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Abstract—Carrier synchronization is of paramount importance
in any communications or positioning system. Mass-market
Global Navigation Satellite System (GNSS) receivers typically
implement traditional carrier tracking techniques based on
well-established phase-locked loop architectures, which are only
reliable in quite benign propagation conditions. Under non-
nominal harsh propagation conditions, the signal may be af-
fected by shadowing, strong fading, multipath or severe iono-
spheric scintillation, and thus, traditional architectures are not
valid anymore and there exists an actual need for robust track-
ing solutions. Several approaches to overcome the conventional
PLL limitations have appeared during the last decade, being
the Kalman filter (KF) based architectures the most promis-
ing research line. The main drawback of standard KFs is
the assumption of perfectly known process and measurement
noise statistics, a knowledge that is always constrained by the
system model accuracy. Beyond heuristic solutions, a general
framework for the design of adaptive KFs correctly dealing with
both process and measurement noises, that would be of capital
importance for the practitioner, has not been established. The
main goal of this contribution is to provide a clear answer to
this fundamental question. It is shown that the main driver on
the KF performance is not the adjustment of the measurement
noise but the adequate tuning of the process noise statistics.
Within this framework, a comprehensive discussion is given
for the correct design of adaptive KF architectures for robust
carrier tracking applications, where the key idea is to use two
independent noise statistics estimation strategies to sequentially
adapt both parameters. The design choice is supported by a
discussion on the identifiability of the noise statistics’ param-
eters. Simulation results are provided showing the need of
fully adaptive solutions, and the achieved performance gain of
KF-based architectures when compared to traditional tracking
loops.
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1. INTRODUCTION

The problem under study concerns the derivation of efficient
and robust methods for carrier phase tracking in Global
Navigation Satellite Systems (GNSS). The satellite-based
positioning systems were initially designed to operate in clear
sky propagation conditions, therefore not taking into account
the harsh propagation conditions appearing in real-life sce-
narios. In such scenarios, the signal may be affected by
high dynamics, shadowing, strong fadings, multipath effects
or ionospheric scintillation. Among these propagation con-
ditions, the dense urban multipath case (with possible non-
line-of-sight conditions) and the ionospheric scintillation are
certainly the most challenging ones. These scenarios must be
considered as a benchmark on the performance for the correct
robust carrier tracking filter design. Notice that synchroniza-
tion is typically carried out following a two-state approach:
acquisition and tracking. The first stage provides a coarse
estimate of the synchronization parameters, and the second
one refines those estimates, filtering out noise and tracking
any possible time-variation [1]. In this contribution, the focus
is on the carrier phase tracking stage, thus acquisition is
not considered and a perfect time-delay synchronization is
assumed.

State-of-the-Art

The carrier phase tracking techniques implemented in con-
ventional GNSS receivers rely on well known phase-locked
loop (PLL) architectures, which are only reliable under quite
benign propagation conditions, and thus they are not suitable
to cope with challenging real-life scenarios. The problem
of standard PLLs is the well-known noise reduction versus
dynamic range trade-off (i.e., a small bandwidth is needed
to be able to filter out the noise and track signals with low
carrier to noise ratios (C/N0), and a large bandwidth has to
be used to cope with high dynamics), which is mainly driven
by the bandwidth and order of the loop. These techniques
have been shown to deliver poor estimates or even lose lock
under harsh propagation conditions [2, 3]. Several improved
PLL-based techniques have been proposed in the literature:
cooperative loops [4], switching architectures [5], adaptive
bandwidth approaches [6, 7] or noise reduction techniques
[2]. Refer to the recent and up-to-date survey on robust
carrier tracking techniques [8] and the references therein for
a complete overview of PLL-based architectures.

