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Abstract. In this paper we consider the hyperbolic relaxation of the
Cahn-Hilliard equation ruling the evolution of the relative concentration
u of one component of a binary alloy system located in a bounded and
regular domain Ω of R

3. This equation is characterized by the presence
of the additional inertial term εutt that accounts for the relaxation of
the diffusion flux. For this equation we address the problem of the long
time stability from the point of view of global attractors. The main
difficulty in dealing with this system is the low regularity of its weak so-
lutions, which prevents us from proving a uniqueness result and a proper
energy identity for the solutions. We overcome this difficulty by using
a density argument based on a Faedo-Galerkin approximation scheme
and the recent J.M. Ball’s theory of generalized semiflows. Moreover,
we address the problem of the approximation of the attractor of the
continuous problem with the one of Faedo-Galerkin scheme. Finally, we
show that the same type of results hold also for the damped semilinear
wave equation when the nonlinearity φ is not lipschitz continuous and
has a super critical growth.
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1. Introduction

In Ω × (0,+∞), with Ω a bounded and regular domain of R
3, let us

consider the following nonlinear partial differential equation

εutt + ut − ∆(−∆u+ φ(u)) = 0, for a. a. (x, t) ∈ Ω × (0,+∞),(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for a. a. x ∈ Ω(1.2)

u(x, t) = ∆u(x, t) = 0, for a. a. (x, t) ∈ ∂Ω × (0,+∞).(1.3)

Equation (1.1) has been introduced in [17] to describe rapid spinodal de-
compositions in a binary alloy occupying the region Ω. We refer to the
pioneering works [7], [8] and to the more recent [15] for the description of
the the phenomenon and to [31] and [30] for a qualitative study of the spin-
odal decomposition. In this case, the unknown u is a real valued function
defined in Ω × (0,+∞) indicating the relative concentration of one compo-
nent of the system. Finally, the nonlinear function φ is the derivative of a
double well potential accounting for the presence of two components, e.g.
F (v) = 1

4(v2−1)2. In this physical setting, when we neglect the inertial term
utt (i.e. ε = 0), (1.1) is the well known Cahn-Hilliard equation which plays
a basic role in material science (see [7], [8], [38], [21] and references therein).
The Cahn-Hilliard equation has been much studied and one has now satis-
factory well posedness results as well as results on the long time behaviour
of solutions (see, e.g., [13], [35], [36] and references therein). In recent years,
the analysis has been dedicated also to the study of some Cahn-Hilliard type
models possibly including also nonlocal terms (see the pioneering work [16]
and the more recent [5] and [11]). On the contrary, less attention has been
devoted to the analysis of the Cahn-Hilliard equation with the relaxation
term εutt. In this framework, equation (1.1) will be consequently called hy-
perbolic relaxation of the Cahn-Hilliard equation.

Our goal is to prove a global in time existence result and the asymptotic
stability from the point of view of the global attractors for (a proper weak
formulation of) (1.1). Before discussing our approach to (1.1), we prefer to
make an overview of the existing results.

The first contribution to the mathematical analysis of (1.1) seems to be
the one in [12]. In this work, the author proves the well posedness for the
initial and boundary value problem for (1.1)-(1.3) and the existence of the
maximal attractor in the one dimensional case, e.g. Ω = [0, L] moreover, the
family of attractors is shown to be upper semicontinuous in ε = 0. However,
this results hold in the weak topology of the proper phase space and only
for potentials φ of polinomial type. This result has been recently enhanced
in [18] (but see also [6]) by proving the existences of a robust family of expo-
nential attractors at ε = 0 for the strongly continuous semigroup generated
by (1.1). More recently, the problem of the long-time behaviour of (1.1)
has been reconsidered by introducing into the equation also a viscous per-
turbation of the form −δ∆ut. Consequently, when both ε and δ are strictly
positive, equation (1.1) is named hyperbolic relaxation of the viscous Cahn-
Hilliard equation. As far as we know, the study of equation (1.1) with two



HYPERBOLIC RELAXATION OF THE CAHN-HILLIARD EQUATION 3

parameters ε and δ has been considered only in [33], [34], [19]. More pre-
cisely, in [33] and in [34] the authors show that (1.1), endowed with suitable
boundary conditions, generates a strongly continuous semigroup on a proper
phase space when both ε and δ are allowed to vary in [0, 1]. Moreover, they
prove that the corresponding dynamical system is dissipative and possesses
a compact attractor for which they study the regularity and the upper semi
continuity at ε = 0 and at δ ≥ δ0 ≥ 0. Finally, they construct also the
exponential attractors and the inertial manifolds, for which, however, they
do not discuss the stability with respect to ε and δ. These results hold in
the one-dimensional setting and with the particular choice φ(v) = v3 − v.
Clearly, as a by product they obtain that the global attractor, being con-
tained in the exponential attractor, is of finite fractal dimension. The three
dimensional case has been recently analyzed in [19], in which, under the key
assumption

(1.4) ε, δ ∈ [0, 1] and δ ≥ λε, for some λ ∈ (0, 1],

the authors prove that (1.1) generates a strongly continuous semigroup in
a certain phase space. This semigroup is shown to be dissipative and the
global attractor is constructed. Moreover, (and this is certainly the main
result of the paper) the problem of the existence of a robust family of ex-
ponential attractor with respect to ε and δ satisfying (1.4) is addressed. As
a by product, the authors obtain that the finite fractal dimension global
attractor (being contained in the exponential attractor) is also stable with
respect to ε and δ.

This paper aims to be a contribution to the problem of the long time
behaviour for (1.1) in the three dimensional case without introducing any
viscous term in (1.1). Thus, our result partially extends the results in [12]
and [19]. From the one hand, we are able to consider the three dimensional
setting and more general potential potentials φ (this extends [12]) without
introducing any regularizing term as −∆ut (this extends the contribution
in [19]). On the other hand however, we do not discuss any kind of stabil-
ity with respect to ε for the attractor we construct (this problem will be,
however, addressed in a future paper) and we do not discuss the problem
of the existence of exponential attracting sets. Moreover, our results hold
in a phase space endowed with the weak topology (as in [12]). Thus, the
resulting attractor has weaker attracting properties than the one studied in
[19]. From now on we will let ε = 1 in (1.1).

As we will show in the next sections, the main difficulty in dealing with
(1.1) is the low regularity of its weak solutions (see the weak formulation 2.1
of (1.1)-(1.3)). This lack of regularity has two major consequences. First of
all, it prevents from proving a uniqueness results for the solutions to (1.1).
Secondly, it prevents from proving any type of energy equation for the solu-
tions of (1.1). This fact is unpleasant since a “good” energy equation would
serve in proving the asymptotic compactness of the system, even without a
uniqueness result. The energy equation method for proving the asymptotic
compactness was initiated by [4] and then extended and generalized in vari-
ous direction (see, e.g. [37] and the references therein). These obstacles are
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bypassed in the one-dimensional setting by heavily relying of the continuous
embedding H1

0 (Ω) ⊂ L∞(Ω) which allows to handle the nonlinear term. On
the other hand, in the three dimensional case, one needs the presence of a
regularizing term as −δ∆ut and then require that ε is dominated by δ, i.e.,
(1.4) holds. This is exactly the approach used in [19].

Here, we rely on the J.M. Ball recent theory of generalized semiflows (see
[3], [4] and the next Section 3 in this paper) to handle the possible non
uniqueness of solutions and we restrict our investigation to a proper subset
of all the possible solutions to (1.1). More precisely, we will concentrate
our attention on the set of the functions that solve (1.1) in a proper weak
sense that are also limits of the Faedo-Galerkin scheme we use in proving
the existence Theorem. Note that this set could be a proper subset of the
set of all the solutions since, due to the non uniqueness, there might be
functions solving (the weak formulation of) (1.1) which are not limits of any
Faedo-Galerkin scheme. The advantage of working with this set of solutions,
which will be consequently called limiting solutions, is that its elements sat-
isfy a proper energy inequality. This fact, in particular suggest that the
right topology for the phase space should be the topology induced by the
weak convergence. Unfortunately, the set of solutions obtained as mentioned
above fails to be a generalized semiflow. Nevertheless, by reasoning as in
[40], we are able to prove that the set of the limiting solutions to (1.1) en-
joys some substantial properties which allow us to prove the existence of
a suitable notion of weak global attractor. Since the global attractor has
been constructed for the solutions of (1.1) which can be approximated by
using the aforementioned Faedo-Galerkin scheme, a natural question would
be the approximability also of the global attractor of the continuous problem
(1.1) with the global attractor of the Faedo-Galerkin system. In Section 6
of this paper, we provide an affirmative answer for this question by proving
that the set of the solution of the Faedo-Galerkin system which approxi-
mate the solutions to (1.1) forms a generalized semiflow on a proper finite
dimensional phase space. Moreover, this generalized semiflow possesses a
global attractor which converges to the attractor of the continuous problem
in an appropriate topology when N (=the number of basis elements which
are retained for the Faedo-Galerkin approximation) goes to +∞. We refer
the interested reader to the seminal references [22], [24], [23] and to [10]
for some additional material about the problem of the upper-semicontinuity
and approximability of global attractors.

