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Introduction

In the recent paper [13] Kumano-go and Taniguchi have studied by using
oscillatory integrals when pseudo-differential operators in R” are Fredholm
type and examined whether or not the operators Ly(x, D,, D,)=D +ix*D, in
Mizohata [15] and L.(», D,, D,)=D,+ixDj; in Kannai [6] are hypoelliptic by
a unified method. In the present paper we shall give the detailed description
for results obtained in [13] and study the hypoellipticity for the operator of the
form L= N Ay X"¥ DEDY with semi-homogeneity in (x, ¥, D,, D,)

la:m|+la :m =1 )
by deriving the similar inequality to that of Grushin [4] for the elliptic case.
Then we can treat the semi-elliptic case as well as the elliptic case. We
shall also give a theorem on the global analytic-hypoellipticity of a non-elliptic
operator, and applying it give a necessary and sufficient condition for the operator
L(x, D,, D,) to be hypoelliptic, when the coefficients of L are independent of 3*
(see Theorem 3.1).

In Section 1 we shall describe pseudo-differential operators of class SY, 5
which is defined by using a basic weight function A=2(x, £) varying in x and £
(cf. [13] and also [1]). In Section 2 we shall study the global analytic-hypoellip-
ticity of a non-elliptic pseudo-differential operator and give an example which
indicates that the condition (2.3) is necessary in general. In Section 3 we shall
consider the local hypoellipticity for the operator L and give some examples.

The author wishes to thank Prof. H. Kumano-go for suggesting this problem
and his helpful advice.

1. Algebras and L*-boundedness

DEerFINITION 1.1. For —oo<m< oo, 0=Z8<1 and a sequence #; 0=7,<
7,= -+ we define a Fréchet space 43> by the set of C~-functions p(£, x) in R}",
for which each semi-norm
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Pl = iugl){lpﬁgi(’é, x) | <xd>TIBCEY-m-3I1Y
i ﬁnite’ where PE;;=8§D5P, D""J:_Za/axh 65].26/8&]-, J=1, e, My
&> = VITTAT, <& = VITTER
We define the oscillatory integral O,[p] for p(§, x)= AP; by

0,121 =0, [{ e==tp(e, s)ana
= lim {{ e, a)p(e, v,

where dEZ(Zn)_"dE, x-E=x.E++ux,E, and X(& x)=X(EE, &x) (0<E= 1)
for a X(£, x)E S (the class of rapidly decreasing functions of Schwartz) in R},
such that X(0, 0)=1 (cf. ([11], [13]). '

ReEMARK. We can easily obtain the following statements (cf. [11]).
1°)  For pe Az we have
0,171 = ([ e-smtcar-cDp (&) <Dy pi&, )} d

by taking integers /, /' such that —2/(1—8)+m< —n and —2I'4-71,, < —n.
2°)  Let {p,}ocec: be a bounded set in > and converges to a py(£, x)E Ar»
as €— 0 uniformly on any compact set of Rf’,. Then we have

lim O,[p,] = O[] -
3°) For pe AP we have
O,[x*] = O,[Dfp] and O,[£%] = O,[D2p].

DerintTION 1.2. We say that a C=-function A(x, £) in RZ% is a basic
weight function when A(x, £) satisfies conditions:

(1.1) ATKE =N, )= A1+ %[+ [E]) (7,20, a>0),
(1.2) ING (%, E)| S AapM(x, E)TIHBL - (0<8<1),
(13) ?»(x+y, §)§A1<y>717\‘(x’ 5) (7120)

for positive constants 4, A,g, 4,.”

DrrinttioN 1.3, We say that a C”-function p(x, £) in R, belongs to
SPos —oo<m< oo, 058<p=1, §<1, when for any multi-index «, B

1) For a basic weight function A(x, &) satisfying (1.1)—(1.3) we can always find an equivalent
basic weight function 1'(x, £) with 0==0in (1.2) to A(x, £), i.e., C*A(x, £)='(x, £)=Cllx, &).



HYPOELLIPTICITY AND GLOBAL ANALYTIC-HYPOELLIPTICITY 223

(1.4) | &, £)1 = CapMa, E)"P1T0IRL,

For p(x, £)eS%, ; we define pseudo-differential operator P=p(X, D,) with the
symbol o(P)(x, £)=p(x, £) by

(1.5) Pu(x) = S extp(x, EYUE)EE  for ueS,

where ﬁ(f)zg e”*ty(x)dx is the Fourier transform of u= .