The main drawback of all the PLL-based architectures is the
inherent suboptimality, being usually heuristically tuned and
still used in practice because of their simplicity. In terms of
performance, they have been clearly overcome by Kalman
filter (KF)-based tracking techniques [3, 9–12], where the
filter is automatically adjusted so as to minimize the mean
square error, and optimally designed from a statistical filter-
ing approach. Moreover, the KF has an inherent adaptive
bandwidth (i.e., time-varying Kalman gain) and a flexible ar-
chitecture, which is much more convenient than the standard
PLLs, inherited from the analog era.
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Generally speaking, there is not a perfect methodology pro-
viding good performances in any scenario, and the KF is not
an exception. An optimal KF design, where the Kalman gain
is recursively adjusted as a function of the estimation error
covariance and the system working conditions, needs an exact
knowledge of the process and measurement noise statistics.
Therefore, an optimal and correct behavior is restricted by the
accuracy of the dynamic model and the a priori fixed system
parameters. In practical real-life applications the possibly
time-varying system working conditions may not be fully
known, and those quantities need to be estimated or somehow
adjusted to provide a robust solution. Some strategies appear
in the literature to overcome the standard KF limitations. The
so-called Adaptive KFs (AKFs), try to sequentially adapt the
filter parameters (e.g., the process and measurement noise
covariance matrices) to the actual working conditions, usually
using an heuristic/ad-hoc approach [13, 14], innovations-
based solutions for one of the two parameters of interest [13,
15] or the C/N0 estimates to easily adjust the measurement
noise statistics [16, 17]. A very recent attempt to take into
account both noise statistics in an adaptive manner [18] is still
rather heuristic, scenario dependant, needs a proper tuning
and is far from being an optimal adaptive solution. To sum
up, a general framework for the correct and optimal design
of adaptive KFs dealing with both process and measurement
noises does not exist, being a fundamental missing gap in the
carrier tracking literature.

Contribution

In this paper, the main goal is to propose a general optimal
framework for the correct design of adaptive KFs, providing a
clear answer to this fundamental problem. The design choice
and the corresponding proposed architecture are supported
by a discussion on the identifiability of the noise statistics’
parameters within the KF framework, which determines the
two fundamental design rules. The key idea is to use two
independent noise statistics estimation strategies to sequen-
tially adapt both parameters, where the proposed architecture
must use a C/N0 estimator to adjust the filter to the system
noise and a covariance estimation method for the process
noise (i.e., system dynamics). It is shown that the main
driver on the KF performance is not (only) the adjustment of
the measurement noise but the correct tuning of the process
noise statistics, being a crucial point in the AKF design.
Simulation results are provided to show the need of fully
(optimal) adaptive solutions, and the expected performance
gain of correctly designed AKF-based architectures when
compared to traditional tracking loops.

2. SIGNAL MODEL

GNSS signal model

The baseband analytic representation of a generic GNSS
transmitted signal can be expressed as

s(t) = Px(t)d(t− τ(t))c(t− τ(t))ej(2πfd(t)+θe(t)), (1)

where Px(t), d(t) and c(t), stand for the signal amplitude, the
navigation message and the spreading code, respectively. The
synchronization parameters are the code delay, τ(t), carrier
Doppler frequency shift, fd(t), and carrier phase, θe(t). The
digitized signal (sampling period Ts) at the output of the radio
frequency front-end feeds the digital receiver’s channels. The
goal of each channel is to acquire and track the signal of a
single satellite. After the acquisition stage, which provides
the first code delay and Doppler shift estimates, τ̂(t) and

f̂d, the sampled signal is correlated with a locally-generated

replica and then accumulated over the integration period Ts.
The samples at the output of the correlators are [19]:

yk = AkdkR(∆τk)
sin(π∆fd,kTs)

π∆fd,kTs
ej(2π∆fd,kTs+∆θk) + nk,

(2)
where k stands for the discrete time tk = kTs, Ak is the
signal amplitude at the output of the correlators after accumu-
lation over Ts, dk is the data bit, R(·) is the code correlation
function and {∆τk,∆fd,k,∆θk} are the code delay, Doppler
shift and carrier phase errors, respectively.