It is worthwhile to note that the lacking of the energy equation for the
solutions of (the weak formulation of) (1.1) is strongly reminiscent of what
happens in the analysis of the nonlinear damped wave equation, when the
nonlinearity φ is not locally lipschitz and has a super critical growth. In
fact, let us consider in a bounded domain Ω ⊂ R

n the following equation

(1.5) utt + ut − ∆u+ φ(u) = 0 in Ω

with φ : R → R a continuous function satisfying

(1.6) |φ(v)| ≤ C(1 + |v|γ), where C > 0, 1 ≤ γ < +∞.
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Under some mild additional assumptions on φ one can prove the existence
of at least one weak solution to (1.5) using, for instance, the Faedo-Galerkin
method (see [27]). Unfortunately, it is not known whether the weak solu-
tions to (1.5) would satisfy some energy equation (see [4]). Thus, under the
unproved assumption that all the weak solutions to (1.5) satisfy the energy
equation, in [4] the existence of a the global attractor in the proper phase
space is proved for any γ ≥ 1. However, it is easy to prove that the set of
all the solutions to (1.5) constructed via the Faedo-Galerkin scheme verify
a corresponding energy inequality. As for (1.1) we will prove that the set
of the limiting solutions to (1.5) possesses a weak global attractor in the
framework of the usual phase space for (1.5) endowed with the topology
induced by the weak convergence. See [1] for another contribution in the
weak topology of the phase space. See also [14] and [29], [26] for some result
in the case of the super critical growth condition on φ.

Plan of the paper. In the next Section 2, we recall some preliminary ma-
chinery which is needed in order to correctly set our problem. Then, we
introduce the weak formulation of (1.1) we deal with. In Section 3, we re-
call some results on Ball’s theory of generalized semiflows and present some
material in the direction of studying the weak semiflow structure of the lim-
iting solutions to (1.1) and (1.5) and the corresponding notion of weak global
attractor. Section 4 contains the analysis of the Faedo Galerkin scheme ap-
proximating (1.1). Then, in Section 5 we rigorously define the concept of
limiting solutions and we present the results on their long time behavior.
In Section 6 we address the problem of the approximability of the global
attractor for (1.1) with the one of its Faedo Galerkin system. Finally, in the
last Section of the paper, we show that the results obtained for (1.1) hold
also for the semilinear damped wave equation in the supercritical growth
condition case.

2. Mathematical setting and weak formulation

Function spaces Throughout the paper, we denote by ‖ · ‖E and 〈·, ·〉E
the norm and the scalar product in the generic Hilbert space E. When
E = L2(Ω), we omit the subscripts. We consider the positive operator

A = −∆, with domain D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω),(2.1)

and the family of Hilbert spaces

Hs = D(As), s ∈ R,

with scalar product 〈u, v〉Hs := 〈As/2u,As/2v〉, for u, v ∈ Hs.

It is well known that Hs1 ⊂ Hs2 with dense and compact immersion when
s1 > s2.
Then, we set

(2.2)
H := D(A1/2) ×D(A−1/2),

with norm ‖(u, v)‖2
H := ‖u‖2

D(A1/2) + ‖v‖2
D(A−1/2).

On account of the Poincarè inequality, the norm in D(A1/2) = H1
0 (Ω) is

given by ‖∇ · ‖. Finally, we let H ∗ to denote the topological dual of H ,
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and we denote by 〈〈·, ·〉〉 the duality pairing between H and H ∗.

In the sequel, we denote by BH (r) the ball of radius r in H , that is

BH (r) := {(u, v) ∈ H : ‖(u, v)‖H ≤ r} .

Finally, we make the following assumptions on the nonlinear function φ

Conditions on φ Let φ ∈ C0(R) with φ(0) = 0 be such that φ(v) =
F ′(v),∀v ∈ R and

lim inf
|u|→+∞

φ(u)

u
> −λ1,(2.3)

|φ(u)| ≤ C0

(

|u|3 + 1
)

,(2.4)

Concerning the assumptions on the nonlinear interaction term φ, we note
that the typical nonlinearity φ(v) = v3 − v is included in our framework.
Note also that we do not make any type of assumption regarding the (local)
Lipschitz continuity of φ. Thus, a uniqueness result is not to be expected.
The symbol λ1 in (2.3) denotes the first eigenvalue of the Laplace operator
with Dirichlet boundary conditions. Along the paper, we agree to denote
by C > 0 a generic constant which may vary from line to line and even in
the same formula depending only on Ω. Further dependencies of C will be
declared on occurrence.

We introduce the following weak formulations of the initial-boundary
value problem (1.1-1.3)

Problem 2.1. For any T > 0 and any (u0, u1) ∈ H , find (u, v) ∈ L∞(0, T ;H )

with ut ∈ L2(0, T ;D(A−1/2)) such that

utt + ut +A(Au+ φ(u)) = 0, in D(A−3/2), and a.e. in (0, T ),(2.5)

u(0) = u0 in D(A1/2), ut(0) = u1 in D(A−1/2).(2.6)

We show the existence of a solution to (2.5) in Theorem 5.2.

3. Generalized semiflows

In this section, we briefly summarize from [3] some results concerning the
theory of generalized semiflows.

Suppose we are given a metric space (not necessarily complete) X with
metric dX . If C is a subset of X and b is point in X , we set ρ(b, C) :=
infc∈C dX (b, c), consequently, if C ⊂ X and B ⊂ X , we set dist(B,C) :=
supb∈B ρ(b, C).

Definition 3.1. A generalized semiflow F on X is a family of maps u :
[0,+∞) → X , called solutions, satisfying the following hypotheses:
(H1) (Existence) For each v ∈ X there exists at least one u ∈ F with
u(0) = v.
(H2) (Translates of solutions are still solutions) If u ∈ F and τ ≥ 0, then
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uτ ∈ F where uτ (t) := u(t+ τ), t ∈ (0,+∞).
(H3) (Concatenation) If u, v ∈ F, t ≥ 0 with u(t) = v(0) then w ∈ F where

w(τ) :=

{

u(τ) for 0 ≤ τ ≤ t,
v(τ − t) for t < τ.

(H4) (Upper semi-continuity with respect to initial data) If un ∈ F with
un(0) → v, then there exist a subsequence unk

of un and u ∈ F with u(0) = v
such that unk

(t) → u(t) for each t ≥ 0.

Furthermore, a generalized semiflow can satisfy (or not) the following con-
tinuity properties.
(C1) Each u ∈ F is continuous from (0,+∞) to X .
(C2) If un ∈ F with un(0) → v, then there exists a subsequence unk

of un

and u ∈ F with u(0) = v such that unk
(t) → u(t) uniformly for t in compact

subsets of (0,+∞).
(C3) Each u ∈ F is continuous from [0,+∞) to X .
(C4) If un ∈ F with un(0) → v, then there exists a subsequence unk

of un

and u ∈ F with u(0) = v such that unk
(t) → u(t) uniformly for t in compact

subsets of [0,+∞).

When the phase space X is a Banach space, we can introduce the analo-
gous of (C4) in the weak topology, namely :
(C4)w If un ∈ F with un(0) ⇀ v in X , then there exists a subsequence unk

of un and u ∈ F with u(0) = v such that unk
(t) ⇀ u(t) in X and uniformly

for t in compact subsets of [0,+∞).
For other interesting properties on generalized semiflows, especially relating
measurability and continuity we refer to [3]. These results are extension
to generalized semiflows of the results of [2] concerning semiflows originally
given for nonlinear evolutionary processes on metric spaces .

It is possible to extend to generalized semiflow the standard definition
concerning absorbing sets and attractors given for semiflows and semigroups
(cf. [41] and [42]) . Let F be a generalized semiflow and let E ⊂ X . For
any t ≥ 0, we define

T (t)E =
{

u(t) : u ∈ F with u(0) ∈ E
}

,(3.1)

so that T (t) : 2X → 2X , denoting by 2X the space of all subsets of X . It
is worthwhile to note that, thanks to (H2) and (H3),

{

T (t)
}

t≥0
defines a

semigroup on 2X . On the other hand, (H4) implies that T (t)z is compact
for any z ∈ X .
The the positive orbit of u ∈ F is the set γ+(u) = {u(t) : t ≥ 0}. If E ⊂ X
then the positive orbit of E is the set

γ+(E) =
⋃

t≥0

T (t)E =
⋃

{

γ+(u) : u ∈ F, u(0) ∈ E
}

.