For a p= ST, ;s we define semi-norms | p|{™,, 1, ,=0, 1, --- by
lpli, = Max {sup | P&, )| N(x, E)~PIoI-0IA

S0 IBIST,
Then S7, s makes a Fréchet space.

In what follows we shall only treat the case: §=p=0 or 0=8 <p=1 since
it simplifies the statements below and is sufficient for our aim.

Theorem 1.4. Let P;=pi(X, D)= S50, j=1,2. Then P=P,P, belongs
to Sxieo 2 and we have for any integer N >0
(1.6) a(P)(x, &) (denoted also by p.o p.(x, £))

pa,(x, E)+N S S %ry,g(x, £)do

lw|<1v =5
where

Pal®, E) = p1V(x, Epxa(®, E)  (€SV55277"),
ry’o(x, E) = OS—SS e‘i}'-'ﬂpi’f)(x’ E+0n)P2(y)(x+y’ g)dyd-)? )

The set {ry o(%, )} 01, i bounded in Sy 77,

Proof. By the same method of the Theorem 2.5 and 2.6 in [11] we can
prove the formula (1.6) if we have only to prove {ry,} is a bounded set in
SXe 2 M. Since 9 Diry 4 is represented as the linear combination of

(1.7) [§ ez, £1-Ompig2ntoty, Edydn,
(0[ = oty ta, B = 61“1'/82)

we have only to prove that each term of the form (1.7) is estimated by
C\(x, gymrrmz-Plvi=fiel - Here and in what follows we omit the notation O,-.

We have

SS e“'y"'Pfcgl‘f”(x, §+077)Pz§§£w(x-l—y, E)dydn

= | {[ emsmacyymrneD,yup (o, £+ On)pg2n k3, Byt
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=

S <77>_no dﬂ g e-iy-n<Dy>no {<y>‘2’1<D,,>”1p1§§1‘)”’(x §+077)
InSCor
Prrr(®+y, E)}dy I

+

S N S e (— A2 (<> (D, Y ap s P (w, E+6n)
Pz§3331>(x-|-y, E)}dy .
c {Slnlgco}ﬂ’?y"%”? S Yo ®an(x, E+On)™mPI=PIod ) (x4 y, E)™2-Pi%idy

A

il <, g omymermrminaty, gymnedy)

Il/\

{K(x, E)m1+mz—p|~/l—plals <77>“"°d7) S <y>—211+-rl|m2—p|az||dy
—l—)»(x, E)mz—lezl S [77| —zlz+m1+d,7 S <y>—211+1'1|m2—p|m2”dy}
71 ZCeA
éC)\,(x’ E)'”ﬁmz-PI'YI—PIMI ,
where n,=2([n/2]+1), m,,=Max (m,, 0), [, [, are integers such that
— 2L+, m—plo| | <—n, —2L+m, +n+1<Min(0, m,—p|lv|—plasl),

and C, is a constant such that
(18)  AEOIAE EFDS M= D I 11O B

We can prove the following two theorems by the same method.

Theorem 1.5. Let Sy, denote a set of double symbols p(E, x', E'), which
satisfy

| P& (E, %', &) S Conp M/, E)™ 1IN/, £,

and define operators P=p(D,, X’, D,,) by
/\ 7
Bule) = 0, ([ e a-top(e, w, rie)agax foruesS.

Then P belongs to Spi% and we can write o(P)(x, £) in the form (1.6) for any
N>0, where

Do, E) = pai(E, x, ) (€Span ™)
ool ©) = O,—{[ 130 €+ 00, 5+, dyan .

The set {ry o(%, &)} 1011 ©5 bounded in Spimi-emt,
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Theorem 1.6. For P=p(X, D)= S}.,.0, the operator P defined by
(Pu, v) = (u, P®v)  foru, vES

belongs to Sy..,0 and we have for any N>0

o (P®)(x, £) = ‘*)(x, ’g‘)—}—N > S % ryie(x, £)d0 ,

w|<N 1YI=N

where
PP B = (—) P E) (=S5
5 ) = O, || (= 1) p w3, E+Omdyan .

The set {r{%(x, £)} 015, 5 bounded in S7.0".
Remark. The maps

S}'\".},,OX S;xn,zp.o B(Pv Pz) - pop.E N
and
Si",p.oBP —_)P(*)ES;:P,O

are continuous.