Taking into account the problem at hand (i.e., study of ro-
bust carrier phase estimation techniques), a simplified signal
model with a perfect code delay estimation, ∆τk = 0, can be
considered. Moreover, it is also considered that R(0) = 1, no
data bits are present in the received signals (this is the case
when using pilot signals or data wipe-off techniques), and
that the attenuation factor is negligible, sinc(∆fd,kTs) ≈ 1.
Under these assumptions, the samples at the input of the
carrier phase tracking stage are

yk = αke
jθk + nk, (3)

where the amplitude, αk, may suffer from fades due to scin-
tillation, shadowing and multipath. Carrier phase includes
both the phase variations due to the receiver’s dynamics,
θd,k, and the other phase impairments, θi,k, which may come
for instance from receiver phase noise or scintillation phase
variations. Therefore, θk = θd,k + θi,k, and the Gaussian

measurement noise is nk ∼ N (0, σ2
n,k).

State-space model formulation

In the carrier phase tracking estimation problem, considering
that the input to the tracking block is given by (3), the
parameter of interest is the time-varying phase θk. In order
to write a state evolution equation, the state to be tracked
has to be defined along with a proper modeling of its time
evolution. In standard KF formulations, the carrier phase is
usually modeled using a Taylor approximation of the time-
varying evolution driven by relative dynamics between the
satellite and the receiver, where the order depends on the

expected receiver’s dynamics. For instance, the 2nd order
approximation, considering only a Doppler frequency shift,
fd,k (Hz), is given by

θ̂k = θ0 + 2πfd,kkTs, (4)

where θ0 (rad) is a random constant phase value. Or the

common 3rd order case, including a possible Doppler rate,
is written as

θ̂k = θ0 + 2π

(

fd,kkTs +
1

2
ḟd,kk

2T 2
s

)

, (5)

with ḟd,k (Hz/s) the Doppler frequency rate (i.e., the Doppler
dynamics). In the first case, the state to be tracked is given

by x⊤
k

.
=
[

θ̂k fd,k

]

, while for the third order approximation

is x⊤
k

.
=
[

θ̂k fd,k ḟd,k

]

. Using this particular carrier phase

model, the 3rd order case process equation (phase expressed
in cycles, rad/2π) is

xk =

(
1 Ts T 2

s /2
0 1 Ts
0 0 1

)

︸ ︷︷ ︸

transition matrix

xk−1 + vk, (6)
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Figure 1. Basic PLL architecture (top), 2nd order PLL loop
filter (bottom - left) and NCO (bottom - right).

where the transition matrix is commonly denoted Fk, and
the process noise vk ∼ N (0,Qk) models possible uncer-
tainties or mismatches on the dynamic model and the phase
errors introduced by non-nominal propagation conditions.
The process noise covariance matrix Qk is usually a priori
designed according to the problem at hand and depending on
the system working conditions. Equations (6) and (3) define

the standard 3rd order KF state-space formulation.

It is important to notice that this example is only one of
the possible formulations (which will be considered in this
contribution as the standard KF carrier tracking formulation),
and thus different carrier phase models can be considered
leading to different state evolution equations. This flexibility
is one of the major advantages of the state-space problem

formulation. For instance, the 3rd order model was used in
[20,21] for carrier tracking under scintillation conditions; the
code delay was included in the state-space formulation for
joint code and carrier tracking in [22]; the state-space was
augmented to include the scintillation phase evolution in [23],
and both scintillation amplitude and phase in [24].

