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ON THE IDEAL STRUCTURE OF THE SEMIGROUP OF
CLOSED SUBSETS OF A TOPOLOGICAL SEMIGROUP

by J. W. BAKER, J. S. PYM and H. L. VASEUDEVA

(Received 23rd July 1984)

Among the many semigroups which can be derived from a given compact (jointly
continuous) semigroup S is the semigroup 2s consisting of its non-empty compact
subsets; the product is the usual one defined by the rule EF = {xy:xeE,yeF}. The
Vietoris or finite topology on 2s (in which a base for the open sets is obtained by taking
all sets of the form <F1,K2,...,K,) = { £ : £ c F 1 u K 2 u - u K , and EnV^Q for
l g i ^ n } as Vl,V2,...,Vn run over all finite collections of open subsets of S) makes 2s a
compact, jointly continuous semigroup. The topology has a long history, having been
introduced by Vietoris in 1923 and studied by Michael [4]. The utility of the
topological semigroup was established by Hofmann and Mostert [3; see especially
Section 3.7]; in fact they prefer to produce directly the uniform structure on 2s rather
than the topology.

The semigroup 2s can be structurally complex even when S is quite simple, although
the relationship between the two semigroups can provide an effective tool for attacking
problems about 2s. We shall illustrate these points by a discussion of the prime ideals of
2s for a particular class of semigroups S. The importance of prime ideals is that they are
the kernels of semicharacters—see Hofmann and Keimel [1] or Hofmann, Mislove and
Stralka [2; Section II.2].

To be precise, we shall take S to be a direct product It x I2 of two totally ordered
spaces Iu 12 compact in their order topologies. The semigroup operation will be
minimum, explicitly

(xl,x2)(y1,y2)=-(min{xl,yl},mm{x2,y2}).

Then S is commutative and idempotent; 2s inherits commutativity, but it is not
idempotent. However, for each E in 2s we have E3 = E2, as is easily seen, and
{E2:Ee2s} therefore forms an idempotent subsemigroup. Another immediate conse-
quence of the relationship E3 = E2 is that each semicharacter on 2s takes only the values
0 and 1. Topological properties of semicharacters are therefore immediately reflected in
properties of the prime ideals which are their kernels—for example, continuous
semicharacters have clopen (closed and open) kernels.

We shall obtain in Section 2 explicit descriptions of the open and of the clopen prime
ideals in 2s. Although it follows from Lemma 1.1 that every prime ideal is an
intersection of a decreasing family of open prime ideals, a description of the general
prime ideal, or even of the general closed prime ideal, becomes much too involved.
However, in Section 3 we shall characterize the general prime ideal in the special case in
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which S is totally ordered (obtained by taking It or I2 to be a singleton). The analysis
carried out here could have been made for any finite product of totally ordered spaces,
but the case of just two factors illustrates all the problems involved.

1. Preliminaries

Here we shall make a few remarks about more general commutative semigroups.
Recall that an ideal of a semigroup S is prime if its complement in S is a subsemigroup;
we call a subset Tof S a prime subsemigroup if either S\T is a prime ideal or T=S.

We define a quasi-order •< on a commutative semigroup S with identity by writing
x<y if and only if xeyS; if y is idempotent this is equivalent to yx = x. The upper (resp.
lower) set of x e S is then

The following lemma is established by elementary algebraic means, and we leave the
proof to the reader.

Lemma 1.1. Let S be a commutative semigroup with the property that there exists an
integer n such that xn+1=xn for all xeS. Then x" is idempotent for each xeS. Also, for
any idempotent e in S, \e is a prime subsemigroup. Moreover, if (e,) is a family of
idempotents directed • downwards by >- (i.e. given i, j there is k such that ekeJ = eiek = ek)
then (Jif^i is again a prime subsemigroup. Conversely, if T is a prime subsemigroup then
the set {e,:e; is an idempotent in T} is directed downwards by >-, and T=\Ji]ei.

We shall also need the following elementary lemma concerning prime ideals.

Lemma 1.2. (i) The union of any non-empty family of prime ideals is a prime ideal.
(ii) Any non-empty intersection of a family of prime ideals which is directed downwards

by 2 is a prime ideal.

2. The case £ = / , x / 2

In this section we take S to be /x x I2 as in the introduction; the minimum (resp.
maximum) element of each of It and I2 will be denoted by 0 (resp. 1).

