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On the ideal structure of algebras
of LMC-algebra valued functions

by

JORMA ARHIPPAINEN (Oulu)

Abstract. Let X be a completely regular topological space and A a commutative
locally m-convex algebra, We give a description of all closed and in particular closed
maximal ideals of the algebra C(X, A) (= all continuous A-valued functions defined on X).
The topology on C(X, A) is defined by a certain family of seminorms. The compact-open
topology of C(X, A} is a special case of this topology.

Introduction. Let A be a commutative locally m-convex algebra with
identity ¢ over the field C of the complex numbers, Let P = {ps | A € 4}
be a family of seminorms which defines the topology in A denoted by T'(P).
It is assumed that T(P) is a Hausdorfl topology, in other words pa(z) = 0
for all A € A only if = 0. Furthermore, we assume that the family P
is directed. For A &€ A we set Ny = {¢ € A | pA(z) = 0}. For each
A € A the quotient algebra A/Ny = A, is a normed algebra with the norm
Palz+ Ny) = pa(a), z + Ny € A/N,. We shall denote the completion of A,
by A 5 - QGeneral properties of locally m-convex algebras can be found for
example in [4], [12] and [13]. Let A(A) be the set of all nontrivial continuous
C-homomorphisms on A. The set A(A) will be equipped with the relative
a(A', A)-topology called the Gelfand topology. With this topology A(A) is
called the carrier space of (A, T(P)).

Let z € A be given. The C-valued function  on the carrier space A(A)
defined by #(7) = v{x),r € A(A), is continuous, whence & € C(A(A)).

Let I be an ideal of A. The hull of I, denoted by A{I), is then defined
as W(I) = {r € A(A) | #(r) = 0, = € I'}. The kernel k(E) of a subset E of
A(A) is defined by k(E) = {x € A |#(+) = 0, 7 € E} and for the empty set
§ we define k(§) = A. Obviously h(I) is a closed subset of A(A) and k(E)
is a closed ideal of (A, T(P))}.

For a completely regular topological space X denote by C(X, A) the set
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of all continuous A-valued functions defined on X. Algebraic operations in
C(X, A) are defined pointwise. For a given element = in A we denote by f;
the constant function fi(t) = z,t € X. Thus f, is the unit element and fo
is the zero element of C(X, A}.

Let K be a compact cover of X which is closed under finite unions, in
other words, K is a family of compact subsets of X for which

(1) UikIKeK)=X,
(2) if Ky,K3 € K, then KUK, € K.
For K € K and ) € A, we define a seminorm p(g,y on C(X, A) by
pr () = fg}l:_?x(f(t))» FeC(X,4).

We write P(K,4) = {pix,n | K € K, A € A}, The family P(K, A) defines
a locally m-convex Hausdorff topology on C{(X, A) denoted from now on
by T(K, A). Obviously P{K, A) is a directed family of seminorms. If K =
K(X) = the set of all compact subsets of X, then T'(K, A) is the compact-
open topology of C(X,A). Given K € K and A € 4, define Nig,n) = {f €
(X, 4} | ey (f) = 0.

Let ¢ € X and let I be an ideal of A. We define an ideal Ji; ) of
C(X,A) by Jun = {f € C(X,A}| f(t) € I} and furthermore C'(X,[) =
{feC(X,A)| f(t) € I, t € X}. Obviously C(X,I) = M;ex Jury- ¥ 18
a closed ideal of (A,7(P)) and t € X, then it is easy to see that both the
ideals Jy; 5y and C(X, I) are closed in (C(X, A), T(K, A)).

Let K € K, A € Aand ¢ > 0. We denote by V(g »)(e) the set {f €
C(X,A) | pireny(f) < €}. Obviously the sets Vig xy(e), K € K, A € 4,
€ > 0, form a subbase of neighbourhoods of fy (see [14], p. 8).

On closed ideals of (C(X, A),T(K,A)). We give a description of the
closed ideals of the algebra {C(X, A),T(K,A)). We also prove that the
carrier space A{C(X, A)) is homeomorphic to X x A(4) if A(4) is locally
equicontinuous.

The following lemmas are easy Lo verify.
LemMuma 1. N(K')‘) = nteK J(t,N;.) Joral K€ K and A € A.