The ω − limit set of u ∈ F is the set

ω(u) =
{

v ∈ X : u(tn) → v for some sequence tn ↗ +∞
}

,
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while the ω − limit set of E, is the set

ω(E) :=
{

u∞ ∈ X : there exist un ∈ F with un(0) ∈ E, un(0) bounded ,

and a sequence tn ↗ +∞ with un(tn) → u∞
}

A complete orbit is a map ψ : R → X such that, for any s ∈ R, ψs ∈ F.
Then, if ψ is a complete orbit, we can define the α− limit set of ψ as

α(ψ) :=
{

z ∈ X : ψ(tn) → z for some sequence tn → −∞
}

.

We say that the subset U ⊂ X attracts a set E if dist(T (t)E,U) → 0 as
t→ +∞.
We say that U is positively invariant if T (t)U ⊂ U for all t ≥ 0, while U
is invariant if T (t)U = U for all t ≥ 0. Finally, we say that U is quasi
invariant if for any z ∈ U there exists a complete orbit ψ with ψ(0) = z and
ψ(t) ∈ U for any t ∈ R. Note that if U is quasi invariant then there holds
U ⊂ T (t)U for all t ≥ 0. Finally, a subset U will be declared invariant if
and only if is positively invariant and quasi invariant.

The subset A ⊂ X is a global attractor if A is compact, invariant, and
attracts all bounded sets.
F is eventually bounded if, given any bounded B ⊂ X , there exists τ ≥ 0
with γτ (B) bounded.
F is point dissipative if there exists a bounded set B0 such that, for any
u ∈ F, u(t) ∈ B0 for all sufficiently large t ≥ 0.
F is asymptotically compact if for any sequence un ∈ F with un(0) bounded,
and for any sequence tn ↗ +∞, the sequence un(tn) has a convergent sub-
sequence.

We will also make use of the notion of Lyapunov function, which can be
introduced starting from the following definitions: we say that a complete
orbit g ∈ F is stationary if there exists x ∈ X such that g(t) = x for all
t ∈ R - such x is then called a rest point. Note that the set of rest points
of the semiflow F, denoted by Z(F), is closed in view of (H4). A function
V : X → R is said to be a Lyapunov function for F provided:
(i) V is continuous
(ii) V (g(t)) ≤ V (g(s)) for all g ∈ F and 0 ≤ s ≤ t (i.e., V decreases
along solutions)
(iii) if the map t 7→ V (g(t)) is constant for some complete orbit g , then
g is a stationary orbit

Finally, we say that a global attractor A for F is Lyapunov stable if for
any ε > 0 there exists δ > 0 such that for any E ⊂ F with e(E,A ) ≤ δ,
then e(T (t)E,A ) ≤ ε for all t ≥ 0.

We now quote the two general abstract criterion providing a sufficient
and necessary condition for the existence of the attractor (see [3, Thms 3.3,
5.1, and 6.1].

Theorem 3.2. A generalize semiflow F has a global attractor if and only
if F is point dissipative and asymptotically compact. The attractor A is
unique. Moreover, A is the maximal compact invariant set of X and it is
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given by

(3.2) A =
⋃

{ω(B) : B a bounded set of X} = ω(X )

Besides, if F complies with (C1) and (C4), then A it is also Lyapunov
stable.

Moreover, when the generalized semiflow admits a Lyapunov function,
there holds the following

Theorem 3.3. Assume that F is asymptotically compact, admits a Lya-
punov function V , and that the sets of its rest points Z(F) is bounded.
Then, F is also point dissipative, and thus admits a global attractor A .
Moreover, ω(u) ⊂ Z(F) for all trajectories u ∈ F.

3.1. A weaker notion of attractor. The possible application of the above
reported abstract theory to suitable classes of differential problems is often
delicate. Indeed, one is usually forced to carefully choose the correct notion
of solution of the problem, in order to possibly check the validity of prop-
erties (H1)-(H4). This process may not be straightforward whenever one
considers some suitably weak notion of solvability. On the one hand, solu-
tions have indeed to be weak enough in order to fulfill (H1) (the assumption
(H2) is generally easy to meet in actual situations). On the other hand,
the notion of solution has to be robust enough in order to fulfill (H4). This
robustness may turn out to be in conflict with (H3).

For instance, the existence of weak solutions to a differential problem is
usually proved by approximation (like, e.g., for the solutions of equation
(2.5) cf. Definition 5.1 and Theorem 5.2). Then, one is naturally led to
define the candidate semiflow as the set of all solutions which are limits in a
suitable topology of their approximate solutions. Axioms (H1) and (H2) will
be trivially checked, and, if the aforementioned topology is strong enough,
one can hopefully verify (H4) as well. However, due to this approximation
procedure, the concatenation in (H3) may not hold (the approximating se-
quences may not have the same indices), as in the case of the set of limiting
weak solutions to (2.5).

To overcome this difficulty, in [40] was observed that it is possible to
partially extend Theorem 3.2 to the case of a non-empty set G of functions
g : [0,+∞) → X , complying with (H1), (H2), (H4), but not necessarily (H3)
(see the Definition 3.4 below). In particular, the mapping T constructed
from G as in (3.1) fails to be a semigroup and fulfills instead the following

(3.3) T (t+ s)B ⊂ T (t)T (s)B ∀s, t ≥ 0, B ⊂ X.

The price of dropping the semigroup property for T consists in the fact that
the weak attractor notion introduced below will be quasi-invariant but will
fail to be invariant.

We now introduce the concept of weak generalized semiflow

Definition 3.4 (Weak generalized semiflow). A non-empty set of maps g :
[0,+∞) → X fulfilling (H1), (H2) and (H4) will be named weak generalized
semiflow.

Correspondingly, we introduce a weaker notion of attractor as follows
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Definition 3.5 (Weak global attractor). Let G be a weak generalized semi-
flow. We say that a non-empty set A is a weak global attractor for G if it
is compact, quasi-invariant, and attracts all the bounded sets of X .

Moreover, we shall observe that a weak global attractor (if existing), is
minimal in the set of closed subsets of X attracting all bounded sets, hence
unique, cf. [32]. We may state the following

Theorem 3.6. Let G be a non-empty set of functions g : [0,+∞) → X com-
plying with (H1), (H2) and (H4). Moreover, assume that G is asymptotically
compact and point dissipative. Then, G possesses a weak global attractor A.
Moreover, the attractor A enjoys the following description

A = {ξ ∈ X : there exists a bounded complete orbit z : z(0) = ξ} .(3.4)

The proof of the existence of the weak global attractor follows the proof
of Theorem 3.2. For the sake of completeness, we outline below the proof of
this result, which actually consists in checking that the argument developed
in [3] for the proof of Theorem 3.2 goes through without the concatenation
condition (H3) (see also [40]). The property (3.4) is well known for attractors
of semigroups (cf. [42]), for uniform attractors for semiprocesses (cf. [10])
and also for generalized multivalued semigroups (see [39]). Since we did not
find in the literature the proof for this property in the generalized semiflow
framework, we report it. Our argument closely follows the proof of the
corresponding property for semigroups. Clearly, the same property holds
for the attractor constructed in Theorems 3.2 and 3.3.

Proof. Following the proof of [3, Thm. 3.3], one has to preliminarily show
these two facts: their proof simply consists in repeating the arguments of
[3, Lemmas 3.4, 3.5], which are valid independently of (H3).

Claim 1.: If G fulfills (H1), (H2), (H4), and is asymptotically compact,
then for any non-empty and bounded set B ⊂ X, ω(B) is non-empty,
compact, quasi-invariant and attracts B.

Claim 2.: If G fulfills (H1), (H2), (H4), is asymptotically compact and
point dissipative, then there exists a bounded set B such that for any
compact K ⊂ X there exist τ = τ(K) > 0 and ε = ε(K) > 0 with
T (t)(Nε(K)) ⊂ B for all t ≥ t1.

