

On the ideal structure of algebras of LMC-algebra valued functions

by

JORMA ARHIPPAINEN (Oulu)

Abstract. Let X be a completely regular topological space and A a commutative locally m-convex algebra. We give a description of all closed and in particular closed maximal ideals of the algebra C(X,A) (= all continuous A-valued functions defined on X). The topology on C(X,A) is defined by a certain family of seminorms. The compact-open topology of C(X,A) is a special case of this topology.

Introduction. Let A be a commutative locally m-convex algebra with identity c over the field C of the complex numbers. Let $\mathcal{P}=\{p_{\lambda}\mid \lambda\in \Lambda\}$ be a family of seminorms which defines the topology in A denoted by $T(\mathcal{P})$. It is assumed that $T(\mathcal{P})$ is a Hausdorff topology, in other words $p_{\lambda}(x)=0$ for all $\lambda\in \Lambda$ only if x=0. Furthermore, we assume that the family \mathcal{P} is directed. For $\lambda\in \Lambda$ we set $N_{\lambda}=\{x\in A\mid p_{\lambda}(x)=0\}$. For each $\lambda\in \Lambda$ the quotient algebra $A/N_{\lambda}=A_{\lambda}$ is a normed algebra with the norm $p_{\lambda}(x+N_{\lambda})=p_{\lambda}(x), x+N_{\lambda}\in A/N_{\lambda}$. We shall denote the completion of A_{λ} by \widetilde{A}_{λ} . General properties of locally m-convex algebras can be found for example in [4], [12] and [13]. Let $\Delta(A)$ be the set of all nontrivial continuous C-homomorphisms on A. The set $\Delta(A)$ will be equipped with the relative $\sigma(A',A)$ -topology called the Gelfand topology. With this topology $\Delta(A)$ is called the carrier space of $(A,T(\mathcal{P}))$.

Let $x \in A$ be given. The C-valued function \widehat{x} on the carrier space $\Delta(A)$ defined by $\widehat{x}(\tau) = \tau(x), \tau \in \Delta(A)$, is continuous, whence $\widehat{x} \in C(\Delta(A))$.

Let I be an ideal of A. The *hull* of I, denoted by h(I), is then defined as $h(I) = \{\tau \in \Delta(A) \mid \widehat{x}(\tau) = 0, x \in I\}$. The *kernel* k(E) of a subset E of $\Delta(A)$ is defined by $k(E) = \{x \in A \mid \widehat{x}(\tau) = 0, \tau \in E\}$ and for the empty set \emptyset we define $k(\emptyset) = A$. Obviously h(I) is a closed subset of $\Delta(A)$ and k(E) is a closed ideal of $(A, T(\mathcal{P}))$.

For a completely regular topological space X denote by C(X,A) the set

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J20.

Ideal structure of algebras

of all continuous A-valued functions defined on X. Algebraic operations in C(X,A) are defined pointwise. For a given element x in A we denote by f_x the constant function $f_x(t) = x$, $t \in X$. Thus f_e is the unit element and f_0 is the zero element of C(X,A).

Let K be a compact cover of X which is closed under finite unions, in other words, K is a family of compact subsets of X for which

$$(1) \qquad \qquad \bigcup \{K \mid K \in \mathcal{K}\} = X,$$

(2) if
$$K_1, K_2 \in \mathcal{K}$$
, then $K_1 \cup K_2 \in \mathcal{K}$.