Lemma 2.1. Let Ee2s. Then E is idempotent if and only if whenever (x1,x2)$E either
(x1,y)$Efor all yel2 withy>x2 or (y,x2)e E for all ye I j withy>x1.

Proof. For any Ee2s,E2^E. If x = (x1,x2)e£;2\£ then x = uv with u,veE,u=£x and
v^x. Clearly one coordinate of u must be the same as that of x and the other
coordinate of v must then be the same as that of x. So the result is now clear.

We can now state the main theorem of this section. Recall that a subset M of S is an
antilattice if there do not exist distinct elements m, m' in M with m < m'. Also if x e S and
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write

Theorem 2.2 Let P be a subset of 2s. Then P is an open prime ideal if and only if it is
of the form

P = \J J(m)uK{U)
meM

where M is a closed non-empty antilattice in S with M=/={(0,0)} and U is an open subset
of S disjoint from M such that each x = (x1,x2)eU satisfies this condition:

either there are y = (x1,y2)eU and meM such that y^m, y^x and "j
(x1,z)eU for all z>y2 in I2, or there are y = (yt,x2)eU and meM > (*)
such that y^m,y^x and (z,x2)e U for all z>y1 in Iy. J

Remark 1. The condition (*) is given in the form in which we shall most often apply
it. To understand what it means, imagine S = It xl2 represented as a closed rectangle in
the plane. For (x1;y2)eS, the set {(xl,z):z>y2) is the vertical line segment from (xi,y2)
to (x1;l) without the lower end point. Similarly, {(z,x2):z>yl} is the
horizontal line segment from {y1}x2) to (l,x2) without the left-hand endpoint. Observe
that an open set U is a union of such line segments if and only if it has the property
that uveU implies that either ueU or veU (for U is not the union of such segments
if and only if we can find (xux2)eU, u = (x1,z2)^C7 with z2>x2 , and
v = {zl,x2)$U with z2>xx).

Now the condition (*) asserts that U is a union of line segments of the above forms.
It asserts further that if x = {xl,x2)eU, then either x is on a segment in U from {xy,y2)
to (xu 1) with (x1;y2) less than or equal to some element of M, or x is on a segment in
U from (}>i,x2) to (l,x2) with ()>i,x2) less than or equal to some element of M.

Remark 2. By taking U to be empty and M to be a singleton, we see that each J(m)
is itself a prime ideal. By contrast, K(U) is an ideal only in exceptional circumstances.

Proof. Let P be an open prime ideal of 2s. Since 2s is a compact semigroup, it is
clear from Lemma 1.1 and the compactness of 2S\P that there exists an idempotent
£ e 2s with

We take M to be the set of maximal elements of £ (meM iff meE and ee£,e^m=>e = m),
and take U to be the set of all elements x of S\£ such that statement (*) is true with
U replaced by S\£.

Observe that M is a closed antilattice, and Mr\U = (p since [7sS\£ . Also, since
s, £=£{(0,0)} so M=/={(0,0)}, and since £=£</>, M =/=<£. It is clear that U satisfies (*)
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for all xeU and that U is open (since S\E is). We must show that

{Fe2s:F,F =/=£} = (J J(m)uK(U).
meM

Suppose that EF£E. Choose feF,eeE with ef 4 E. So ef £e.Vef = f then / ^ e . Choose
meM, m^e so / ^ m. Since / £ S\£ and E is idempotent it is clear that fell (taking
x~y=f). On the other hand, suppose that ef=£f. Since E is idempotent, either the line
from ef to e or the line from ef to / must lie in S\E. Since eeE, it must be the latter.
Again, choose meM, m^e; then m^ef. In this case it is also clear that feU (taking
x=fy = ef). So in both cases UnF^(j). So if EF^E then FeK(U).

Suppose that E^EF. Choose eeE\EF. Clearly Fn(Te) = </>. Choose meM,m^e.
Then Fn(Tm) = </>. So FeJ(m).

We have now shown that Ps\JmeMJ(m)<uK(U), and proceed to the reverse
inequality.

If FeK(U), say xeFnU, then choose y, m as in the definition of U. Then mx will be
on the line from y to x, since y^mx^x. So mxeU. So EFnU^MFnU^(p. Since
UnE = (j), EF^E. Alternatively, if meM and FeJ(m) then m£F. Therefore meE\EF,
so £F=££. It follows that P = (JmeM J(m)uK((/).