Hence, let us define A := ω(B) where B is exactly the bounded set of
Claim 2. Owing to Claim 1, A is non-empty, compact, quasi-invariant, and
attracts B. Let us now fix any bounded set B and consider its compact ω-
limit K := ω(B), which attracts B by Claim 1. Using Claim 2, one readily
exploits (3.3) and adapts the proof of [3, Thm. 3.3] in order to infer that B
attracts B as well. Thus, also A attracts B and, being B arbitrary among
bounded sets, we have checked that A is the weak global attractor.
Now we prove (3.4). To this end, we take ξ ∈ A . Then, the quasi invariance
of A entails that there exists a complete orbit z such that z(0) = ξ and z(t) ∈
A for any t. In particular, z is also bounded since A is bounded. Let us
now prove the reverse inclusion. Consider any bounded and complete orbit
z in G and then set O := {z(t), t ∈ R}. Now, the set O is clearly bounded
in the phase space and quasi invariant, thus there holds the following chain
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of inclusions

(3.5) O ⊂ T (t)O ⊂ ω(O) ⊂ A .

In particular, the first inclusion holds by virtue of the quasi invariance of O,
while the second one holds since the ω-limit set of any bounded set attracts
the set itself, Finally, the last inclusion easily follows from (3.2). Thus,
we conclude that for any bounded and complete orbit z of G, there holds
z(0) ∈ A . This fact clearly implies (3.4). �

4. Faedo Galerkin approximation of the hyperbolic relaxation

of the Cahn-Hilliard equation

In this section, we perform a detailed analysis of the Faedo-Galerkin
scheme approximating (2.5). This analysis has two major scope. First,
the Faedo-Galerkin scheme we are going to introduce is the starting point
in proving the existence of solutions to (2.5). Moreover, the solutions to
(2.5) that can be obtained as limits of this approximation argument (see
5.1) are the ones for which we will prove the existence of a (suitable weak
notion of ) attractor. Secondly, we prove that the set of all the solutions
to the Faedo-Galerkin system forms a generalized semiflow in a proper fi-
nite dimensional phase space. For this generalized semiflow we show in this
section the existence of the global attractor AN .

Since A−1 is compact and self-adjoint there exists an orthonormal basis
of L2(Ω) consisting of eigenvectors of A, that is

(4.1)

Avi = λivi, ‖vi‖ = 1, for i = 1, 2, . . .

〈vi, vj〉 = 0, for i 6= j

0 < λ1 ≤ λ2 ≤ . . . , λj → +∞ as j ↗ +∞.

It is well known that
{

λ
−1/2
n vn

}

n≥1
is an orthonormal basis of D(A1/2). For

any N ≥ 1 we let V N to be the space spanned by {v1, . . . , vN}. We consider
the following equation in V N .

ProblemN : Find tN and ui ∈ C2([0, tN ]), i = 1, . . . , N such that, if

un :=

N
∑

i=1

ui(t)vi,

then un ∈ C2([0, tN ], VN ) solves (i = 1, . . . , N)

〈uN
tt , vi〉 + 〈uN

t , vi〉 + 〈A(AuN + φ(uN )), vi〉 = 0,(4.2)

〈uN (0) − uN
0 , vi〉 = 0, 〈uN

t (0) − uN
1 , vi〉 = 0,(4.3)

where (uN
0 , u

N
1 ) belongs to the discrete space V N × V N . This problem con-

sist in a N -dimensional system of nonlinear ordinary differential equations,
for which standard methods show that there exists tN ∈ (0,+∞) such that
(4) has at least a solution in [0, tN ]. Note that, also at this approximating
level the uniqueness of the solution is not to be expected, since φ is only
continuous and not locally Lipschitz. The subsequent fundamental a priori
estimate will show that the approximating solution are actually defined over
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all (0,+∞). This a priori estimate will be crucial in order to pass to the
limit as N → +∞ and to obtain a solution to (2.5) (see the forthcoming
section 5)

Main Estimate Multiply (4.2) by u′i(t)/λi and then sum over i. We get

d

dt
V (uN , uN

t )(t) = − ‖ uN
t (t) ‖2

D(A−1/2)
, ∀t,(4.4)

which imply

V (uN (t), uN
t (t)) +

∫ t

s
‖ uN

t (λ) ‖2
D(A−1/2)

dλ

= V (uN (s), uN
t (s)), ∀t, s ∈ [0,+∞),(4.5)

where we have set
(4.6)

V (uN , uN
t )(t) :=

1

2
‖ uN

t (t) ‖2
D(A−1/2)

+
1

2
‖ ∇uN (t) ‖2 +

∫

Ω
F (uN (t)).

Now, since (2.3) entails that

(4.7) F (u) ≥ −
λ

2
u2 + C,

for some λ < λ1 and some C, we have that

(4.8) V (uN , uN
t ) ≥ C‖(uN , uN

t )‖H − C.

Estimate (4.5) has some interesting and important consequences. First of all
it shows that the discrete solution can be extended over all the positive line
(0,+∞) and moreover that the solutions emanating from bounded sets of
initial data remain bounded, even independently of N . In fact, by combining
(4.5) with s = 0 and (4.8), we have that

(4.9) ‖(uN (t), uN
t (t))‖H ≤ C(R),∀t > 0,

as soon as ‖(uN (0), uN
t (0))‖H ≤ R.

Estimate (4.5) is also the starting point to show that the set of all the
solution at level N of the approximating equation (4.2) is a generalized semi-
flow EN in the phase space V N × V N endowed with the topology induced
by D(A1/2)×D(A−1/2), which is point dissipative, and asymptotically com-
pact, thus admitting a global attractor.

The first step consist in showing that the set EN of all the solutions to (4.2)
satisfies the hypothesis (H1)-(H4) in the definition of generalized semiflow.
Clearly, the existence (H1), the concatenation (H2) and the translation
(H3) are immediate. To verify (H4) we have to fix a sequence (uN

k0, u
N
k1) in

V N × V N converging as k ↗ +∞, with respect to the topology induced by
D(A1/2) ×D(A−1/2), to (uN

0 , u
N
1 ) ∈ V N × V N . Then we have to show that

the corresponding solutions uN
k emanating from (uN

k0, u
N
k1) converge (up to

the extraction of a subsequence) to a function uN which solves (4.2) with
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(uN (0), uN
t (0)) = (uN

0 , u
N
1 ). The convergence holding in the following sense

uN
k (t) → uN (t) in D(A1/2) and ∀t ∈ [0,+∞)(4.10)

uN
kt(t) → uN

t (t) in D(A−1/2) and ∀t ∈ [0,+∞)(4.11)

We start by proving that (4.10)-(4.11) hold in the weak topologies ofD(A1/2)

and D(A−1/2), respectively. To this end, we first note that the energy equa-
tion (4.5), (4.8) and standard weak star compactness results combined with
the growth conditions on φ (and Lemma 3.3 in [4]) entail that there exist
uN ∈ W 1,∞(0, T ;V N ),∀T > 0 and a subsequence of k (not relabeled) such
that

uN
k

∗
⇀ uN in L∞(0, T ;D(A1/2)), ∀T > 0 as k ↗ +∞,(4.12)

uN
kt

∗
⇀ uN

t in L∞(0, T ;D(A−1/2)), ∀T > 0 as k ↗ +∞,(4.13)

φ(uN
k )

∗
⇀ φ(uN ) in L∞(0, T ;L2(Ω)), ∀T > 0 as k ↗ +∞.(4.14)

Moreover, by multiplying (4.2) with u′′ki(t)λi
−3 and then summing over i

(which correspond to testing with A−3uN
ktt), we obtain

‖A−3/2uN
ktt(t)‖

2 ≤ 〈A−3/2uN
kt(t), A

−3/2uN
ktt(t)〉 + 〈A1/2uN

k (t), A−3/2uN
ktt(t)〉

+ 〈A−1/2φ(uN
k (t)), A−3/2uN

ktt(t)〉 ∀t > 0,(4.15)

and thus, recalling (4.5) and the continuous embeddings L2(Ω) ↪→ D(A−1/2) ↪→

D(A−3/2), we get

(4.16) ‖uN
ktt‖

2
L∞(0,T ;D(A−3/2))

≤ C,

which implies (again, up to the extraction of a subsequence of k) that

(4.17) uN
ktt

∗
⇀ uN

tt in L∞(0, T ;D(A−3/2)), ∀T > 0 as k ↗ +∞.