For $K \in \mathcal{K}$ and $\lambda \in \Lambda$, we define a seminorm $p_{(K,\lambda)}$ on C(X,A) by

$$p_{(K,\lambda)}(f) = \sup_{t \in K} p_{\lambda}(f(t)), \quad f \in C(X,A).$$

We write $\mathcal{P}(\mathcal{K}, \Lambda) = \{p_{(K,\lambda)} \mid K \in \mathcal{K}, \ \lambda \in \Lambda\}$. The family $\mathcal{P}(\mathcal{K}, \Lambda)$ defines a locally m-convex Hausdorff topology on $C(X, \Lambda)$ denoted from now on by $T(\mathcal{K}, \Lambda)$. Obviously $\mathcal{P}(\mathcal{K}, \Lambda)$ is a directed family of seminorms. If $\mathcal{K} = \mathcal{K}(X) =$ the set of all compact subsets of X, then $T(\mathcal{K}, \Lambda)$ is the compact-open topology of $C(X, \Lambda)$. Given $K \in \mathcal{K}$ and $\lambda \in \Lambda$, define $N_{(K,\lambda)} = \{f \in C(X, \Lambda) \mid p_{(K,\lambda)}(f) = 0\}$.

Let $t \in X$ and let I be an ideal of A. We define an ideal $J_{(t,I)}$ of C(X,A) by $J_{(t,I)} = \{f \in C(X,A) \mid f(t) \in I\}$ and furthermore $C(X,I) = \{f \in C(X,A) \mid f(t) \in I, \ t \in X\}$. Obviously $C(X,I) = \bigcap_{t \in X} J_{(t,I)}$. If I is a closed ideal of $(A,T(\mathcal{P}))$ and $t \in X$, then it is easy to see that both the ideals $J_{(t,I)}$ and C(X,I) are closed in (C(X,A),T(K,A)).

Let $K \in \mathcal{K}$, $\lambda \in \Lambda$ and $\varepsilon > 0$. We denote by $V_{(K,\lambda)}(\varepsilon)$ the set $\{f \in C(X,A) \mid p_{(K,\lambda)}(f) < \varepsilon\}$. Obviously the sets $V_{(K,\lambda)}(\varepsilon)$, $K \in \mathcal{K}$, $\lambda \in \Lambda$, $\varepsilon > 0$, form a subbase of neighbourhoods of f_0 (see [14], p. 8).

On closed ideals of $(C(X,A),T(\mathcal{K},\Lambda))$. We give a description of the closed ideals of the algebra $(C(X,A),T(\mathcal{K},\Lambda))$. We also prove that the carrier space $\Delta(C(X,A))$ is homeomorphic to $X\times\Delta(A)$ if $\Delta(A)$ is locally equicontinuous.

The following lemmas are easy to verify.

LEMMA 1. $N_{(K,\lambda)} = \bigcap_{t \in K} J_{(t,N_{\lambda})}$ for all $K \in \mathcal{K}$ and $\lambda \in \Lambda$.

LEMMA 2. Let $\{I_{\alpha} \mid \alpha \in \Gamma\}$ be a family of closed ideals in $(A, T(\mathcal{P}))$. Then $\bigcap_{\alpha \in \Gamma} C(X, I_{\alpha}) = C(X, \bigcap_{\alpha \in \Gamma} I_{\alpha})$.

Let J be a closed ideal of $(C(X, A), T(K, \Lambda))$ and let $t \in X$ be given. We define $I_t = \{f(t) \mid f \in J\}$ and $I(t) = \operatorname{cl}(I_t) = \operatorname{the closure of } I_t \operatorname{in } (A, T(\mathcal{P}))$. It is easy to see that either I(t) is a closed proper ideal of $(A, T(\mathcal{P}))$ or I(t) = A.

Next we shall prove a useful result.

THEOREM 3. If J is a closed proper ideal of $(C(X,A),T(K,\Lambda))$, then there is t in X such that I(t) is a closed proper ideal of (A,T(P)).