Let g(o) be a C~- and even-function such that ¢(¢)>0, Sq(a')zda-_—_l and
suppqC {c=R"; |o| =1}, and set

F(x, & &) = Mx, £)™'q((E—E)/ M=, £)7) .

Theorem 1.7. For P=p(X, D,y = S\ .., we define the Friedrichs part
PF__—PF(DZ’ X', Dx’) by

pr(t #, 8) = | P, & b, OF@, &7 byt

Then we have

(1) p#(E &, &) belongs to S%°
(ii) The operator Py, belongs to S,\,l,o and P—Pr= S35, and o(Pr) has the
Jorm

O'(PF)(x’ §)~P(x, E)+ 2 \l"mﬁ'v(x’ E)ngg(x’ E)

(Lt - { P
where ,‘I’wﬁyesg‘laﬂlo—lﬂl—lﬂ)/z’
(iity If p(x, E) is real-valued and non-negative, we have
(p#( Dy, X’y DYu, v) = (u, po(D,, X', D,)v) for u,veS,
(ps(Dyy X', DYyu, u)=0 for ucS.
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Proof is carried out by the similar way to that in [9].

Theorem 1.8. We can extend P=p(X, D,)& S} , , to a bounded operator on
L? and we get

(1.9) 1Pl 2= C| pl iz, llulle

where C and [, are independent of P and u.

Since Sy 50T S%es 0,00 this theorem is a corollary of Calderén-Vaillancourt’s
theorem in [2].

2. Global analytic-hypoellipticity

DerFINITION 2.1. We say that LE S, is globally analytic-hypoelliptic if
the following statement holds for L:

If u= L*(R") is a solution of the equation
LX,Dyu=f  for feC~(R"
and f satisfies for some M >0
@1) ID2fll < Mot
then # is analytic and we have
(2.2) 1D2ull 2= M, e}
for another constant M,>0.

Theorem 2.2. Let LES),, (m>0) satisfy the following conditions:

(2.3) | L(x, £)| ZC\(x, E)"  for |EI=R
for some C>0 and R=0, and for any multi-index o there exists M, such that
(2.4) | L (x, £) | S M #BIN(%, E)1#1.

Then the operator L(X, D,) is globally analytic-hypoelliptic.

Exampii 2.3. Let L(x,, %,, D,,, D,)=D2 -+ D$,+x*-x,>—15x,'+45x,—16.
Then we can prove that L satisfies the conditions (2.3) and (2.4) by taking
Ay, Xy Ep )= (14 [L(x,, %, E,, E5)[?)/** as a basic weight function. The
equation L(X,, X,, D,,, D,,Ju=0 has a non-trivial solution e~ *"/2,

As a generalization of the above example we have

ExampLE 2.4 (cf. [5]). Let L(x, D,)= 3} a,(x)D; be a hypoelliptic
1061 Zomg
differential operator of order m, with analytic coefficients. Suppose that L

satisfies following conditions for constants 7,20, 0<<p=<1, C,>0, C,>0, M >0,
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(0) |8ay(x)|=M*®Rl if |Blzm7, and |a|=m,

(1) CT<EM<ILO, &) =Ci|L(x, )| for large |&],

(ii) L& &)/ L(x, E)| SM ™ PIBY|E|+ [x|7)~**!  for large [£| 4 |x]™,
(i) |La® ) <CA+ILO, ) i |8 =mr.

Then we can see that L satisfies the conditions of Theorem 2.2 by taking
Mx, E)=(1+ | L(x, £)|?)"/*™ for a large m as a basic weight function.

Proof. From (0) we can choose a positive constant z’ such that

| L(x, &) SC(IE|+ x|y for [E[+|afmo=].

We put m=m'[p and A(x, £)=(14-|L(x, £)|?)"*". Then we have (2.4) from
(0) and (ii). By usual calculus we have (1.2) for 6=0. From (i) we have (1.1)
for a=pm,/m and (2.3). Finally we can get (1.3) by (i) and (iii).

ExampLE 2.5. Let L(x,, x,, D,,, D,,)=iD, +D2,—2ix,*D,,,+x —x,*—3x}.
Then L is a semi-elliptic operator and Lu=0 has a non-analytic solution
u=e~ EHEYD i ]i((;)()x")xzzm(e S) where f(x,)eCF(R') and belongs to the

=0 (2m)!
Gevrey class p(<(3/2)). 'This fact means the conditions are necessary in general.
In fact let L satisfy (2.3) and (2.4). Then we have the following contrary:

1=10,,L(—1t%,0,0, )| ECN—1%,0,0, )" |L(—7, 0,0, )| =0
for large ¢.