Convergences (4.12)-(4.14) and (4.17) show that uN is a solution to (4.2)
with (uN (0), uN

t (0)) = (uN
0 , u

N
1 ). Note in particular, that the limit function

uN , being a solution of (4.2) verifies the energy equality (4.5). Thus we have
that (uN , uN

t ) ∈ C0([0, T ];H ). Now, we fix a t in [0, T ] and we choose a
sequence tk → t. Since there holds

(4.18) uN
k (tk) = uN

k (0) +

∫ tk

0
uN

kt(s)ds, in D(A−1/2),

we have,

〈A−1/2uN
k (tk), A

1/2v〉

= 〈A−1/2uN
k (0), A1/2v〉 +

∫ tk

0
〈A−1/2uN

kt(s), A
1/2v〉ds

→ 〈A−1/2uN (0), A1/2v〉 +

∫ t

0
〈A−1/2uN

t (s), A1/2v〉ds

= 〈A−1/2uN (t), A1/2v〉,∀v ∈ D(A1/2),(4.19)

thanks to the convergence uN
kt

∗
⇀ uN

t in L∞(0, T ;D(A−1/2)). This con-

vergence means uN
k (tk) ⇀ uN (t) in L2(Ω) which implies uN

k (tk) ⇀ uN (t)
in H1

0 (Ω) by density and (4.12). The same reasoning (using this time
the convergence (4.17)), shows the analogous convergence for uN

kt, namely
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uN
kt(tk) ⇀ uN

t (t) in D(A−1/2). In particular, these facts entail that EN sat-
isfies (C4)w.
Now, since V in (4.6) is lower semicontinuous, we have that

(4.20)

V ((uN (t), uN
t (t)) ≤ lim inf

k↗+∞
V (uN

k (tk), u
N
kt(tk)),

∫ t

0
‖ uN

t (λ) ‖2
D(A−1/2)

dλ ≤ lim inf
k↗+∞

∫ tk

0
‖ uN

kt(λ) ‖2
D(A−1/2)

dλ.

Hence we have

V ((uN (t), uN
t (t)) +

∫ t

0
‖ uN

t (λ) ‖2
D(A−1/2)

dλ

≤ lim inf
k↗+∞

(

V (uN
k (tk), u

N
kt(tk)) +

∫ tk

0
‖ uN

kt(λ) ‖2
D(A−1/2) dλ

)

,(4.21)

entailing in particular that V (uN
k (tk), u

N
kt(tk)) → V ((uN (t), uN

t (t) in R, since

the both sides of (4.21) are equal to V (uN (0), uN
t (0)). We can thus conclude

that uN
k (tk) → uN (t) in H1

0 (Ω) and uN
kt(tk) → uN

t (t) in D(A−1/2), which

clearly implies uN
k → uN in H1

0 (Ω) and uN
kt → uN

t in D(A−1/2), uniformly
for t ∈ [0, T ], ∀T > 0. Thus, we obtain the desired upper semicontinuity
(H4), which concludes the proof of the fact that the set EN of the solutions
to (4.2) is a generalized semiflow on V N × V N .

We now prove that the generalized semiflow EN is asymptotically compact
and point dissipative, hence, following Ball, it possesses a global attractor
AN .

Asymptotic compactness To prove the asymptotic compactness of EN we
use the so-called energy method, inaugurated by J.M.Ball and in particular
we follow directly the analysis of Ball in [4]. The only (minor) difference lies
in the choice of the energy functional. Here, we choose

(4.22) I(uN , uN
t )(t) := V (uN , uN

t )(t) +
1

2
〈A−1/2uN (t), A−1/2uN

t (t)〉.

By simply multiplying (4.2) by 1
λi

(u′i(t) + 1
2ui(t)) and then sum over i, one

can show that I satisfies the following equation

(4.23)
d

dt
I(uN , uN

t )(t) = −I(uN , uN
t )(t)+

∫

Ω
(F (uN (t))−

1

2
uN (t)φ(uN (t))).

With (4.22) and (4.23) in hand, the proof of the asymptotic compactness of
EN goes exactly like the one given by Ball in [4]. For the reader’s convenience
we give a sketch of the proof.
We let (uN

j , u
N
jt) ∈ EN with (uN

j (0), uN
jt (0)) bounded and we let tj ↗ +∞.

Now, the energy equation (4.5) shows that V (uN
j (tj), u

N
jt(tj)) is bounded

and thus, by (4.8), so is (uN
j (tj), u

N
jt(tj)) in D(A1/2) ×D(A−1/2). Thus, up

to the extraction of a subsequence of j, we have that (uN
j (tj), u

N
jt(tj)) ⇀ ξ

and also (uN
j (tj −M), uN

jt(tj −M)) ⇀ ξ−M , with ξ and ξ−M ∈ H . Now,

since EN enjoys (C4)w, we can assume that there exists (uN , uN
t ) ∈ EN such
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that
(uN

j (tj −M + t), uN
jt(tj −M + t)) ⇀ (uN , uN

t )

and (uN (0), uN
t (0)) = ξ−M , (uN (M), uN

t (M)) = ξ. Now, we write (4.23)
integrated between 0 and M for (uN

j (tj −M + t), uN
jt(tj −M + t)) obtaining

I(uN
j , u

N
jt)

= e−MI(uN
j (tj −M), uN

jt(tj −M)) +

∫ M

0
et−M

∫

Ω
(F (uN

j ) −
1

2
uN

j φ(uN
j ))dt.

Now, the energy estimate (4.5) and the growth hypothesis on φ (hence on
F ) entail that

∫

Ω(F (uN
j )− 1

2u
N
j φ(uN

j )) is uniformly bounded on the interval

[0,M ] and moreover
∫

Ω
(F (uN

j (t)) −
1

2
uN

j (t)φ(uN
j (t)) →

∫

Ω
(F (uN (t)) −

1

2
uN (t)φ(uN (t)).

Thus, we have

lim
j↗+∞

∫ M

0
et−M

∫

Ω
(F (uN

j (t)) −
1

2
uN

j (t)φ(uN
j (t))dt

=

∫ M

0
et−M

∫

Ω
(F (uN (t)) −

1

2
uN (t)φ(uN (t))dt.

Now, by writing (4.23) integrated between 0 and M for (uN , uN
t ), we have

that

lim
j↗+∞

∫ M

0
et−M

∫

Ω
(F (uN

j (t)) −
1

2
uN

j (t)φ(uN
j (t))dt = I(ξ) − e−MI(ξ−M ).

Finally, by the lower semicontinuity of I and by lettingM ↗ +∞ we discover
that

lim sup
j↗+∞

I(uN
j , u

N
jt) ≤ I(ξ) ≤ lim inf

j↗+∞
I(uN

j , u
N
jt),

which implies that ‖(uN
j , u

N
jt)‖H → ‖ξ‖H and thus (uN

j , u
N
jt) → ξ strongly

in H . This proves the asymptotic compactness of EN .

Point dissipativity We start by proving that the functional V in (4.6)
is indeed the Lyapunov functional for the approximating equation (4.2).
The functional V is continuous and moreover (4.5) shows that it decreases
along the trajectories, thus it remains to show that the third property in
the definition of Lyapunov function holds. More precisely, we have to prove
that if V (ξN (t)) is constant for some complete orbit ξN then ξN is a rest
point. Now, z = (uN , vN ) is a rest point for EN if and only if vn = 0 and
un ∈ D(A1/2) solves

(4.24) Aun + φ(un) = 0, in D(A−1/2).

Thus, to conclude one has to show that ξN = (uN , 0) with uN solution of
(4.1). This is trivial; in fact if V (ξN (t)) is constant for ξN = (uN , uN

t ) then
by (4.5) uN

t ≡ 0 for all t and moreover uN solves (4.24). Thus ξ is a rest
point.

Now, V is a Lyapunov functional. Thus, to prove the point dissipativity
of EN we only need to prove that the set of the rest point Z(EN ) is bounded
in the phase space V N ×V N (see [3, Theorem 5.1]). In the following lemma,
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we will show that the set of rest point actually enjoys this boundedness
uniformly with respect to N . This property will be crucial for the analysis
in Section 6.

Lemma 4.1. The set Z(EN ) of the rest points of (4.2) is bounded in V N ×
V N uniformly with respect to N . More precisely, there exists r0 such that
∀N ≥ 1 there holds

(4.25) Z(EN ) ⊂ BH (r0).

Proof. If zN = (uN , 0) is a rest point, then by (4.24) tested with uN we have
(recall (2.3))

0 = ‖∇uN‖2 + 〈uN , φ(un)〉 ≥ ‖∇uN‖2 − λ‖uN‖2 − C

≥
(

1 −
λ

λ1

)

‖∇uN‖2 − C,

where λ < λ1 and C are constants independent of uN and of N . This
proves that the set Z(EN ) of the rest points of (4.2) is bounded in V N ×V N

uniformly with respect to N . �

We are now in the position to state and prove the main result of this
section.