To prove the converse, suppose we are given sets Uo, Mo which satisfy the conditions
(on U and M) of the theorem. Let

E = {eeS:e$U0 and egm0 for some moeM0}.

Obviously E is closed. We prove E is idempotent. For e, f in E it is clear that ef eE
unless ef e Uo. But by the remark after the statement of the theorem, efe Uo implies
that either ee Uo of fe Uo, and neither of these holds. Thus £ 2 s £ and so E2 = E.

Because Mo is an antilattice, the set of maximal elements of E is precisely Mo. We
now show that the set U constructed from E by the method of the first part of the proof
is just Uo. Indeed, suppose x = (x1,x2)eS\£ and that there is y=(x1,y2)eS\E such that
y2 < x2 and y ^ m0 for some m0 6 Mo. Because y $ E, we see that y e Uo, and hence since
Uo satisfies *, xeU0. This, and a parallel proof with y=(y1,x2), achieves our end.

The first part of the proof now assures us that

and the right-hand side is an open prime ideal.

Corollary 2.3. Let P be an open prime ideal as in Theorem 2.2. Then P is closed if and
only if U is closed, M is finite and |m is open for every m e M.

Remark. This result characterises the continuous semicharacters of 2s since they
take the form 1~XP for such P.
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Proof. Suppose that P is closed. Choose a net (uj in U converging to x. Then each
doubleton {«„ 1} is in K(U)cp and ({ua, 1}) converges to {x, 1} in 2s- Therefore
{x,l}eP. Now l e | e for all e in S so {x, l}<£J(e). This means that {x,l}eK{U). Now
condition (*) ensures that 1 £ U since U n M = 4>. So x e U. Therefore U must be closed.

Suppose that M is infinite, so that it contains a non-isolated point m0. Put Z = S\(|m0).
Since M is an antilattice, M\{mo}sX. Now every closed set which is a subset of X
is in J(m,|)£f, and in particular every closed subset of M\{m0} is in P. Therefore
M = M\{mo}eP = P (because, for example, the limit of the increasing net of finite
subsets of a set Y is the closure of Y). But M$K(U) since M is disjoint from U, and
M<£J(m) for any m in M because m£S\(tm), so that m^P. This contradiction
establishes that M is finite.

Finally, if meM and S\(fm) is not closed there exists a net (ej in S\(|m) converging
to m. Put M1 = M\{m}. Then M j u f e J e P so M = limaM1u{ea}eP = P. As in the last
paragraph, this is impossible.

Conversely, if \m is open then J(m) is closed, and if U is closed then so is K(U). So,
in that case, if M is finite then P is a finite union of closed sets and so is closed.

We conclude with a lemma to be used in the next section.

Lemma 2.4. With the above notation,

(J ; U
meM meM'

if and only if UzU' and for each meM there exists rri e M' with m' ̂  m.

Proof. The sufficiency of the conditions is obvious. Suppose we have the inclusion
between the prime ideals. Let we 17. So the doubleton {u, 1} is in the ideals. Now
{u,\}iJ{e) for all eeS. So {u,l}nl/ ' f 0. But 1££/', so ueC/'. Therefore [/<=£/'.

Suppose that meM and that (T»n)nM' = <£. Then M'eJ(m) so M'e(JmeAr J(m)uK(U').
Clearly M'$J{m') for all ra'eM'. So M'r\U'±4>. This is impossible, so (|ro)nM'=/=<£,
as required.

Remark. Since M has to be an antilattice, this shows that the representation in
Theorem 2.2 is unique.

3. The case 5 = /

We now turn to the case where S is totally ordered, say S — I. We recover this from
the two-dimensional case by putting 1^=1 and /2 = {1}. By Theorem 2.2 we see that an
open prime ideal has the form

J{m)KjK(U)
where

)}, K(U) = {Fe2s:Fn

U is open, m > 0 and m ̂  sup U, since the antilattice M clearly must be a single point.
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Now, by Lemma 1.1, any prime ideal is an intersection of a directed family of such
ideals, say P = f)iPi=f)i[J(mi)vK(Ui)~\. Then (m;) must be decreasing (from Lemma
2.4) and so must converge, to m say. We write

J(m) = {F:Fc[O,m]}.