LEMMA 2. Let {I, | o € I'} be a family of closed ideals in (A, T(P)).
Then N, er C(X, Iy) = C(X, Nuer da)-

Let J be a closed ideal of (C(X, A), T(K, A)) and let t € X be given. We
defjlne Iy = {f(t) | f € J} and I(t) = cI(],) = the closure of J; in (A,T(P)).
It( 1)s easy to see that either I(t) is a closed proper ideal of (A,T(P)) or
Ity = A.
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Next we shall prove a useful result,

TaeorEM 3. If J is a closed proper ideal of (C(X, A),T(K, A)), then
there is t in X such that I(t) is a closed proper ideal of (A, T(P)).

Proof. Suppose that I(t) = Aforallt € X. Let K € K, A € A
and € > 0 be arbitrary. Then for each #, € K there is f,, € J such
that pa(fi,(to) — €) = pa(fi, (o) — fe(to)) < €. By continuity, there is a
neighbourhood U(tg) of tp such that

3) PA(fio(t) = fo(t)) <& forall t € U(ko).

Now the neighbourhoods {U(ts) | to € K} form an open cover of the com-
pact set K. Take its finite subcovering Uy, ..., U, and denote by fi,..., fn
those functions of J for which (3) is valid. By Lemma 2.1.1 of [6], there
are a; € C(X), 1 = 1,...,n, such that 0 < o;(t) < 1 for all t € X and
i=1,...,n,suppe; C U;forall i =1,...,m and ¥ i_; o;(2) = 1 for all
t ¢ K. Now, if we define a function Fx ) by

Fiepy(t) =3 (ufi)(t), i€X,
fu=1

we see that F(K',\) € J and

e,y (Fley — fe) < €.

Thus, Fix,») € fe+Vix,n)(e). Since the Vik,n)(€) form a subbasis of the zero
neighbourhoods, the unit element f, is in cl(J) = J, which is impossible.

Next we shall give a description of the carrier space A(C(X, A)). The
structure of A(C(X, A)) has been considered in many papers under various
topological assumptions on X and A (see [1], [3], [5], 6], [8}-[11], [16] and
[17]). For example in [6] Dietrich assumed that X is a k-space and A is a
complete locally convex algebra for which A(A) is locally equicontinuous.
He used the tensor product representation of C(X, A). Tensor product tech-
niques have also been used in [11]. Abel has proved a corresponding result
for a more general case in [1]. In this paper we consider the carrier space of
the algebra (C(X, A), T(K, A)).

Let t € X and » € A(A) be given. We define a mapping ¢(s,r) *
C(X, Ay~ Chy

bun(H=1{f(), JeC(X,A).
Obviously ¢, € A(C(X,A)) and ker ¢e,r) = J(t kerr)-
LemMa 4. If NV is a closed mazimal ideal of (C(X, A),T(K, A)), then
there are unique points t € X and v € A(A) such that N = ker d(e,ry.

Proof. By Theorem 3, there is # € X such that I(1)=cl({f(t) | fEN})
is a closed proper ideal of (A,T(P)). Now there is 7 € A(A) such that
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I(t) C kerr. T f € N is arbitrary, then ¢, (f) = 7(f(t)) = 0. Thus
N C ker¢qs,r), and so N = ker¢(i ) = Jitkerr). It is easy to see that the
points t € X and 7 € A(A)} are unique.

We now define a mapping ¢ : X X A(4) — A(C(X, A)) by
{4) Ot T) = dmy  (HT)IE X X A(A).

THEOREM 5. The mapping ¢ defined in (4) is a bijection from X X
A(A) onto A(C(X, A)). The inverse mapping ¢~} is continuous, and ¢ is
continuous if A(A) is locally equicontinuous.

Proof. Obviously ¢(t,7) € A(C(X, A)) if (t,7) € X x A(A). It is also
easy to see that ¢ is an injection. Now, if ¢ € A(C(X, A)), then ker¢ is a
closed maximal ideal of (C(X, A),T(K, A)). By Lemma 4 there are unique
t € X and r € A(A) such that ker¢ = kerd(¢ ) and thus ¢ = ¢(,r). S0 ¢
is also a surjection, .

Now, ¢ is continuous provided so is the mapping f : X x A(A) = C
defined by

f(t, T) = f(‘)b(t,'r)) = T(f(t))a (t’ T) EX X A(A) .