Proof. Suppose that I(t)=A for all $t\in X$. Let $K\in \mathcal{K}$, $\lambda\in A$ and $\varepsilon>0$ be arbitrary. Then for each $t_0\in K$ there is $f_{t_0}\in J$ such that $p_{\lambda}(f_{t_0}(t_0)-e)=p_{\lambda}(f_{t_0}(t_0)-f_{\varepsilon}(t_0))<\varepsilon$. By continuity, there is a neighbourhood $U(t_0)$ of t_0 such that

(3)
$$p_{\lambda}(f_{t_0}(t) - f_e(t)) < \varepsilon \quad \text{for all } t \in U(t_0).$$

Now the neighbourhoods $\{U(t_0) \mid t_0 \in K\}$ form an open cover of the compact set K. Take its finite subcovering U_1, \ldots, U_n and denote by f_1, \ldots, f_n those functions of J for which (3) is valid. By Lemma 2.1.1 of [6], there are $\alpha_i \in C(X)$, $i = 1, \ldots, n$, such that $0 \le \alpha_i(t) \le 1$ for all $t \in X$ and $i = 1, \ldots, n$, supp $\alpha_i \subset U_i$ for all $i = 1, \ldots, n$ and $\sum_{i=1}^n \alpha_i(t) = 1$ for all $t \in K$. Now, if we define a function $F_{(K,\lambda)}$ by

$$F_{(K,\lambda)}(t) = \sum_{i=1}^{n} (\alpha_i f_i)(t), \quad t \in X,$$

we see that $F_{(K,\lambda)} \in J$ and

$$p_{(K,\lambda)}(F_{(K,\lambda)}-f_e)<\varepsilon$$
.

Thus, $F_{(K,\lambda)} \in f_e + V_{(K,\lambda)}(\varepsilon)$. Since the $V_{(K,\lambda)}(\varepsilon)$ form a subbasis of the zero neighbourhoods, the unit element f_e is in cl(J) = J, which is impossible.

Next we shall give a description of the carrier space $\Delta(C(X,A))$. The structure of $\Delta(C(X,A))$ has been considered in many papers under various topological assumptions on X and A (see [1], [3], [5], [6], [8]–[11], [16] and [17]). For example in [6] Dietrich assumed that X is a k-space and A is a complete locally convex algebra for which $\Delta(A)$ is locally equicontinuous. He used the tensor product representation of C(X,A). Tensor product techniques have also been used in [11]. Abel has proved a corresponding result for a more general case in [1]. In this paper we consider the carrier space of the algebra $(C(X,A),T(\mathcal{K},A))$.

Let $t \in X$ and $\tau \in \Delta(A)$ be given. We define a mapping $\phi_{(t,\tau)}$: $C(X,A) \to \mathbb{C}$ by

$$\phi_{(t,\tau)}(f) = \tau(f(t)), \quad f \in C(X,A).$$

Obviously $\phi_{(t,\tau)} \in \Delta(C(X,A))$ and $\ker \phi_{(t,\tau)} = J_{(t,\ker \tau)}$.

LEMMA 4. If N is a closed maximal ideal of (C(X, A), T(K, A)), then there are unique points $t \in X$ and $\tau \in \Delta(A)$ such that $N = \ker \phi_{(t,\tau)}$.

Proof. By Theorem 3, there is $t \in X$ such that $I(t) = \operatorname{cl}(\{f(t) \mid f \in N\})$ is a closed proper ideal of $(A, T(\mathcal{P}))$. Now there is $\tau \in \Delta(A)$ such that

 $I(t) \subset \ker \tau$. If $f \in N$ is arbitrary, then $\phi_{(t,\tau)}(f) = \tau(f(t)) = 0$. Thus $N \subset \ker \phi_{(t,\tau)}$, and so $N = \ker \phi_{(t,\tau)} = J_{(t,\ker \tau)}$. It is easy to see that the points $t \in X$ and $\tau \in \Delta(A)$ are unique.

We now define a mapping $\varphi: X \times \Delta(A) \to \Delta(C(X,A))$ by

(4)
$$\varphi(t,\tau) = \varphi_{(t,\tau)}, \quad (t,\tau) \in X \times \Delta(A).$$

THEOREM 5. The mapping φ defined in (4) is a bijection from $X \times \Delta(A)$ onto $\Delta(C(X,A))$. The inverse mapping φ^{-1} is continuous, and φ is continuous if $\Delta(A)$ is locally equicontinuous.