Theorem 4.2. For any N ∈ N fixed, under the assumptions (2.3) and (2.4),
the set of all the approximate solution EN is a generalized semiflow on the
phase space V N × V N . Moreover, it is asymptotically compact and point
dissipative, thus it possesses a unique global attractor AN , with the structure
(3.4), which attracts bounded sets of V N ×V N . Moreover, for each complete
orbit ψN lying in AN the limit sets α(ψ) and ω(ψ) are connected subsets of
Z(EN ) on which V is constant. Finally, there exists R0 > 0 such that, for
any N ≥ 1 there holds

(4.26) AN ⊂ BH (R0) ∩ (V N × V N ).

Proof. The proof of the existence and uniqueness of the attractor AN is
an easy consequence of the previous discussion and of Ball’s Theorem [3,
Theorem 5.1] (but see also Theorem 3.3 in this paper). In particular, in
this section we have shown that EN is a generalized semiflow on V N × V N

which is point dissipative and asymptotically compact. Thus, [3, Theorem
5.1] applies and we deduce the existence of a unique compact attractor AN

for the solutions of (4.2). The property (3.4) comes from Theorem 3.6,
which clearly holds also for generalized semiflows.
To conclude, it remains to prove (4.26). Now, we recall from Lemma 4.1
that there exists r0 such that

(4.27) Z(EN ) ⊂ BH (r0), for any N ≥ 1.

Thus, since for any given element (uN , uN
t ) ∈ EN we have that ω(uN , uN

t ) ⊂
Z(EN ), we deduce that setting r1 = 2r0, we have that the ball BH (r1) ∩
(V N ×V n) is an attracting set in V N ×V N , i.e. there exists tN such that for
any t ≥ tN , (uN , uN

t ) ∈ BH (r1)∩ (V N ×V n). Now, we consider the positive

orbit of BH (r1) ∩ (V N × V n), i.e. the set C1 =
⋃

t≥0

TN (t)(BH (r1) ∩ (V N ×

V n)), where TN (t) is the multivalued semigroup constructed from EN . Note
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that C1 is still an absorbing set which attracts all compact sets of V N ×V N

and which is included, thanks to (4.5) and (4.8), in BH (C(r1))∩(V N ×V n),
where C(r1) is as in (4.9). Now, we let the system evolve from C1. It is now
clear that setting R0 := C(C(r1)) we have that

A
N = ω(C1) ⊂ BH (R0) ∩ (V N × V N ),

which concludes the proof. �

5. Long time behaviour of the hyperbolic relaxation of the

Cahn-Hilliard equation: existence of the global attractor

In this section we state and prove our main results concerning the long-
time behaviour of (a suitable subset of ) the solutions to (2.5). As already
pointed in the Introduction, the class of the solutions to (2.5) for which we
study the long-time behaviour will be the set of the functions that solve (2.5)
and that are also limit of the approximation argument presented in Section4
(see Definition 5.1 below). To this end, we first let uN

0 in (4.3) (resp. uN
1 ) to

be the projection of u0 (resp. u1) on V N . Now, since uN
0 → u0 in D(A1/2)

and uN
1 → u1 in D(A−1/2) by construction, it is clear from (4.5) with s = 0

that the sequence of approximating solutions uN enjoy the following bound,
independently of N

(5.1)
‖uN‖L∞(0,T ;D(A1/2)) + ‖uN

t ‖L∞(0,T ;D(A−1/2))∩L2(0,T ;D(A−1/2))

+‖F (uN )‖L∞(0,T ;L1(Ω)) ≤ C.

This means, in particular, that if we are able to pass to the limit as N ↗ +∞
in (4.2) and find a solution to (2.5), then this solution would satisfy only
an energy inequality and no more the energy equality (4.5). In fact, since
we are not able to perform further a priori estimates on the approximating
solutions, from (5.1) we obtain only the corresponding weak and weak star
convergences. This obviously prevents from gaining the energy identity (4.5)
in the limit.
This preliminary discussion shows that the correct topology for the phase
space H := D(A1/2) ×D(A−1/2) should be its weak topology σ(H ,H ′).
This choice has however a drawback: this weak topology is not metrizable,
thus the concepts which are defined using the underlying metric structure
of the phase space, should be properly (re)-defined. However, note that the
concept of generalized semiflow is of topological nature. This means that
we can construct a generalized semiflow when the underlying phase space is
just a topological space of Hausdorff type and no more a metric space. On
this regard, we borrow an idea from Babin and Vishik [1] (but see also [10]).
In particular, we consider as phase space for our equation (2.5) the Hilbert

space H := D(A1/2) × D(A−1/2) endowed with the topology induced by
the weak convergence. Moreover, we let a metric µ be defined on H . The
metric µ will be the one given by the norm in D(A1/2) × D(A−1/2). The
only need in introducing this metric µ is to define the family of bounded sets
we will work with. On the contrary, the attracting properties of the global
attractor will depend on the weak topology. Consequently, we say that a
subset A of the phase space attracts a set B if there holds

for any ε > 0 there exists a t0 > 0 such that T (t)B ⊂ N ε
σ(A) for any t ≥ t0,
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where N ε
w(A) is an ε-neighbourhood of A in the weak topology.

We refer to [25], [20], for other results in the weak topology of the phase
space.
We collect all this informations by saying that the phase space for (2.5) is
the couple
(5.2)

X = (H , µ),

where H = D(A1/2) ×D(A−1/2) with the weak convergence topology

and µ((u1, u2), (v1, v2)) =
√

‖u1 − v1‖2
D(A1/2)

+ ‖u2 − v2‖2
D(A−1/2)

.

In particular, we say that a sequence vn converges to v in X (vn
X
→ v) when

vn ⇀ v in D(A1/2) ×D(A−1/2).

Now, we are ready to introduce the set of the solutions to (2.5) for which
we are going to study the long-time behaviour.

Definition 5.1 (Limiting solutions). We say that a function ϕ =

(

u
ut

)

∈

L∞(0,+∞;D(A1/2) × D(A−1/2)) is a limiting solution of (2.5) if u solves
the equation (2.5) a.e. on (0,+∞) and there exists a sequence {Nk}, and a

sequence ϕNk =

(

uNk

uNk
t

)

∈ ENk
for all k such that

(5.3) ϕNk
X
→ ϕ in X locally uniformly on [0,+∞).

The first result concerning the set of the limiting solutions is the following

Theorem 5.2. Assume (2.3) and (2.4), then Ē is a weak generalized semi-
flow (see Definition 3.4) in X (see 5.2). Moreover, Ē complies with (C3), (C4)
in X .

Proof. First of all, let us notice that as soon as Ē is non empty, then it
satisfies (H2), as one can readily check. We start with proof of (H1), which
clearly entails a global existence result for (2.5). First of all, (4.4) inte-
grated in time gives a bound for the approximate solutions in the energy
space L∞(0, T ;H ),∀T > 0. Thus, since D(A1/2) is continuously embed-
ded in L6(Ω) in 3-D, we have that φ(uN ) is bounded in L∞(0, T ;L2(Ω))
∀T > 0 thanks to (2.4). Finally, by reasoning as in (4.15)-(4.16) we ob-
tain that uN

tt lies (uniformly with respect to N) in a bounded subset of

L∞(0, T ;D(A−3/2)),∀T > 0. Now, usual weak star compactness tools entail
that there exists a function

u with (u, ut) ∈ L
∞(0, T ;H )

and utt ∈ L∞(0, T ;D(A−3/2)) for any T > 0

and a subsequence Nk of N , such that, for any T > 0,

uN
k

∗
⇀ u in L∞(0, T ;D(A1/2)),(5.4)

uNk
t

∗
⇀ ut in L∞(0, T ;D(A−1/2)),(5.5)

uNk
tt

∗
⇀ utt in L∞(0, T ;D(A−3/2)),(5.6)



HYPERBOLIC RELAXATION OF THE CAHN-HILLIARD EQUATION 19

Convergences (5.4)-(5.6) allow to obtain in the limit the first three linear
terms in equation (2.5). Concerning the term with φ(uN ), we follow Ball
[4, Lemma 3.3]. Note that, as a consequence of this limit procedure, by the
semicontinuity of norms with respect to the weak convergence, the limiting
solutions satisfy the energy inequality

V (u, ut)(t) +

∫ t

s
‖ ut(λ) ‖2

D(A−1/2)
dλ ≤ V (u, ut)(s),

∀t > s, for a.e.s and for s = 0.(5.7)

Now, by possibly modifying u on a set of times of measure zero, we have
that u : [0,+∞) → D(A−1/2) is strongly continuous with u(0) = u0 (see

[28, Chapter 1, Theorem 3.1]). Hence, since u ∈ L∞(0,+∞;D(A1/2)), we

easily get that u : [0,+∞) → D(A1/2) is weakly continuous. An analogous

argument shows the weak continuity of u : [0,+∞) → D(A−1/2). Thus,
(C3) is fulfilled. To conclude the proof of (H1), we only need to check the
convergence (5.3). Now, for any t we fix a sequence of times tN such that
tN → t. Then, since

(5.8) uN (tN ) = uN
0 +

∫ tN

0
uN

t (s)ds, in D(A−1/2),

and uN
t

∗
⇀ ut in L∞(0, T ;D(A−1/2)) for any T > 0, we have that (recall

that uN
0 → u0 in D(A1/2))

〈A−1/2uN (tN ), A1/2v〉 → 〈A−1/2u0, A
1/2v〉 +

∫ t

0
〈A−1/2ut(s), A

1/2v〉ds

= 〈A−1/2u(t), A1/2v〉, ∀v ∈ D(A1/2)(5.9)

which implies that uN (tN ) ⇀ u(t) in L2(Ω), thus by density in D(A1/2).