Proof of Theorem 2.2. Define {E;(x, £)} ;... for |£| =R inductively by
Eo(x9 E) = L(x) E)_l )
Efs, )= —3 5} S EP Dlos DE®E (21,

=0 |Y|=j—-1

(2.5)

then we have | E;3) | S Cjua Mz, E)™™ 7771 if |E| =R. Taking @g()eC~ such
that =1 if |£| =2R and =0 if |[E|=<R, and an integer N such that
aN =1, we define

(2.6) B(x, &) = 9x(®) 3 B, £)= S5
Then we have

(2.7) EL=1-K, K&S8is,0-

In fact by the same method of Theorem 1.4 we have

(2.8) o(EL)(x, £)—1

-3 = —;—!%(E)E?”(x, E)Len(, £)—1

j=0 [VI<N —j
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N1
Y1 (Y2)
* FEO 7yt V<= j, %0 o Loy 6 Pr(E)E;™ (% E)Lary iy, £)
N1 (1 0)N j-1
+J~Z°H'1+'Yzl ~- ,(N ])S Tylyd 7 v, E)dO
= 1+I2+I3 b

where
Py &) = (| €710 @r(E+ONE, 0w, E+6m)Layeunol-t, E)dydn .
From (2.5) we have
(2.9) I, = pr(§) —1€S85.00 -
From the fact that 8} pg() has compact support if 7,0, we get
(2.10) LeSis00-

Next we prove that {7y} g5 is bounded in Siise0 Since 95DE7y,, is a
linear combination of

i, €)= ([ 7700 ou(E+ Om) EG(w, E+0n) LG, enxty, E)dyddy

such that a,+a+a,=a, B,+B.,=B. Hence we have only to prove for a
constant C

lrgl = C<ET.

We take a constant C, such that (1.8) is satisfied and integers , 1, , such that
—2L+mr,<—n, —2L,+1<—n, —2I,4+n+1<—m—1/a. Then we have

|ri(e €)|
=|{§ e rcy>-rncD @ ot mE 55w, £-+0m)
LSy, +v(8+y, E)Ydydn
Gz [1<D, Y[ y> D, 05 g(E+6)
B 0% E40n) LS (34, B} 11dy
], o 117 1 AL D00 (- 0)
"B, EH0n) Lty (@t £} 11dy

A

5l'nl =CoA

E]1+]z .

To estimate J, we devide into two cases.
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(i) When a,+7,=0 we have, noting that |v,| =N-—j
J=C_ <mdn [ o £ 00 Mty £y
= O, &) | aotadn [ py-mmay= ey
(ii) When a,+7,%0 we have, noting that 971" @ has compact support

FEC[ | coindn [ <y eg L Om A O M4y, £y

= [apmmntian [ gy =

I71=CoA

Next for J, we have

Jsc| gaimdn [y, Bray

§C7x(x, E)—2134—m+n S <y>—211+m'rldy§ Ch(x, E)-l/ﬂé C<‘§>_1 .

InlZCoA

Hence we get [,& S}, ,, and combining (2.8)-(2.10) we get (2.7). From (2.4)
and (2.6) we see also that there exists M, independent of 7 such that

(2.11) |6(ELcy) | §0,= M, Myl for J, in Theorem 1.8.

1=
Moreover from (2.7) there exists constant C, such that
(212) | K(x, £)E;1$0,,=C, foranyj=1,-,n

Suppose that for ueL? Lu=f satisfies (2.1). We have u=FLu-+ Ku
=Ef+Ku from (2.7) and so it is clear that u is a C*-function. Therefore we
have only to prove that u satisfies (2.2), since (2.2) implies the analyticity of u
by Sobolev’s lemma. Take M, sufficiently large such that

(2.13) 3C,C.<M,,
(2.14) 3C,M|E| <M, M<M,,
(2.15) 3.2"C,M*<M,, 2M,<M,,
(2.16) lull =M,

where C, is a constant satisfying (1.9).
From (2.16), (2.2) is trivial when a=0, so we show (2.2) by induction on |«|.
From (2.7), Dju=ELDgu-+KD3u (a40). Then we have

(2.17) 1Dz ull < ||ELDZul|+|KDZu| .
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Since =0 there exists multi-index a, such that |a,| =1, a=a,+a,. By (2.12),
(2.13) and Theorem 1.8 we get

(2.18) [IKDZul| = [I((KD33)D3u|| < C,C\|Dy ul| < C,C. M, o | < M 1! 3.
By Leibniz’ formula, we have

!
LD =DiL— 3 — % Ly WpD3.
@<e ol (o —ay) !