3. STANDARD PLL AND KF-BASED CARRIER

TRACKING TECHNIQUES

Legacy PLL Architectures

The standard PLL architecture is built up with three main
blocks: a phase detector based on a discriminator, a filter, and
a carrier generator, the latter being driven by a numerically
controlled oscillator (NCO) (standard architecture sketched
in Figure 1, where α1 and α2 are the loop filter coefficients).
The phase detector produces an error signal which is pro-
portional to the carrier phase error, which is driven to zero
by the filter loop. In the absence of data bits, the optimal
maximum likelihood (ML) estimator is the four quadrant
arctangent discriminator, while the two quadrant arctangent
discriminator is the preferred option when data is present
in the signal. As already pointed out in the introduction,
the main problem of the standard PLLs is the existing noise
reduction versus dynamic range trade-off, which may lead the
filter to lose lock, therefore somehow limiting the applica-
bility of these architectures in challenging scenarios. This
trade-off is mainly driven by the bandwidth of the PLL: a
small bandwidth is need to filter out the noise and a large
bandwidth is mandatory to cope with fast phase variations. In
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Figure 2. Standard KF-based carrier phase tracking archi-
tecture (top) and the linearized KF equivalent (bottom).

modern digital receivers standard PLL architectures, or more
advanced solutions such as cooperative loops (FLL-assisted
PLL) [4] or adaptive bandwidth PLL solutions [6], are still
the methods of choice, mainly because of its implementation
and tuning simplicity. Recall that the PLL bandwidth is a
priori heuristically fixed by the user, being the only param-
eter that needs to be specified. Therefore, its design and
implementation simplicity turns to be the main drawback in
time-varying scenarios. To summarize, these methods are far
from being optimal, must be heuristically tuned and usually
lack of adaptativity to time-varying scenarios. Moreover,
their performance has been clearly overcome by KF-based
strategies, supporting the idea that more advanced signal
processing techniques should be envisaged and taken into
account for the near-future GNSS receivers’ architecture.

Standard KF-based Carrier Tracking

Using the state-space formulation given in Section 2, it is
easy to construct a KF to solve the carrier phase tracking
problem. The standard KF formulation does not apply the
filter equations to the state-space model given by (3) and (6),
because the measurement equation is nonlinear, therefore, a
suboptimal nonlinear solution (i.e., extended KF) should be
implemented. The strategy is to mimic the conventional PLL
architecture and use a phase detector plus filter plus carrier
generator structure. In this case, the measurements yk in
(3) go through a phase detection stage (carrier compensation
plus discriminator) to obtain the noisy phase measurements
(the four quadrant arctangent discriminator, which is the
Maximum Likelihood estimator in the absence of data bits,
is usually considered). The relation between the KF-based
carrier tracking solution, the standard KF equations and the
traditional PLL architecture is easily seen by comparing the
KF block diagram sketched in Figure 2, the PLL architecture
in Figure 1 and the theoretical formulation in Algorithm 1
(which considers a linearized model KF formulation as shown
in the bottom plot in Figure 2, where ylin

k = θk + nθ,k, and
H = [1 0 0] for the state formulation in (6)).

From the KF filter equations in Algorithm 1, it is easy to see
that the measurement noise variance must be specified for the
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Algorithm 1 Standard Carrier Tracking KF formulation

Require: x̂0, Px,0|0, Qk and σ2

nθ,k
∀ k.

1: Set k ⇐ 1

Time update (prediction)

2: Estimate the predicted state:

x̂k|k−1 = Fx̂k−1|k−1.

3: Estimate the predicted error covariance:

Px,k|k−1 = FPx,k−1|k−1F
⊤ +Qk .

Measurement update (estimation)

4: Estimate the predicted measurement:

ŷk|k−1 = θ̂k|k−1 =
[

x̂k|k−1

]

1
.

5: Estimate the innovation covariance matrix:

σ2

y,k|k−1
= HPx,k|k−1H

⊤ + σ2

nθ,k
.

Estimate the Kalman gain

Kk = Px,k|k−1H
⊤
(

σ2

y,k|k−1

)−1

.

6: Estimate the updated state

x̂k|k = x̂k|k−1 +Kk

(

yk − θ̂k|k−1

)

.

7: Estimate the corresponding error covariance:

Px,k|k = Px,k|k−1 −KkHPx,k|k−1.

8: Set k ⇐ k + 1 and go to step 2.