Hence, we have that uN ⇀ u in D(A1/2) locally uniformly in [0,∞) (re-
call that u enjoys (C3)). A similar argument also shows that uN

t ⇀ ut in

D(A−1/2) locally uniformly in [0,∞). This shows (5.3). Hence, the proof of
(H1) is concluded.
We now prove (C4), which obviously yields (H4). Let us fix a sequence

ϕm =

(

um

umt

)

⊂ Ē with ϕm(0)
X
→ z =

(

u0

u1

)

. We aim to show that

there exists ϕ =

(

u
ut

)

∈ Ē such that, up to a subsequence, ϕm
X
→ ϕ

locally uniformly in [0,∞). By definition of Ē , for all m there exists a se-

quence {ϕNk
m } ⊂ ENk

such that ϕNk
m

X
→ ϕm locally uniformly on [0,∞). This

fact entails that we can select a proper increasing sequence Nkm (named for
simplicity Nm) such that

(5.10) sup
t∈[0,m]

〈〈ϕm(t) − ϕNm
m (t), v〉〉 ≤

1

m
, ∀v ∈ H

∗.

This means in particular that ϕNm
m (0)

X
→ z. Now, thanks to (4.4) and

standard diagonal weak compactness arguments (analogous to the ones used
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in proving (H1)), we have (up to a subsequence)

u
Nmj
mj

∗
⇀ u in L∞(0, T ;D(A1/2)), ∀T > 0(5.11)

u
Nmj

mjt
∗
⇀ ut in L∞(0, T ;D(A−1/2)) ∀T > 0(5.12)

u
Nmj

mj tt
∗
⇀ utt in L∞(0, T ;D(A−3/2)) ∀T > 0(5.13)

φ(u
Nmj
mj )

∗
⇀ φ(u) in L∞(0, T ;L2(Ω)) ∀T > 0,(5.14)

as j ↗ +∞. Thus, u solves (2.5). Moreover, we have also (repeating exactly
the same argument we use in proving (5.3) that

u
Nmj
mj ⇀ u in D(A1/2) locally uniformly in [0,∞)(5.15)

u
Nmj

mj t ⇀ ut in D(A−1/2) locally uniformly in [0,∞)(5.16)

This means in particular that ϕ :=

(

u
ut

)

belongs to Ē . Now, we conclude

the proof of (C4) by noting that, for all T and mj > T there holds (see
(5.10))

sup
t∈[0,T ]

〈〈ϕ(t) − ϕmj (t), v〉〉

≤ sup
t∈[0,T ]

〈〈ϕ(t) − ϕ
Nmj
mj (t), v〉〉 + sup

t∈[0,T ]
〈〈ϕ

Nmj
mj − ϕmj (t), v〉〉

≤ sup
t∈[0,T ]

〈〈ϕ(t) − ϕ
Nmj
mj (t), v〉〉 +

1

mj
, ∀v ∈ H

∗.(5.17)

By recalling (5.15-5.16), we have that (5.17) clearly entails the validity of
(C4) in X . �

We now prove that Ē is asymptotically compact and point dissipative. On
this regard, we note that now the functional V is not a Lyapunov function
for Ē , since it is only lower semicontinuous in X . Thus, the study of the
dissipation properties of Ē is quite different form the one for EN . In par-
ticular, it is no more true that any neighbourhood of the set of rest points
is an absorbing set for Ē . On the other hand, trivial counterexamples show
that we can not deduce the dissipativity of the limiting solution from the
dissipativity of their approximations. Consequently, we will make use of a
proper (although quite standard) dissipativity estimate. To this end, we
have to reinforce the conditions on φ (see (5.18) below). However, note that
the forthcoming assumption (5.18), which basically amounts to saying that
rφ(r) is controlled for large r from above and from below by a proper power
of |r|, is quite standard and widely used (see for instance [10]). Moreover,
it is satisfied by the cubic nonlinearity φ(r) = r3 − r.

Theorem 5.3. Under the hypotheses of Theorem 5.2, the set Ē is asymp-
totically compact in X (see (5.2)). Moreover, if there holds the following
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condition

(5.18) lim inf
|r|↗+∞

rφ(r) − cF (r)

|r|2
≥ 0,

for some c > 0, then there exists R̄ > 0 such that the ball BX (R̄) of X is a
bounded absorbing set for Ē . Thus, the set Ē is point dissipative.

Proof. The asymptotic compactness easily follows from the energy estimate
(4.4) integrated between 0 and tm with tm ↗ +∞. In fact, given a sequence

ϕm =

(

um

umt

)

⊂ Ē with ϕm(0) bounded in X , then the corresponding

solutions evaluated at tm enjoy

(5.19) V (um(tm), umt(tm)) +

∫ tm

0
‖umt(s)‖D(A−1/2)ds ≤ C.

This clearly implies that, up to a subsequence, ϕm(tm) =

(

um(tm)
umt(tm)

)

is

convergent in X .

We now prove the point dissipativity of Ē . To this end, we test (2.5) with
A−1ut + αA−1u1with α > 0 small enough. We set

Φ(u, ut) :=
1

2
‖ut‖

2
D(A−1/2)

+
1

2
‖∇u‖2 +

∫

Ω
F (u)dx+ α〈A−1/2ut, A

−1/2u〉,

and we get

(5.20)

d

dt
Φ(u, ut) + (1 − α)‖ut‖

2 + α‖∇u‖2

+α〈A−1/2ut, A
−1/2u〉 + α〈φ(u), u〉 = 0.

Note that, by choosing α small enough, from (2.3), (4.7), the Poincaré and
the Young inequalities, it is not difficult to obtain that I is bounded from
below by

(5.21) Φ(u, ut) ≥ c(‖ut‖
2
D(A−1/2)

+ ‖∇u‖2).

Now, by adding and subtracting
∫

Ω F (u)dx in (5.20), we get

(5.22)
d

dt
Φ(u, ut) + Φ(u, ut) + α〈φ(u), u〉 −

∫

Ω
F (u)dx = 0.

To control the last term in (5.22), we use (5.18), which entails that, for any
ε > 0 the exists a constant Cε such that

(5.23) α〈u, φ(u)〉 −

∫

Ω
F (u) + ε‖u‖2 ≥ Cε.

Thus, by choosing ε in (5.23) small enough, (5.22) becomes

(5.24)
d

dt
I(u, ut) + I(u, ut) ≤ C.

The Gronwall Lemma applies and we deduce the fundamental

(5.25) I(u(t), ut(t)) ≤ CI(u(0), ut(0))e
−t +C,

1this argument is only formal (ut /∈ D(A1/2)), but it can be justified by working on the
Faedo-Galerkin scheme and recalling the definition of Ē.
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which, by recalling (5.21), clearly entails the desired dissipativity. �

We are now in the position to state the main result of this section, which
is now an easy consequence of Theorems 5.2 and 5.3 and of Theorem 3.6.

Theorem 5.4. Assume (2.3), (2.4) and (5.18). Then the set Ē of all the
limiting solutions to (2.5) (see Definition 5.1) possesses a weak global attrac-
tor A in H endowed with the weak convergence. The attractor A attracts
in the weak topology of H the H -norm bounded subsets of H . Moreover,
A enjoys the description (3.4).

Proof. From Theorem 5.2 we learn that the set Ē of all the limiting solutions
to (2.5) enjoys (H1), (H2), (H4) and (C4) in X (see (5.2)). From Theorem
5.3, we know that Ē is asymptotically compact and point dissipative. Thus,
Theorem 3.6 applies in the phase space X . �

6. Approximation of the weak global attractor

In this section we discuss about the approximability of the (weak) global
attractor A for (2.5) with the global attractor AN of the Faedo-Galerkin
system (4.2). To this end we first introduce some notation. Given a subset
B ⊂ X and any ε > 0, we let Oε

w(B) to denote the open ε-neighbourhood
of B in the weak topology, that is the topology related to the phase space
(5.2).
This is the main result of this section.