Then

I
(2.19) IELDZul| < |ED2f1|+ X} —— % — || ELcy-up D3u]] .
e ql(a—a,!)

From (2.1), (2.6) and (2.14) we have
(220)  [IEDfIIS GIE| S |IDRfIIS G E| (50 M Pl < M ™ alf3 .

20,20
Finally we have from (2.11), (2.15) and the assumption of induction
!
221 2 ||ELyap D2
( ) wgw 0[1! (a_al)! ” Cop—ap) ”

!
= Cz—TL———M;*“”“‘”(a~a1)!M1‘““"a,!
el (a—a,)!

= M1l+lwla!(czM22/M1) 2 (Mz/Ml)lm_wli_lnglﬂm'a!/3 .
@<a

Therefore from (2.17)-(2.21) we get (2.2).

Corollary 2.6. Let L satisfy the same conditions as Theorem 2.2. If a
bounded and continuous function u is a solution of Lu=f and f = C~(R") satisfies for
some M,

(2.22) |IDyf| <M al,
then we have for another constant M,
(2.23) [Dju| S MM \qlx>"  for an even number ny>n .

Proof. We write Lu=f{ in the form
XD LX, D)X, = fi,

where u,(x)=<x>""u(x), fi(x)=<,x>""f(x).

We write simplified symbol of {X>~"IL(X, D,XX">" by L(X, D,). Then
the pair (L,, u,, f,) satisfies the conditions of the theorem and we get |[Djyu,||<
M1 q! for some M;>0. Hence from Sobolev’s lemma we can get (2.23).

ReMARK. In Theorem 2.2 we may assume (2.4) only for || =/, with [ in
Theorem 1.8, and in Corollary 2.6 for |a| =<2/,
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3. Local hypoellipticity

In this section we shall study a differential operator L(x, ¥, D,, D,) in
Ry x R} with polynomial coefficients of the form
(3'1) L(x: 5, E) 77) = 2 amw’w’xyjjy‘fmnw, ’

la:m|+|a :m’| 1

where y:(y, 3:,)7 y=(y1’ "’,.',Vs)’ E’Z(J’sm "'7yk) for s<k, az(an ttty an)a a'=
(al, = al)y Y=y = Va) V=71, 76,0, -+, 0) and |a: m| =, fm, -+
+a,/m, o' m'|=ai/mi4 - 4ai/m, for multi-indices m==(my, ---, m,), m’=
(mi, ---, m3) of positive integers m; and mj. We say that L is hypoelliptic if
ue P'(Ry%}) belongs to C=(Q2) when Lu belongs to C=(Q) for any open set Q of
Ry%E. Now setting m= Max {m;, m/}, we assume that there exist four real
vectors p, p’, o, ¢’ of the form p=(p,, -, pu) P’=(P%, **, P2)s o=(0p *** Tw),
o'=(c{, ++*, o4, 0, +++, 0) such that

(3.2) (i) pj=o;=mim; for j=1,-,m

. (ll) P_,1>0'_/1§O, mgp.;;m for ]= 1,k
and
(3.3) Lt %, t°'3, t*°E, t"n) = t"L(x, §, £, 1)  for >0,

where t™7x=(t""u,, -+, £x,), 1 F=(t"1y,, -, 17 yy),
g = (tnE, o ), Tn=("n, -, ) .
Condition 1. If we put
(3-4) Lyx, 3, & ) = 2 Baaryy X" IV E ",

jaim|+ja tm’| =1
then we have

(3.5) Lz, 3, & m)*0  for |x|+|¥|+0and (g, n)+0,
which means that L(x, 3, &, ») is semi-elliptic for |x|- ¥ |==0.

Condition 2. The equation L(X, ¥, D,, 7)v(x)=0 in Rj has no non-trivial
solution in S(R}) for |7|=1.