Kalman gain computation, Kk. This parameter is no longer
the variance of the measurement noise in (3), but the variance
of the new linearized measurement at the output of the
discriminator. An expression for the approximated variance
of the phase noise at the output of the ATAN discriminator
[25] is given by

σ2
nθ,k

=
1

8π2 (C/N0)k Ts

(

1 +
1

2 (C/N0)k Ts

)

. (7)

In this basic architecture the process noise covariance Qk

must also be specified according to the expected dynamics.
Notice that both measurement noise variance and process
noise covariance matrix are system parameters, therefore, an
optimal KF operation is constraint by the complete knowl-
edge of the system working conditions (i.e., known σ2

nθ,k
and

Qk ∀ k).

4. ON THE IDENTIFIABILITY OF NOISE

STATISTICS PARAMETERS

In standard KF-based tracking architectures, both measure-
ment noise variance, σ2

n,k (or equivalently σ2
nθ,k

), and process

noise covariance matrix, Qk, are assumed to be perfectly
known, which is not realistic in practical implementations
and leads to poor performances in unknown, time-varying
scenarios. In real-life applications, the two main reasons
supporting that standard KF tracking approach is suboptimal
are:

1. Using a discriminator inside the filter architecture is ac-
tually an approximation. Moreover, a discriminator is a
nonlinear function, and therefore the Gaussian assumption is
no longer guaranteed.

2. The full knowledge about the system working conditions
(i.e., system noise statistics) is mandatory for an optimal KF
operation. But those noise statistics (both the distribution and
its parameters) may be unknown to a certain extent.

In this contribution, only the latter is considered. It is
clear from the discussion that those two quantities must be
somehow adjusted according to the actual working conditions
to obtain a robust tracking solution able to cope with time-
varying scenarios. When considering the noise statistics
estimation problem, some issues on the identifiability of the
statistics’ parameters and their correct estimation may arise.

Some preliminary considerations:

• Only the additive white Gaussian noise case is considered,
therefore only the measurement and process noise covariance
matrices need to be estimated.

• The first problem on the identifiability refers to the joint
estimation of both system noise parameters, that is, Qk and
σ2
n,k (or, equivalently, σ2

nθ,k
). System parameters, including

both noise statistics and other possible system model param-
eters, are gathered in vector Ψk.

• The second problem on the identifiability refers to the
joint state and system parameters estimation. That means
considering an augmented state, x̃k = {xk,Ψk}, and a single
KF to track the full set.

• Both previous points on the identifiability are treated within
the Kalman filter framework, and therefore the conclusions
could be different if other approaches are used.

I - Joint Parameters Estimation

From the design point of view, the first problem that comes
to mind within the noise statistics estimation context is to
consider if only one or both system parameters need to be
estimated. This choice mainly depends on the assumptions
and the problem at hand, but from a theoretical standpoint the
more general case implies the estimation of both measure-
ment and process noise statistics’ parameters. The main ques-
tion that arises here is the identifiability when considering the
joint {Qk, σ

2
nθ,k

} estimation problem. All the information

available to infer these parameters has to be obtained from
(or is contained in) the filter itself. Within the KF formu-
lation (see Algorithm 1), it is clear that both prediction and
measurement update steps are always interconnected. For
instance, the mathematical evidence of such interconnection
can be seen in the following equations. The Kalman gain,
Kk, can be written as

Kk = Px,k|k−1H
⊤
(

σ2
y,k|k−1

)−1

=
(
FPx,k−1|k−1F

⊤ +Qk

)
H⊤

(

σ2
y,k|k−1

)−1

=
(
FPx,k−1|k−1F

⊤ +Qk

)
H⊤

(
HPx,k|k−1H

⊤ + σ2
nθ,k

)−1

and therefore, at time k, it depends on both noise statistics
parameters Qk and σ2

nθ,k
. Estimation and prediction error

covariances are:

Px,k|k = (I−KkH)Px,k|k−1

= (I−KkH)
(
FPx,k−1|k−1F

⊤ +Qk

)
,

Px,k|k−1 = FPx,k−1|k−1F
⊤ +Qk

= F
(
(I−Kk−1H)Px,k−1|k−2

)
F⊤ +Qk.