Proof. Obviously $\varphi(t,\tau) \in \Delta(C(X,A))$ if $(t,\tau) \in X \times \Delta(A)$. It is also easy to see that φ is an injection. Now, if $\phi \in \Delta(C(X,A))$, then $\ker \phi$ is a closed maximal ideal of $(C(X,A),T(\mathcal{K},A))$. By Lemma 4 there are unique $t \in X$ and $\tau \in \Delta(A)$ such that $\ker \phi = \ker \phi_{(t,\tau)}$ and thus $\phi = \phi_{(t,\tau)}$. So φ is also a surjection.

Now, φ is continuous provided so is the mapping $\widehat{f}: X \times \Delta(A) \to \mathbb{C}$ defined by

$$\widehat{f}(t,\tau) = \widehat{f}(\phi_{(t,\tau)}) = \tau(f(t)), \quad (t,\tau) \in X \times \Delta(A).$$

But it is well-known that \widehat{f} is continuous if $\Delta(A)$ is locally equicontinuous (see e.g. [10], Lemma 3). So φ is continuous if $\Delta(A)$ is locally equicontinuous. The continuity of φ^{-1} can be shown by a similar method to that used in [17] for the Nachbin algebras.

Corollary 6. The carrier space $\Delta(C(X,A))$ of the algebra $(C(X,A),T(\mathcal{K},A))$ is homeomorphic to $X\times\Delta(A)$ if $\Delta(A)$ is locally equicontinuous.

COROLLARY 7. If $\phi \in \Delta(C(X, A))$, then there is exactly one $t_0 \in X$ such that $I(t_0) = \operatorname{cl}(\{f(t_0) \mid f \in \ker \phi\})$ is a closed proper ideal of $(A, T(\mathcal{P}))$, and furthermore $I(t_0) = \ker \tau$ for some $\tau \in \Delta(A)$.

Next we give a description of closed (proper) ideals J of (C(X, A), T(K, A)). It has been proved in [2] (Theorem 2) that in the case where X is a compact Hausdorff space and A is a locally convex topological algebra there is $E \subset X$ and a family $\{I(t) \mid t \in E\}$ of closed proper ideals of A such that $J = \bigcap_{t \in E} J_{(t,I(t))}$. We now prove this for (C(X,A),T(K,A)).

THEOREM 8. If J is a closed proper ideal of (C(X,A),T(K,A)), then there is $E \subset X$ and a family $\{I(t) \mid t \in E\}$ of closed ideals of $(A,T(\mathcal{P}))$ such that $J = \bigcap_{t \in E} J_{(t,I(t))}$.

Proof. For $t \in X$ set $I(t) = \operatorname{cl}(\{f(t) \mid f \in J\})$. As noted earlier, either I(t) is a proper closed ideal of $(A, T(\mathcal{P}))$ or I(t) = A. Define $E = \{t \in X \mid I(t) \text{ is a proper subset of } A\}$. By Theorem 3, E is nonempty.

It is easy to see that $J \subset \bigcap_{t \in E} J_{(t,I(t))}$. Now, if $t \in X \sim E$ = the complement of E in X, then $J_{(t,I(t))} = C(X,A)$ and therefore $\bigcap_{t \in X} J_{(t,I(t))} = \bigcap_{t \in E} J_{(t,I(t))}$. Let $f \in \bigcap_{t \in X} J_{(t,I(t))}$ and fix $K \in K$, $\lambda \in A$, $t_0 \in K$ and $\varepsilon > 0$. From the definition of $I(t_0)$ it follows that there is $f_{t_0} \in J$ such that $p_{\lambda}(f_{t_0}(t_0) - f(t_0)) < \varepsilon$. By continuity, there is a neighbourhood $U(t_0) \subset X$ of t_0 such that

(5)
$$p_{\lambda}(f_{t_0}(t) - f(t)) < \varepsilon, \quad t \in U(t_0).$$

Now $\{U(t_0) \mid t_0 \in K\}$ is an open cover of K. Taking a finite subcovering as in the proof of Theorem 3, we obtain a function $F_{(K,\lambda)} \in J$ such that

$$p_{(K,\lambda)}(F_{(K,\lambda)}-f)<\varepsilon$$
.