Theorem 3.1. We consider the operator L(x, 3, D,, D,) under Condition 1
and the assumption

Max {o} <Min {m}p}jm?} .
1<k 157,15k

Then we have

(8) If Condition 2 holds, then L(x, 3, D,, D,) is hypoelliptic.

(N) If the coefficients of L are independent of ¥, i.e., s=0, then Condition 2 is
necessary for the hypoellipticity of the operator L.
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ExampLES 3.2.

1) L=(—A)+181™(—A)" in RExRE (cf. [3], 7], [14]).
We set p,=-=p,=0,= =0,=bll, pl="r+=pi=@/I+ D)L/l ci=--
=0o4=0, where ,=Max(/, ). Then we can see that L is always hypoelliptic.
ii) L.(x,D,, D,)=D,4-ix'Dy in R;XR; (cf.[6], [8], [15]).
We set p,=0,=m, pi=I+1, c{=0. Then we see the following three cases:
a) If lis even, L (X, D,, +1)v=0 and L_(X, D,, 4-1)v=0 have no non-
trivial solution in S.
b) If /is odd and m is even, L (X, D,, £-1)v=0 has no non-trivial solution
in S and L_(X, D,, -£1)v=0 has non-trivial solution e~*" /¢ S,
¢) If land m are odd, L,(X, D,, —1)v=~0 has non-trivial solution e=*"""/¢+
€S and L_(X, D,, 1)v=0 has non-trivial solution e~* */4+>= S,
Consequently we see from (N) and (S) that L, is hypoelliptic if and only if
“lis even”, or “lis odd and m is even”, and L_ is hypoelliptic if and only if
“lis even”.
iii) L=D2+4DS+(x°+x,)D§—15%,'D;+45x,°D;—16D3 in RZXR;.
We set p,=0,=3, p,==0,=1, p{=2, ¢{=0. We can see that L does not
satisfy Condition 2. In fact for =1 L(X,, X,, D,; D,,, 1)v(x,, x,)=0is an
equation given in Example 2.3 and has non-trivial solution p=e¢*1*+%"/2,
Therefore applying (N) we can see that L is not hypoelliptic.

For the proof of the theorem we need several lemmas. We introduce

n s -,
notations: | X, ¥ an=21%; |7 i+23|y; |V,
j=1 j=1
. 107 . (mfo/—m) m s
ly)lp’zglnfl 7y p(x,jf, ’7)=J§|x,5’|(o,’a,)’ |77j| i.
First we estimate the monomials of the form x? 777

Lemma 3.3. Let o, o, v and v’ be multi-indices of dimension n, k, n, k,
respectively, such that |a: m| -+ |o’: m'| <1 and vi=0 for j=s+1. We put

(3.6) 0 = (o, 7)+(c’, v)+m—(p, &)—(p’, ).
If we denote p6=1\S/IiSn (m; p'y/m), then we have
1555k
(1) If there exists 8’ =0 such that m(| a: m|+|a': m'| )+ (04-0")/pt =m, we have

(3.7) lx, ylg;’o.,)lxyy'y’nw’] l"]lg;oléc(lﬂiz—l‘ﬂ(x, y, v))l—la:ml.
(ii) If m(la: m{+{a’: m'|)+6/pi>m, we have

(3.8) a7y n | q| G Tl med < (19 pp (s, 3, )t
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for |x| <8, |¥1 =8 and |n| =1, where 8 is some positive constant.

We can prove this by the same method as Lemma 3.1 and 3.2 in [4].
Lemma 3.4. Under condition 1 we have for a constant C >0

(9 C7Lx 3, & )| < (IEN "+l 3, M} <CIL(x, 3, & 7).

Proof. In case |x|-+|¥]| =0, it is sufficient for the sake of semi-homoge-
neity to prove when |x|4-|¥|=1, and this is true because of Condition 1. In
case |x|+4|¥|=0, (3.9) is clear by letting |x|-+ |¥|—0.

