to decimals of the radius in 
“The Earth”) but this is rather complicated, and in particular the jump in density 
at the inner core may be too great. Even one discontinuity was found to lead to 
considerable trouble in the numerical integration. Since details are needed only 
for the estimation of corrections, I thought it best to use a simplified model, repre- 
senting the differences of density between the top of the shell” and the upper 
side of the core boundary, and between the top of the core and just outside the 
inner core; constants were added to give mean density about 5.517 and # I/Mb2 

* Wiechert’s word was Mantel, which I have always translated by shell. I think the current use 
of mantle is unfortunate, since in English it suggests something soft and floppy. Mantel, according 
to my dictionary, has a secondary meaning casing (of a cylinder) and Wiechert may have had this 
in mind. 
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198 Harold Jeffreys 

about 0.5. Then the adopted form is: 

The radius is taken as I. These make 

3 1  p = 5.515,  -- = 0.5006. 
2 Mb2 (7) 

It is to be emphasized that this smoothed distribution is not intended as an 
improvement on the various distributions that have been worked out, especially 
by Bullen, Bullard and Birch. I t  was chosen simply to make numerical integration 
easier. The densities agree with the model used in "The Earth'' (0 4.06) within 
0-2 except in the crustal layers and the inner core. The simplified theory must give 
the same result at the outer surface for all models with the same value of I/Mb2; 
but the density distribution does affect the distribution of e in the interior. I 
think that it would be premature to attempt a solution in more detail at present, 
since it is sure to be revised on account of changes found in the bulk modulus 
at small depths and in the interpretation of the inner core and the curious region 
just outside it. But it is to be expected that any conclusions drawn from the 
present model about the small corrections that are the main object of the present 
paper will be right within about 3 per cent, and this is ample for present applica- 
tion. 

Intervals of 0.05 of Y were used in most of the range, but 77 varies rapidly just 
outside the core, and from 0.55 to 0'75 intervals of 0.02 were used. Specimen 
results are in Table 2. 

Table 2 

r P 
1'00 3'415 
0.90 4.058 
0.80 4.633 
0.75 4'895 
0.65 5.369 
0.63 5.456 
0.61 5'540 
0.59 5.621 
0'57 5'700 
0 . 5 5  5'775 

'7 
0.5587 
0'5232 
0.4962 
0.4757 
0.3739 
0.3350 
0.2870 

0.1603 
0.0708 

0'2294 

Iooe 
0'3 3707 
0.31824 
0'29991 
o .29063 
0.27265 
0.26964 
0.26693 
o .26463 
0.26286 
0.26178 

r 
0.55 
0.50 
o '40 
0.30 
0 '20 
0'10 
0 '00 

T h e  surface value of e-l is 296.67. 

4. Effect of variation of 4. 

P 
9'790 
10'175 
10.836 
1 1  '349 
11.716 
I I '992 
12'010 

'7 
0.0708 
0.0584 
0'0373 
0.0205 

0.0090 
0'0020 
0'0000 

Iooe 
0.26178 
0.260 I 6 
0.25748 
0.25538 
0.25394 
0.25308 
0.25285 

in all models that have been used, is close to I ;  I find the following values of 
104 ($- I). Only one figure is needed. 

o 0.05 0-10 0.15 0.20 0.25 0.30 0.35 0.40 0-45 0.50 0.55 0.60 
104(~-1)0 o 2 3 5 7 7 8 7 5 2 - 2  -7 
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On the hydrostatic theory of the figure of the Earth ‘99 
We have, in the notation used in “The Earth”, especially 5 4.03 (38) 

and ~ ~ 1 . 3  is a simple multiple of M(r). T o  find the correction to the surface value of 
Z/(I +q) we therefore need only compare the integrals of M(r)r and M(Y)Y($- I). 
This is found to make the mean value of $- I equal to + I -3 x 10-4. This small 
value is due, as Bullard pointed out, to the negative values where q > 0.52 or so 
being multiplied by the largest values of r4. 

Then this change multiplies I +q by 1’00026, and the revised value of e given 
by (2) is o.0033701. The  simplified theory with3/2Z/Mb2 = 0.5006 gives 0’0033707; 
hence the correction to e for $- I is - 6 x 10-7. The  same correction applies to J ,  
and that to H will be - 18 x 10-7. 

j. The second order terms. 
The integral equation for e’, in the notation of Jeffreys (1953) is 

(e’++e2)pO-?(S+T)-$ pm = $--e(pm-3T),  (10) 

and if e’ is el, the solution so far obtained, and the terms in e2 and em are neglected, 
the left side will vanish. Put then 

e’ = el+se 
and rearrange; we have 

r h 

5 0  

The procedure hitherto has been to convert (10) into a second-order differ- 
ential equation with two boundary conditions, expressing that the outer surface 
is hydrostatic and that e is finite at the centre; then (z), corrected for second-order 
terms, is a consequence. Darwin and de Sitter allowed for the second-order terms 
in the differential equation by a modification of $. I suggested that it is probably 
easier and less productive of mistakes in arithmetic to solve (12) directly as an in- 
tegral equation by successive approximation. The  first approximation given by the 
simplified theory is already very close, and the function on the right can be worked 
out directly. It ranges from +28 x I O - ~  at the surface to +49 x I O - ~  at r = 0.57, 
does a curious but apparently genuine dip to 32 x 10-7 at r = 0.55, and rises again 
to + 64 x 10-7 at the centre. I showed that a convergent solution can be found by 
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200 Harold Jeffreys 

simply dropping the two integrals on the left and proceeding by successive sub- 
stitution; but convergence was likely to be slow. I therefore took an approxima- 
tion in the form 

with A, B constant, and adjusted A, B so that the residuals at r = I ,  0.55, and 
0.00 would have equal modulii, about & 8 x 10-7. The required integrals had 
already been worked out. The results were 

6e = A - 104Beo2 

A = 133 X 10-7; B = 4 9 X  1 0 - ~  

and the calculated values of 6e were + 7-7 x 10-7, +9*9 x 10-7, and + 10.2 x I O - ~ .  