Hence $f \in \operatorname{cl}(J) = J$, and so $\bigcap_{t \in E} J_{(t,I(t))} \subset J$, which completes the proof.

The set E above is not necessarily closed as the following example shows.

EXAMPLE. Let X be the real line R with the usual topology and consider the open interval $(0,1) \subset \mathbb{R}$. Let A = C(0,1) with the topology $T(\mathbb{N})$ given by the sequence of seminorms

$$p_n(x) = \sup_{t \in [1/(n+1), 1-1/(n+1)]} |x(t)|, \quad x \in A, \ n \in \mathbb{N},$$

denoted by $\mathcal{P}(N)$. For a natural number m and a seminorm $p_n \in \mathcal{P}(N)$ let $p_{(m,n)}$ be the seminorm on C(X,A) defined by

$$p_{(m,n)}(f) = \sup_{t \in [-m,m]} p_n(f(t)), \quad f \in C(X,A).$$

Now $\{p_{(m,n)} \mid m, n \in \mathbb{N}\}$ is a directed family of seminorms on C(X, A) which defines a locally m-convex topology on C(X, A) denoted by $T(\mathbb{N}, \mathbb{N})$.

Let $k \in \mathbb{N}$ be given. If $t \in X$, we define

$$E_t = \begin{cases} \{s \in (0,1) \mid -t/k \le s < 1\} & \text{if } t < 0, \\ \{s \in (0,1) \mid t/k \le s < 1\} & \text{if } t \ge 0. \end{cases}$$

Obviously E_t is a closed subset of (0,1) for all $t \in \mathbb{R}$ and $E_t = \emptyset$ if $t \in X \sim (-k,k)$. If we define $k(E_t) = \{x \in A \mid x(s) = 0, s \in E_t\}$, then obviously $k(E_t)$ is a closed ideal of $(A,T(\mathbb{N}))$ for each $t \in \mathbb{R}$ and $k(E_t) = A$ if $t \in X \sim (-k,k)$.

If we choose $J = \bigcap_{t \in \mathbb{R}} J_{(t,k(E_t))}$, then J is a closed ideal of $(C(X,A), T(\mathbb{N},\mathbb{N}))$ and clearly $J = \bigcap_{t \in (-k,k)} J_{(t,k(E_t))}$. Thus

$$E = \{t \in X \mid I(t) \text{ is a proper subset of } A\} = (-k, k),$$

whence E is an open subset of X.

Next we shall give some conditions which guarantee that the set E in Theorem 8 is closed. First we recall that $(A, T(\mathcal{P}))$ is a Q-algebra if the set of regular elements is open.

THEOREM 9. Let J be a closed ideal of (C(X, A), T(K, A)) and let $E = \{t \in X \mid I(t) \neq A\}$ where $I(t) = \operatorname{cl}(\{f(t) \mid f \in J\})$. Then E is closed in each of the following cases:

 $1^{\circ} (A, T(\mathcal{P}))$ is a Q-algebra.

2° $\Delta(A)$ is locally equicontinuous and $\{\tau \mid \phi_{(t,\tau)} \in h(J)\} \subset h(N_{\lambda})$ for some $\lambda \in \Lambda$.

3° For each boundary point t in E there is $f \in J$ such that $f(t) \in \ker \tau$ for some $\tau \in \Delta(A)$.