Define A,(x, £) with parameter k=(3, 1) (I7l=1) by tu(x, &)=
{1+ L(x, ¥, &, 7)|}*/*" and set py(x, E)=L(x, ¥, £, 7). Then we have

Proposition 3.5.
(1) Nu(x, &) satisfies (1.1)~(1.3).
(i)  {palx, E)} is bounded in {SY. , } in the sense that for any a, B there exists a
bounded function Cg(x, ¥) which is independent of n (| 7] =1) and tends to zero
as |x|+|¥|—oco when B0, such that

| paE3( E) = Clagl, F)Nalx, E)™ 1.
(iii) There exists a constant C independent of h such that
(3.10) |pa(x, E)| ZCNil, §)” for large  |x|+|F|+|E].
Proof. Set Aj(x g)={1+§|§,-|mf-+,b(x, 7, 7)}™. Then from Lemma

3.3 (i) and Lemma 3.4 we can prove

(3.11) | L(x, 3, £, n)| =CN\i(x, E)"  for large (x| [F|+ |,
which induces
(3.12) C2 (%, E)S M, E)SCON)/(x, E) .

For each term @,y "3 £7* in L, we have from Lemma 3.3
| 05105 @y 2 T E%7%) |
<CMin(l, |2, 31GH0) (14 ax, 3, M)~ ™ (14 3] g, m)l @ e
=CMin(l, |x J|Soi)na(x, E)y=ie Ealéa)-
Here we use the fact that [7]=1. Therefore we have
(3.13) |PaiE)(x, E)| =CMin(l, |, 71&75) M(x, £y,

First we check (i). From (3.12) \,, satisfies (1.1) for a=Min{m;/m}. By usual
1SjSn
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calculus (1.2) follows by (3.13). Since p, is a polynomial in x, we have using
Taylor series

| pa(x+2, E)| = léle"’Pmm(x’ E)l [al= C<D™ (%, £)7" S CD™ M, E)”

for some 7,. So (1.3) holds for n,. Consequently we get (i). (ii) and (iii)
follow at once by (3.11)—(3.13).

Lemma 3.6. Let a basic weight function \M(x, £) satisfy

(3.14) A7 (1 2]+ ED S Ma, )= A1+ 2]+ 1E1)
(a'>0, 4,>0, 7,>0)
instead of (1.1).  Suppose that p(x, €)= Sy, , (m>>0) satisfies
[ p(x, E)| =CN\(x, E)"  for large | x|+ |E|.
Then for any uc L(Rp), Pu=p(X, D )u(x)=0 implies uc S(R3).

Proof. Let Q& S; be a parametrix such that QP=I—K, K€ 5.7,

(= N S%,). Then we have u=Ku. For any positive number r and ¢,
—com< oo

<X>(D>'K(X’, D,/) belongs to Siv, and we get <X>'(D,>us L?. Therefore
we get uc S.

Proposition 3.7. If Condition 1 and 2 hold, then for any ve C5(R3) we have
(3.15) lell2s=C {1 24X, D.Jo(a) "dx,

where C is independent of v and h with || =1.

Proof. From (3.10) there exists a parametrix {Q,} which is bounded in
{Sx.m o} such that

(3.16) OwP, = I—K,,
where {K,} is bounded in {S§;% .}, lim sup |K,(x, £)|=0 and for any

1%+ F|re0 =R, | =1

multi-index o, 8
(3.17) sup| K@ )~ K@ =0 as h— .
Therefore we have
IR N1Qs Pl +IKp 2l = ClIP, ol 411Ky o]l -
Since {K,} is bounded in {S5 g} and lim sup | Ky(x, £)| =0, we have

1Flpeo (%, HERA, IM=1
for a constant /, in Theorem 1.8

Kyl G —>0 as |F]—>o0.

29,20
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Then for a sufficiently large constant M >0

HKthé%llvH for |3|=M,

and we get (3.15) for |¥| =M.
Now assume that for {#| <M (3.15) does not hold. Then we can choose
sequences {4,}, {,} such that

(3.18) ol =1,
(3.19) 1Py, oll >0 as »-—>oo,
(3.20) h,= (3, 7"), where |¥|<M, |7'|=1.

From (3.20) we may assume that

(3.21) hy — h,

for some A,=(3° 7). Applying v, to (3.16) we get

(3.22) O, Loy = v,— K, 0y .

From (3.19) and (3.21) we have Q, P, v,—0 in L* as v—oo, and from the fact
that {K,} is bounded in {S*-»%}’,,l,ii{} s1£1p]K,,o(x, £)| =0 and (3.17) we get K, is

uniformly continuous and K, is a compact operator in L* (cf. [10], [12]). So
writing K, v, =(K,, — K, )v,+K, v, we can choose a convergent subsequence
{Kp, v} in account of (3.18). Therefore from (3.22) we can choose an element
v, L? such that

(3.23) vy —>wv, in I2.