Theorem 6.1. Let (2.3)-(2.4) hold. Then, for any ε > 0, there exists Nε

such that AN ⊆ Oε
w(A ) for any N ≥ Nε.

Proof. To prove this result, we combine the result (3.4) on the structure of
the weak global attractor A and of A N with the uniform (in N) bounded-
ness of AN in X (see (4.26) and (5.2)).
In order to prove the Theorem, we argue by contradiction. Thus, there
exists an open ε̄-neighbourhood of A O ε̄

w(A ) such that

ξNj = (ξ
Nj

1 , ξ
Nj

2 ) /∈ Oε̄
w(A )

for a sequence Nj ↗ +∞ and ξNj ∈ A Nj . Now, thanks to (4.26), we have
that

(6.1) ‖ξNj‖H ≤ R0,

which clearly means that, up to the extraction of a (not relabeled subse-
quence),

(6.2) ξNj X
→ ξ.

Our goal is to prove that ξ belongs to A , hence obtaining a contradiction.
To this end, we note that the quasi invariance of the global attractor AN

gives that there exists a complete and bounded orbit ϕN = (uNj , u
Nj

t ) such

that ϕNj (0) = ξNj and ϕN (t) ∈ AN for all t ∈ R. As a direct consequence of
the translation invariance of the complete orbit, of (6.1), (4.5), (4.8) and by
reasoning as in the proof of Theorem 5.2, we have that the complete orbit
ϕNj satisfies, for any T > 0, the following

(6.3) ‖u
Nj

tt ‖L∞(−T,T ;D(A−3/2)) + ‖(uNj , u
Nj

t )‖L∞(−T,T ;H ) ≤ C(R0).
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As already pointed out in the proof of Theorem 5.2, this estimate guarantees
the existence of a limiting solution ϕ, obtained as the limit (up to the ex-
traction of a further subsequence) of the ϕNj ’s, which is also a bounded and
complete orbit. Moreover, there holds that ϕ(0) = ξ. From the structure
result (3.4) in Theorem 5.4 we finally deduce that ξ ∈ A . This clearly leads
to a contradiction. �

7. Weak global attractor for the damped semilinear wave

equation with supercritical nonlinearity

In this last section of the paper, we show that the same type of results
obtained for the hyperbolic relaxation of the Cahn-Hiliard equation hold
also for semilinear damped wave equation when the non linear term φ has
a super critical growth and is not locally lipschitz continuous. Thus we will
deal with the following equation

(7.1) utt + ut − ∆u+ φ(u) = 0 in Ω ⊂ R
n

with φ : R → R a continuous function with φ(r) = F ′(r) satisfying (2.3) and

Conditions on φ

|φ(v)| ≤ C(1 + |v|γ), C > 0, 1 ≤ γ < +∞,(7.2)

lim inf
|u|↗+∞

1
2uφ(u) − F (u)

|u|γ+1
≥ 0,(7.3)

lim inf
|u|↗+∞

(

φ(u)

u
− C|u|γ+1

)

> −λ1, C > 0(7.4)

F (u) ≥ C|u|γ+1 − C, C > 0 if γ >
n+ 2

n− 2
(7.5)

This conditions are taken from [4]. Moreover, following Ball’s notation, we

set Yγ = H1
0 (Ω) ∩ Lγ+1(Ω) with dual Y ′

γ = H−1(Ω) + L
γ+1

γ (Ω). Then, we

take Xγ = Yγ × L2(Ω).
In Ball’s paper [4] it is proved that under the hypothesis (7.2)-(7.5), the
weak solutions to (7.1) generates a generalized semiflow on the phase space
Xγ = Yγ × L2(Ω) possessing a global attractor. The key (but unproved)
assumption is that the solutions to (7.1) enjoy the energy identity
(7.6)
1

2
‖ut(t)‖

2+
1

2
‖∇u(t)‖2+

∫ t

0
‖ut(s)‖

2 =
1

2
‖ut(0)‖

2+
1

2
‖∇u(0)‖2, t ∈ (0,+∞).

In [27], the existence of solutions to (7.1) is proved by means of the following
Faedo Galerkin approximating scheme. Following Lions, we first introduce
a sequence of functions {vi}i∈N

such that






vi ∈ H1
0 (Ω) ∩ Lγ+1(Ω) ∀i;

∀N, v1, . . . , vN are linearly independent ;
∀N, v1, . . . , vN spans a dense subset of H1

0 (Ω) ∩ Lγ+1(Ω).
(7.7)

The Faedo-Galerkin system reads thus as follows
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ProblemN : Find tN and ui ∈ C2([0, tN ]), i = 1, . . . , N such that, if

un :=
N

∑

i=1

ui(t)vi,

then uN ∈ C2([0, tN ], VN ) solves (i = 1, . . . , N)

〈uN
tt , vi〉 + 〈uN

t , vi〉 + 〈∇uN ,∇vi〉 + 〈φ(uN ), vi〉 = 0,(7.8)

〈uN (0) − uN
0 , vi〉 = 0, 〈uN

t (0) − uN
1 , vi〉 = 0,(7.9)

where (uN
0 , u

N
1 ) belongs to the discrete space V N ×V N , with V N spanned by

{v1, . . . , vN}. (7.8)-(7.9) is a system of nonlinear ODE, for which standard
methods ensures the existence of at least one local solution defined on [0, tN ].
We first show that these solutions are defined over all the positive line. To
this end, we multiply (7.8) with u′i and then we sum over i. We deduce that

V (uN (t), uN
t (t)) +

∫ t

s
‖ uN

t (λ) ‖2 dλ

= V (uN (s), uN
t (s)), ∀t, s ∈ [0,+∞),(7.10)

where we have set

(7.11) V (uN , uN
t )(t) :=

1

2
‖ uN

t (t) ‖2 +
1

2
‖ ∇uN (t) ‖2 +

∫

Ω
F (uN (t)).

Thus, (7.5) entails that the solutions are globally defined. Moreover, we
have that ∀N the solutions of the Faedo Galerkin system verify the energy
identity. Now, by simply mimicking the analysis in [4] and the argument in
Theorem 4.2, we deduce that

(1) the solutions of the Faedo Galerkin system form a generalized semi-
flow EN on the discrete space V N × V N

(2) EN is asymptotically compact and point dissipative, thus possessing
a global attractor AN which is bounded in Xγ (uniformly w.r.t. N).

Subsequently, we choose uN
0 → u0 in Yγ and uN

1 → u1 in L2(Ω) and, as we
did in (5.2), we choose as phase space for the continuous problem

(7.12)

Xγ = (Xγ , µ),

where Xγ = Yγ × L2(Ω) with the weak convergence topology

and µ is the distance induced by norm in Xγ .

As in the analysis of equation (2.5), we denote the convergence in Xγ with
Xγ
→, which simply means weak convergence in Xγ .
Then, we introduce the set of the limiting solutions to (7.1) as

Definition 7.1 (Limiting solutions). We say that a function ϕ =

(

u
ut

)

∈

L∞(0,+∞;Xγ) is a limiting solution of (7.1) if u solves the equation (7.1)
a.e. on (0,+∞) and there exists a sequence {Nk}, and a sequence ϕNk =
(

uNk

uNk
t

)

∈ ENk
for all k such that

(7.13) ϕNk
Xγ
→ ϕ in Xγ locally uniformly on [0,+∞).
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Finally, by simply adapting the proofs of Theorems 5.2, 5.3, 5.4 and 6.1,
we can show that

(1) the set of the limiting solutions (see the definition below) forms a
weak generalized semiflow on the phase space Xγ which possesses a
weak global attractor A

(2) the convergence of the global attractor AN to the weak global at-
tractor A , that is ∀ε > 0, ∃Nε: An ⊆ Oε

w(A ), ∀N ≥ Nε,

whereOε
w(A ) denotes the ε-neighbourhood of A in the weak topology ofXγ .

Note that these results hold without assuming that the solutions enjoy
the energy identity (7.6). On the other hand, our results hold in the weak
topology of the phase space Xγ and the attractor we construct is only quasi
invariant and no more invariant. We refer to, e.g., [1] and to [9], for other
results on the long time behaviour of the damped semilinear wave equation
without uniqueness. In particular, the work [1] makes use of the multivalued
semigroup method, while in the work [9] the authors use the trajectory
method

Acknowledgements I am grateful to Maurizio Grasselli for having pro-
posed me this subject and for many inspiring conversations.
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