Proof. 1° and 3° are obvious. We only prove case 2°. Suppose that $\Delta(A)$ is locally equicontinuous. Now $\varphi^{-1}(h(J)) = \{(t,\tau) \mid \phi_{(t,\tau)} \in h(J)\}$ is a closed subset of $X \times \Delta(A)$. If $\{\tau \in \Delta(A) \mid \phi_{(t,\tau)} \in h(J) \text{ for all } t \in X\} \subset h(N_{\lambda})$ for some $\lambda \in A$, then $\varphi^{-1}(h(J)) \subset X \times h(N_{\lambda})$, and so E is just the projection of the closed set $\varphi^{-1}(h(J)) \subset X \times h(N_{\lambda})$ into X. By Theorem 4.1 and Corollary 2.1 of [12], $h(N_{\lambda})$ is homeomorphic to $\Delta(\widetilde{A}_{\lambda})$. So $h(N_{\lambda})$ is compact, since $\Delta(\widetilde{A}_{\lambda})$ is. The closedness of E now follows from Theorem 2.5 of [7].

COROLLARY 10. If $K \in \mathcal{K}$ and $\lambda \in \Lambda$, then

$$\{(t,\tau)\in X\times\Delta(A)\mid \phi_{(t,\tau)}\in h(N_{(K,\lambda)})\}=K\times h(N_{\lambda}).$$

In particular, if $\Delta(A)$ is locally equicontinuous, then $h(N_{(K,\lambda)})$ is homeomorphic to $K \times h(N_{\lambda})$.

Proof. Just note that $N_{(K,\lambda)} = \bigcap_{t \in K} J_{(t,N_{\lambda})}$.

We shall say that $(A, T(\mathcal{P}))$ has the property of spectral synthesis if k(h(I)) = I for each closed ideal I of $(A, T(\mathcal{P}))$.

COROLLARY 11. The algebra $(C(X, A), T(K, \Lambda))$ has the property of spectral synthesis if and only if (A, T(P)) has this property.

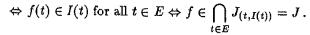
Proof. Suppose k(h(I)) = I for each closed ideal of $(A, T(\mathcal{P}))$. Now, if J is a closed ideal of $(C(X, A), T(\mathcal{K}, \Lambda))$, then by Theorem 8, we have $J = \bigcap_{t \in E} J_{(t,I(t))}$ for some $E \subset X$ and a family $\{I(t) \mid t \in E\}$ of closed ideals of $(A, T(\mathcal{P}))$. It is easy to see that $h(J) = \{\phi_{(t,\tau)} \mid t \in E, \tau \in h(I(t))\}$. Thus the following equivalences are valid:

$$f \in k(h(J)) \Leftrightarrow \phi(f) = 0 \text{ for all } \phi \in h(J)$$

$$\Leftrightarrow \phi_{(t,\tau)}(f) = 0 \text{ for all } t \in E \text{ and } \tau \in h(I(t))$$

$$\Leftrightarrow \tau(f(t)) = 0 \text{ for all } t \in E \text{ and } \tau \in h(I(t))$$

$$\Leftrightarrow f(t) \in k(h(I(t))) \text{ for all } t \in E$$



Thus k(h(J)) = J.

Conversely, suppose that k(h(J)) = J for each closed ideal J of C(X, A), T(K, A). Let I be an arbitrary closed ideal of (A, T(P)). Now, if $x \in k(h(I))$, then $f_x \in J_{(t,k(h(I)))}$ for each $t \in X$. It is easy to see that $J_{(t,k(h(I)))} = k(h(J_{(t,I)}))$. But by the hypotheses $k(h(J_{(t,I)})) = J_{(t,I)}$. So $f_x \in J_{(t,I)}$ for any $t \in X$ and therefore $x \in I$. Thus $k(h(I)) \subset I$, whence k(h(I)) = I, which completes the proof.