Then from (3.19) and (3.21) P, v,=0. When 73=0 for all j such that m}p’==m,
we have v,=0 since p, (%, £)=2" duu(7)*E®. Otherwise (3.12) implies (3.14)
and we get v,—0 from Lemma 3.6 and Condition 2. This is the contrary to
(3.18) and (3.23). 'Then Proposition 3.7 is proved.

Theorem 3.8. If Condition 1 and 2 hold, we can get the following formulas
for 17| <8, |l =1 and v CF({x; |x| <8}), where § is a number which was taken
tn Lemma 3.3.

(3.24) 3 [itus 3, m - 1mp)t 19 Deuge

lae:m} <1

< c[iLX, 3, D., nyo(a) %d

For any k-dimensional multi-index ct,, 3, we have
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(3.25) 1167189 L(X, 3, Dy, moll2=C || 7" ||L(X, 5, D,, n)oll,2
where py= Min (mpjfm}), o, = Max ().

Proof. Let r(x, 7) be a positive root of the equation

5ox5 v Y —1
:El 12”i+f=21 ol

Then r(x, 7) is a C=-function in R; X R\ {0, 0} and
(3'26) r(xy 5’)~|x7 5’ I(a-,cr’) .

Let X(x, ) be a C>-function such that X=1 if |x|+[¥|=1 and X=0 if
|x| 4|71 =<(1/2). For any multi-index « (|a: m|=<1) and k=(3, 7) (I2|=1)
we define R, by

Rmh(x, g) — (fi‘ x(x’ y)r(x, 5’)("':'/":','"’)]ﬂj‘mi/—{—l)l—l”‘mlf‘” .

Then {R,;} is bounded in {S7?, }. From (3.16) we can write for any v& C5(R;)
‘Rn’h(X’ Dx)Qh(X,’ Dx’)Ph(X”! D,,//)?J = Rmh(X’ Dx)v—Rmh(Xv Dx)Kh(X/’ Dx/)‘l}
Noting that {R,(X, D,)O(X’, D.)}, {Run(X, D,)K,(X’, D,,)} are bounded in

{Sx,.1.0}» we get from Proposition 3.7
£ ’p 7 ’ . @
H(E X(x, Fyr(x, F)"°5 7" 9] 1)1 MDZ0|| = ||[Ran(X, D)ol
= [1Run Qn Proll+ || Ron K vl| < C( 1Pyl | +-10]) < ClI Pyl -

Considering (3.26) we have for |n|=1

5 (1 3, o+ inipy-e:mDzorass € (1 L(X, 5, Dy myolds.

fo i1

From the semi-homogeneity we get (3.24). Using Lemma 3.3 and (3.24) we
can get (3.25) by the same method as Lemma 3.6 in [4].

Proof of (S) in Theorem 3.1. By the same method as [4] we can prove (S)
by using Theorem 3.8.

Proof of (N) of Theorem 3.1 (cf. [3]). Let there exist non-trivial solution
v(x)eS of pyX, D,)o(x)=L(X, D,, 7)v(x)=0 for some k=7 with |7|=L1.
From Proposition 3.5 we can apply Theorem 2.2 and we get that o(x) is analytic,
and therefore there exists multi-index ¢, such that

(3.27) 9%00(0) =0 .

We may assume 7,=0. We set my=Max (m, | «,|) and take even number /, and
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positive number b such that {(p, a,)—(pi—1)-+58}/pi is an even number (we
denote it by L) and 2/ p{ =my-Max (p;, p))+2-4-b. We define

ol ) = [ e O s O

0 (14-£271")1
Then ueC™ and (X, D,, D,Ju=0. But ue&C=. In fact operating 9;° and
substituting x=0, y,=---=v,=0, we get
meiyltpll'ﬁ 0% (02 20+
0 ( 1—|—t2P1’)11
By changing the variable ¢ by §=¢", we get

02u(0, 3, 0, -+, 0)= |

07°u(0, v, 0, -+, 0) = m Smeiylenl__e_’zﬁda
P1 o (1465

Noting /, is an even number we can write

Re S:ewl%(lﬁ—;z)’ldo — P(Iy,])e- "t

for some polynomial P of order —1. Therefore we get from (3.27)
0z°u(0, y,, 0, -+-,0)eC". Consequently (N) holds.

Osaka UNIVERSITY
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