Now

The first possibility is that (m,) is eventually constant. In this case we can assume that
m, = m>0. Then we have

P = J(m)v{F:FnUt£<j> for all i}

where Ut is open and m ̂  sup Ut for all i. The alternative is that (m;) is not eventually
constant, in which case m < m; for all i, so that J(m) £ P. If F e P then F £ [0, mj for all i
or FnUij^cp for all i since (£/;) is decreasing. So

FeJ(m)v{F:FnU,£<l> for all i}.

Conversely J(m) £ P and so

P = J(m)u{F:Fn U^cp for all i}.

So we have proved the following.

Theorem 3.1. Every prime ideal of 2s is either of the form

J(m)v{F:FnUiJ=<p for all i}

where ((/;) is a decreasing net of open sets, m>0 and m^sup Uifor all i, or of the form

J(m)Kj{F:Fr\Ui±4> for all i}

where (Ut) is a decreasing net of open sets, meS and m^inf,(sup I/,).

We now turn to a a discussion of closed prime ideals. There are two possibilities for
the above element m. One is that me[0,m), when J(m) = J(m). Otherwise [0,m) = [0,m']
for some m'eS and then J(m) = J(m'). So we can assume that a closed ideal P is of the
second kind in Theorem 3.1.

The idea in the following analysis is that each Ut can be split into two parts, one
consisting of elements larger than m, the other of elements smaller than m. Each part
gives rise to an ideal; we write

for all

= {Fe2s:FnUin[0,m]£(p for all i}u7{m).
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Because (I/,-) is a decreasing net, P = P1yjP2. We shall show that each of these ideals is
determined by a set of filters of closed sets, and that the second case is particularly simple
because the filters are fixed.

We begin with P t and put

</1 = {Fn[m,l]:FeP1}.

Observe that Jx consists of just the empty set unless m<sup Ut for each i, in which case
m = inf,(sup Ut). Then J^ has the following properties:

(i) FeJ^ implies meF;
(ii) FeJfuF^G implies G e ^ ;
(iii) F eJl,e>m implies Fn[m,e]e^;
(iv) F u G e </; implies that either F e J^ or G e ̂ l (to see this observe that if F n l/; = 0

then F nUj=(f) for j>i so Gn [/,•=/=</> for j>i, and it follows that G n [/,•=£(/> for all i).
Finally, since P is closed, if (Fk) is a decreasing net of sets in J1 then FkeJ1 for each

k so limfcFt=P)fcFtEP. Since Fts[wi, 1] for all k, we see that either QfcFfc = {m} or
f]kFkeJx. So we have a final condition,

(v) if (Fk) is a decreasing net in Ju then either (~)kFk = {m} or Plt

A converse to these statements also holds.

Lemma 3.2. Let J1 be a family of compact subsets of \m, 1] satisfying (i) to (v). Then.

is a closed prime ideal of 2s'
The verification that Pl is a closed prime ideal is left to the reader.
We can discuss P2 in a similar manner. Begin by observing that if Fs[0,m) and

GS [m, 1] then F u G e P 2 if and only if Fu{l}eP2 . Write «/2 = {F£[0,m]:Fu{l}eP2} =
{F£[0,m]:Fn (/,•=£<£ for all i}.
Then ./2 has the properties:

(vi) Fe> 2 and F s G s [0, m] implies GeJ2;
(vii) F\jGeJt implies FeJ2 or GeJ2.

Now let (Ffc) be a decreasing net of closed sets in J2. Then (Ftu{l}) is a decreasing
net in . / 2 £P . Since P is closed, f|fcFtu{l} is in P. This implies that (\kFke^2. But
here we can go further. Suppose that (Fk) is a maximal chain of closed sets in J2,
ordered by 3 , and that f]kFk has at least two points; then using (vii) we can choose a
set in J2 strictly contained in {\kFk, which is a contradiction. Thus every set in J2

contains a singleton set in ,/2. Write E2 = {x:{x)eJ2}. Note that £2s[0,m] and that
FeJ2 if and only if Fc\E2^§. Since P is closed, £2 is closed. This leads to the
following Lemma.
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Lemma 3.3 Let E2 £ [0, m] be compact. Write

Then P2 is a closed prime ideal of 2s.
Again, the proof that P2 is a closed prime ideal is left to the reader.
Putting the above facts together we have the following theorem.

Theorem 3.4. Let S be totally ordered. The closed prime ideals of 2s are those of the
form P = P1KJP2 where Pt and P2 are closed ideals of the types described in Lemmas 3.2
and 3.3 respectively.
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