But it is well-known that [ is continuous if A(A) is locally equicontinuous
(see e.g. [10], Lemma 3). So ¢ is continuous if A(A4) is locally equicontinuous.
The continuity of ¢~ can be shown by a similar method to that used in
[17] for the Nachbin algebras.

CoROLLARY 6. The carrier space A(C(X, A)) of the algebra (C(X, A),
T(K, A)) is homeomorphic to X x A(A) if A(A) is locally equicontinuous.

CoRrotLLARY 7. If ¢ € A(C(X, A)), then there is exactly one tg € X such
that I(te) = cl({f(t0) | f € ker¢}) is a closed proper ideal of (A, T(P)), and
Jurthermore I(ty} = kerr for some T € A(A).

Next we give a description of closed (proper) ideals J of (C'(X, 4),
T(K,A)). It has been proved in [2] (Theorem 2) that in the case where
X is a compact Hausdorff space and A is a locally convex topological alge-
bra there is £ C X and a family {I(t) | t € E} of closed proper ideals of A
such that J = [,c g Jit,14y)- We now prove this for (C(X, A),T(K, A)).

TEEOREM 8. If J is a closed proper ideal of (C(X,A),T(K,A)), then
there is E C X and a family {I(t) | t € E} of closed ideals of (A, T{P))
such that J = (Vo g Joo,100)) - '

Proof. Fort € X set I(¢) = c({f(t) | f € J}). As noted earlier, either
I(t) is a proper closed ideal of (4,T(P)) or I{t) = A. Define £ = {t € X |
I(t) is a proper subset of A}. By Theorem 3, E is nonempty.

icm

Ideal siructure of algebras 315

It is easy to see that J C MNier St 10)- Now, if t € X ~ E = the com-
plement of E in X, then Ji, 14y = C(X, A) and therefore Miex Jit, 100y =
nlEE Je ey - Lei_: J & neex J(t_,r(;)) and fix K € K, e A, 4 € K and
g > 0. From the definition of 7(4) it follows that there is f;, € J such that

Px(fio(to) = f(to)) < £. By continuity, there is a neighbourhood U(tg) C X
of 1o such that

(5) Pafi(t) — f(B) <&, tEU(to).
Now {U(to) | to € K} is an open cover of K. Taking a finite subcover-

ing as in the proof of Theorem 3, we obtain a function Figpy € J such
that

ey (Fieny ~ f) < e.
Hence f & ¢l(J) = J, and 80 (Nigp iy C J, which completes the
proof,

The set B above is not necessarily closed as the following example
shows.

ExamrLe, Let X be the real line R with the usual topology and consider
the open interval (0,1) C R. Let A = (0, 1) with the topology T(N) given
by the sequence of seminorns

pufe) = lz(1)], z€Ad, neN,

gup
LE[1/(n41),1=1/(n+1)]
denoted by P(N). For a natural number m and a seminorm p, € P(N) let
P(m,n) be the seminorm on C(X, A) defined by
p(m,n)(f) = Bup Pn(f(t))a J€ C(Xa A) -
VE[—~m,m
Now {p(m,n) | m,n & N} is a directed family of seminorms on C(X, A) which
defines a locally m-convex topology on C{X, A) denoted by T(N,N).
Let k € N Dbe given. If t € X, we define

B u{{aE(O,l)I—i/kSs«;l} if £ <0,

T {se (0, )| t/kga<1)  ift20.
Obviously £, is a closed subset of (0,1} forall t € Rand B, =0 ift €
X (=R k). If we define k(By) = {s € A | x(s) = 0, 8 € E/}, then
obviously k(E,) is a closed ideal of (A, T(N)) for each ¢ € R and k(E;) = A
ifte X ~(~kk). '

If we choose J = [V,ep Jit,h(m,))s then J is a closed ideal of (C(X, A),

T(N,N)) and clearly J = (;g(ik) J(t.h(20)) - Thus

E={te X |I{t)is a proper subset of A} = (—k, k),
whence F is an open subset of X.



316 J, Arhippainen

Next we shall give some conditions which guarantee that the set [ in
Theorem 8 is closed. First we recall that (A, T(P)) is a Q-algebra if the set
of regular elements is open.