As the Kalman gain depends on both noise statistics, the same
happens with the estimation and prediction error covariance
matrices. The same dependence can be written for the
predicted and updated state estimates. Therefore, all the
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computations within the filter depend on both parameters
to be estimated. Intuitively it seems difficult to distinguish
between errors (i.e., errors introduced by a wrong process
noise covariance or a wrong measurement noise variance)
using only the information given by the filter, so a mismatch
on the estimation may occur because we do not control the
coupling between both noises. From our knowledge, very
few studies have discussed such identification problem. This
concept has been briefly introduced in [26], stating that it
is impossible to distinguish between overspecification of the
model error and underspecification of the measurement error,
and vice versa. To illustrate the mathematical results given
in [26] which support this statement, let us assume that the
estimation problem at hand can be represented by a very
simple scalar state-space model of the form

xk = xk−1 + vk, with vk ∼ N (0, Q), (8)

yk = xk + nk, with nk ∼ N (0, R), (9)

and that the process and measurement noise variances are
somehow misspecified (the tilded variables represent the in-

correct version of the true/correct ones, that is, Q̃ = αQ and

R̃ = βR). Applying the standard Kalman filtering theory
to this system and considering that the filter has attained
the steady-state regime (Pk|k−1 = Pp and Pk|k = Pe),
the correct and misspecified prediction and estimation error
variances are given by

Pp = Pe +Q ; P̃p = P̃e + Q̃ (10)

Pe =
P̃ 2
pR+ R̃2Pp

(P̃p + R̃)2
; P̃e =

R̃P̃p

P̃p + R̃
. (11)

Solving this system of four equations, one can find the values

of Pp, Pe, P̃p and P̃e only in terms of {α, β,Q,R}. While

the misspecified variances P̃p and P̃e depend linearly on α

and β (i.e., depend separately of Q̃ and R̃), the correct values
Pp and Pe are functions of α/β. This leads to the following
design rule:

First design rule: using standard noise statistics’ es-
timation methods, only one of the two parameters can
be correctly estimated while considering the other one
known.

II - Joint State and Parameters Estimation

The problem at hand is the estimation of both the original
states of the system xk (i.e., the carrier phase and Doppler
terms) and other unknown parameters of the state-space
model Ψk. From a pragmatic point of view, this can be
accomplished using two different approaches: either using a
single filter to estimate both unknowns, or separate (probably
interacting) methods each one dealing with a single set (i.e.,
xk or Ψk):

1. First approach: joint state and parameters estimation. This
approach implies to define an augmented state which gathers
all the unknowns, x̃k = {xk,Ψk}, and use a single KF
to track the complete set. A priori, the joint estimation
should improve the performance with respect to the second
approach, which couples different methods.

2. Second approach: parallel (interacting) methods. In this
case the main idea is to decouple the inference of the state
evolution from the parameters estimation, that implies using
parallel methods possibly interacting with each other. For in-
stance, using a standard KF-bases solution for carrier tracking

and one or more parallel methods (coupled with the KF core)
to estimate the other state-space model parameters. From the
previous discussion on the joint parameters estimation and the
consequent “first design rule”, it can be concluded that only
one of the two covariance matrices will be estimated together
with the state evolution.

The main question is to decide which of the two approaches
is preferable, and if there exist problems on the identifiability
of the noise statistics parameters when using the first one.
Consider a constant and diagonal process noise covariance
matrix, Q = diag(σ2

1 , ..., σ
2
N ), being N the state dimension,

and the system parameters vector Ψ = [σ2
1 , ..., σ

2
N ]⊤. Note

that the joint estimation of xk and Ψ leads to a nonlinear
state-space model, thus an EKF-type (linearized) solution
must be considered. Assume that at time k, the state and
process noise covariance parameters are independent and
jointly Gaussian, that is, the joint probability distribution can
be written as (i.e., y1:k refers to [y1, ..., yk])

p(x̃k|y1:k) = N

([
x̂k|k

Ψ̂k|k

]

,

[
Px,k|k 0

0 Pψ,k|k

])

.