A rough further approximation gave 

0'00 
O.55 11.0 

r I '00 
1076e 9.2 9" 

The total correction to e' at the surface is therefore + 3  x 10-7, which is much 
smaller than e2. 

Finally we have to allow for the difference between e' and the ellipticity e : 

5 
42 

e = e'+-e2 

and the second term at the surface is + 13.6 x 10-7. The total correction at the 
surface is about 16 x 10-7. 

J is defined as in "The Earth", p. 136(13): 

3 C - A  
J = -- = e-Jpz+e(-&++mz) 

2 Ma2 
and the correction is &+the second order term = -24 x 10-7. 

theory is Q J. 

distinguish C in the denominator from I, the mean moment of inertia: 

Note that this J is not the same as Jof my 1953 paper. JZ of artificialsatellite 

The dynamical ellipticity is (C-A)/C, but in a second-order theory we must 

c = I(I+8H). (14) 
Then the correction to H (including that mentioned at the end of 5 2) is 

J 2  'J -2 ( ) = -120x10-7. 
31/2Ma2 3 31/2Ma2 

The integral equation for the fourth harmonic is 

7 
r5 

0 

The three terms in g(r) nearly cancel for r < 0.7; 104g(r) ranges from 0-077 to 
0.234 from r = 0.95 to 1-00. Then the first approximation to K ( I )  is +5*3  x 10-7, 

but the second term on the left will be about Q p( I)/P = 0.20 of the first and the 
second approximation will give K(I) = 6.4 x 10-7. 
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On the hydrostatic theory of the figure of the Earth 201 

For given I/MbZ, then, e and H in Table I must be increased by + 16 and - 120 

I/Mb2 = 0.5003 

The result for e-1 appears to differ appreciably from Bullard’s; he gets e-1 = 
297.338 f 0.050. His K ( I )  = 68 x 10-8 is in reasonable agreement with mine, 
especially if it is noted that I have corrected an error in one of de Sitter’s coeffic- 
ients. He uses H = 0.00327237 f 0-000 00059 and de Sitter’s definition of e, 
whichdependssomewhaton K, but these do not appear to account for the differences. 

in the last place given. With H = 0*0032726 f 0~0000007 this would make 

O.OOOI, e = 0.0033698 f 0~0000006, e-1 = 296.75 f 0.05 

(17) 

Bullard’s model and mine give for 10% in the first approximation: 

7 E.C.B. H.J. 

0 ’55  2567 2618 
I ‘00 3364 3371 

0’00 2132 2528 

The difference at the surface is small, corresponding to slightly different values 
of I/Mb2, but the other differences are substantial, especially at the centre. They 
give a warning that, though results for the surface depend little on the model, pro- 
vided I/MbZ is kept the same, this does not apply to the interior, and further re- 
vision would have little value for reasons already stated. 

6. Use of artificial satellites 
In the formula taken from de Sitter (Jeffreys 1948p. 240(6)) connecting the 

lunar inequality with the mass of the Moon, I now take my value for the lunar 
inequality 

L = 6”-4378 f o’’~0017 
and Rabe’s solar parallax 

no = 8”*79835 f O”‘00039. (19) 
I use the Earth’s equatorial radius and mean gravity as in the same paper (later 
corrections are well within the uncertainty arising from L) and find 

p-1 = 81.299 & 0-022; x = -0~0029 & 0-00027 (20) 

w = -0.00196 k 0-00018 
and hence 

H = 0’0032730 (I f 0.00018) 

JZ = Q J = 10-6 (1082.78 f 0.05) 

(21) 

(22) 

The best value of J is probably that of Kbg-Hele, Cook and Rees (1963), based on 

If the volume of the comparison sphere is to be the same we want 

- (C-A) /Mbz  3 = 2 J z  ( r+?e) .  
2 2 3 

Then 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/8/2/196/695439 by guest on 21 August 2022



202 Harold Jeffreys 

Interpolating from Table I and applying the corrections we find that on the 
hydrostatic theory we should have 

Iooe = 0.33370 & 0~00006, e-1 = 299.67 2 0.05; 
(25 ) IOOH = 0'32379 0~00006 

and above all 

JO = 0~0016105 & 0~0000006, J = 0~0016081 & 0~0000006, 

JZ = 0*0010721 & 0~0000004 

The contradiction between the theoretical and actual values of J2 found by Henrik- 
sen (stated by him in terms of e-1) is fully confirmed. 

7. Strength needed for support of the P 2  and P3 inequalities 
On the suppositions that inequalities are supported by strength (I) down to 

the core (2) to a depth of 0.1 of the radius, I showed (1943) that the strengths S 
needed in dynes/cm2 are about as follows, where gn  is the coefficient of the term in 
gravity stated in gal. 

Case ( I )  Case (2) 
P2 4-3 x 1o9gn = 4.3 x 107 

P3 2 . 7 ~  1o9gn = I - 4 x  107 

7-9 x 1o9gn = 7.9 x 107 
5-3 x 1o9gn = 2.6 x 107 

gn  = (n- 1)g times the discrepancy in Jn: g2 = 0.01 gal, g3 = 0'0049 gal. 

The strengths indicated ar.e of the same order as those estimated from the tesseral 
harmonics, and are specially interesting because of discordances found between 
various estimates of the latter. 
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