THEOREM 9, Let J be a closed ideal of (C'(X,A),T(K, A)) and let E =
{t € X | I(t) # A} where I(t) = d({f(t) | f € J}. Then E is closed in each
of the following cuses:

1° (A, T(P)) is a Q-algebra.

2° A(A) is locally equicontinuous and {r | d;»y € h(J)} C h(N») for
some A € A,

3° For each boundary pointt in E there is f € J such that f(t) € kerr
for some T € A(A).

Proof. 1° and 3° are obvious. We only prove case 2°. Suppose that
A(A) is locally equicontinuous. Now ¢ 1(A(J)} = {(t,7) | dqe,ny) € W(J)}
is a closed subset of X x A(A). If {r € A(A) | ¢pu,r) € R{J) for all 1 €
X} C h(N,) for some A € A, then ¢~ 1(MJ)) € X X h{N)), and so E is
just the projection of the closed set = 1(h(J)) C X X h(N,) into X. By
Theorem 4.1 and Corollary 2.1 of [12], A{N,} is homeomorphic to A(A).
So h(N,) is compact, since A(A,)is. The closedness of E now follows from
Theorem 2.5 of [7].

COROLLARY 10. If K € K and A € A, then

{(t.7) € X x A(A) | d(1,r) € M(N(xe)} = K x h(Ny).
In particular, if A(A) is locally equicontinuous, then W{ N »)) is horneo-
morphic to K x h(N).
Proef. Just note that Nik 5y = Nyex J(e.vy)-

We shall say that (A4,T(P)) has the property of spectral synthesis if
k(h(I)) = I for each closed ideal I of (4, T(P)).

CoROLLARY 11. The algebra (C(X, A), T(K, A)) has the property of spec-
tral synthesis if and only if (A, T(P)) has this property.

_ Proof. Suppose k(h(I)) = I for each closed ideal of (4, T(P)). Now,
if J is a closed ideal of (C'(X, 4),T(K, A)), then by Theorem 8, we have
:I = [heg Sz 11y for some E C X and a family {I(t) | t € £} of closed
ideals of (4, T'(P)). It is easy to soe that A(J) = {¢.r) | t € E, T € h(I(t))}-
Thus the following equivalences are valid:
f € k(h(1)) & ¢(f) = 0 for all ¢ € h(J)

& @,r)(f) =0forall t € E and € h(I(t))

& 7(f(t))=0forall t € F and r € h(I(1))

& f(t) € k(h{I(t))) forall t € E
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@ f)el(t)forallte Ew fe ) Juxy =J.
teE

Thus k(h(J)) = J.

Conversely, suppose that k(h(J)) = J for each closed ideal J of C(X, A),
T(K,A)). Let I be an arbitrary closed ideal of (4,7(P)). Now, if z €
k(h(I)), then fr € Ji(nny for each t € X. It is easy to see that
Jupernny = ¥7(Je,n)). But by the hypotheses E(h{J(e,n)} = Jo,py- So
Jo € Jiu,n for any ¢t € X and therefore v € I. Thus k(h(I)) C I, whence
k(h(I)) = I, which completes the proof.

The result of Corollary 11 is a generalization of the corresponding result
of [3]. The structure of closed ideals of C(X, A) with the compact-open
topology bas been considered for example in [15].
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Corrigendum to the paper
“On the reproducing kernel for harmonic functions and
the space of Bloch harmonic functions on the unit ball in R"”

(Studla Mathematica 87 (1987), 23-32)
by

EWA LIGOCKA (Warszawa)

On page 24 we got a formula for the projector P:

v e Sy [ (1~ Jolfy[®)u(y) dVy
p= (sl -0 | e )

In the next step we made a mistake in calculating the above laplacian. The
next Tormula should read
2n(l — |z |y}*)?
Pu=c(n (
™ J \Fovrr Q=R = ppre
_ 8lzf*yl?
lle 9|2 + (1= |=?)(1 = |9?
and the formula on the top of page 25 should read
: 2n(1 - |z[*y]?)?
Kz,y)=c(n (
(z,y) = ¢(n) Mz — 3 + (1 — [z [y|2)] /241
_ 8|z{*[y[* )
o= P+ (= BRI~ WP/
The kernel K (&,y) in its correct form satisfies the estimates of page 26

andl therefore the other results of the paper remain valid.
I am most grateful to Professor Sheldon Axlen for pointing out this error.
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