The result of Corollary 11 is a generalization of the corresponding result of [3]. The structure of closed ideals of C(X, A) with the compact-open topology has been considered for example in [15].

Références

 M. Abel, The description of linear multiplicative functionals in the algebras of continuous functions, Uchen. Zap. Tartusk. Univ. 430 (1977), 14-21.

 [2] —, Description of closed ideals in algebras of continuous vector-valued functions, Math. Notes 30 (5) (1981), 887-892.

[3] J. Arhippainen, On the ideal structure and approximation properties of algebras of continuous B*-algebra valued functions, Acta Univ. Oulu. Ser. A 187 (1987).

[4] E. Beckenstein, L. Narici and S. Suffel, Topological Algebras, North-Holland, New York 1977.

[5] W. Dietrich, The maximal ideal space of the topological algebra C(X, E), Math. Ann. 183 (1969), 201-212.

[6] —, Function algebras on completely regular spaces, Diss. Northwestern Univ., Evanston, Ill., 1971.

[7] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.

[8] W. Hery, Rings of continuous Banach algebra-valued functions, Doct. Diss. Abstrs 45, Polytech. Inst. of New York, 1974.

 [9] —, Maximal ideals in algebras of continuous C(S) valued functions, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (2) (1975), 195-199.

[10] —, Maximal ideals in algebras of topological algebra valued functions, Pacific J. Math. 65 (1976), 365-373.

[11] A. Mallios, Heredity of tensor products of topological algebras, Math. Ann. 162 (1966), 246-257.

[12] -, Topological Algebras. Selected Topics, Elsevier, New York 1986.

13] E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

[14] L. Nachbin, Elements of Approximation Theory, Van Nostrand, Princeton, N.J., 1967.

[15] J. Prolla, Approximation of Vector-Valued Functions, North-Holland, Amsterdam 1977.

[16] —, On the spectra of non-Archimedean function algebras, in: Lecture Notes in Math. 843, Springer, New York 1980, 547-560.

[17] —, Topological algebras of vector-valued continuous functions, in: Math. Anal. and Applic., Part B, Adv. Math. Suppl. Stud. Vol. 7B, Academic Press, 1981, 727-740.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OULU SF-90570 OULU, FINLAND

> Received May 14, 1991 Revised version September 27, 1991

(2807)

Corrigendum to the paper

"On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in \mathbb{R}^{n} "

(Studia Mathematica 87 (1987), 23-32)

bу

EWA LIGOCKA (Warszawa)

On page 24 we got a formula for the projector P:

$$Pu = c(n)\Delta \left[(|x|^2 - 1) \int\limits_{B} \frac{(1 - |x|^2|y|^2)u(y) \, dV_y}{[|x - y|^2 + (1 - |x|^2)(1 - |y|^2)]^{n/2}} \right].$$

In the next step we made a mistake in calculating the above laplacian. The next formula should read

$$Pu = c(n) \int_{B} \left(\frac{2n(1-|x|^{2}|y|^{2})^{2}}{[|x-y|^{2}+(1-|x|^{2})(1-|y|^{2})]^{n/2+1}} - \frac{8|x|^{2}|y|^{2}}{[|x-y|^{2}+(1-|x|^{2})(1-|y|^{2})]^{n/2}} \right) u(y) dV_{y},$$

and the formula on the top of page 25 should read

$$K(x,y) = c(n) \left(\frac{2n(1-|x|^2|y|^2)^2}{[|x-y|^2+(1-|x|^2)(1-|y|^2)]^{n/2+1}} - \frac{8|x|^2|y|^2}{[|x-y|^2+(1-|x|^2)(1-|y|^2)]^{n/2}} \right).$$

The kernel K(x, y) in its correct form satisfies the estimates of page 26 and therefore the other results of the paper remain valid.

I am most grateful to Professor Sheldon Axlen for pointing out this error.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES P.O. BOX 137 00-950 WARSZAWA, POLAND

Received January 24, 1992