(12)
where the independence is clear in the formulation from
the null cross-covariance matrix. Using the standard state
evolution equation

xk+1 = Fkxk + vk with vk ∼ N (0,Q(Ψ)k), (13)

the predictive probability distribution at time k + 1 is

p(x̃k+1|y1:k) = p(xk|y1:k−1)p(Ψ|y1:k−1)

= N
(

Fkx̂k|k,FkPx,k|kF
⊤
k +Q(Ψ̂k|k)

)

×N
(

Ψ̂k|k,Pψ,k|k

)

, (14)

from which is clear that the state and parameters predicted
values are dependent and no longer jointly Gaussian. But the
standard EKF prediction and update steps formulation does
not propagate the third-order cross-conditional moment, as
it relies on the Gaussian assumption and the propagation of
only the first two moments of the distribution, and thus the
interconnection between states and parameters estimates is
lost. In fact, the EKF only takes into account the linear depen-
dency among variables, which is null in this case, and does
not take into account the actual nonlinear dependency. To
sum-up, although extended state-spaces can be considered to
perform a joint estimation, the elements of the process noise
covariance matrix Qk cannot be jointly estimated along xk

within the KF framework, since KFs neglect the dependency
between xk and the noise statistics parameters. Because the
prediction step of the EKF is computed using only the first
two moments, and xk and Qk are not jointly Gaussian, Qk

is not identifiable [27,28]. From these results, it can be stated
that the joint state and Gaussian noise covariance estimation
is not a valid approach, thus the second approach must be
adopted for a proper filter design.

Second design rule: the state and system model pa-
rameters must be estimated using separate methods.

5. ADAPTIVE KF DESIGN FRAMEWORK IN

GNSS RECEIVERS

This section presents the general framework for the cor-
rect design of AKF solutions to overcome the standard KF
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limitations. The key point is to take into account the two
design rules given in the previous section: i) only one of
the two noise statistics parameters can be correctly estimated
together with the system states, and ii) these parameters and
states cannot be jointly estimated in a single filter. Which
covariance must be estimated (i.e., process or measurement
noise)? How can the other one be adjusted without breaking
those design rules? The measurement noise or observational
errors are usually much better known and characterized than
the system or model errors, and therefore it is reasonable
to consider a known measurement noise variance and the
process measurement covariance matrix estimation problem
as a key design point. But even if it is better characterized, the
measurement noise statistics parameters are not fully known
and must also be adjusted. In the sequel, both separate ap-
proaches (i.e., separate from the KF core, in accordance with
the second design rule in Section 4) to deal with unknown
measurement and process noise statistics are detailed.

Measurement noise statistics estimation

As it has already been pointed out, it is impossible to ob-
tain simultaneously correct estimates for both noise statistics
parameters. Taking advantage of the problem at hand, in the
case of GNSS receivers a C/N0 (carrier to noise density ratio)
empirical estimator is always available. Keeping in mind the
standard KF architecture, the linearized measurement noise
variance (7) is computed from the actual C/N0, therefore, it
is straightforward to obtain an estimate of the measurement
noise variance by using this empirical estimate:

σ̂2
nθ

=
1

8π2Ĉ/N0Ts

(

1 +
1

2Ĉ/N0Ts

)

. (15)

This is one of the key points to obtain a fully adaptive KF,
because the measurement error can be sequentially adapted
to the actual working conditions without compromising the
correct adjustment of the system model using a covariance
estimation method, thus fulfilling the first design rule in
Section 4. This approach has been already adopted in [17]
and [18].

Process noise statistics estimation

The main goal of this section is to provide an up-to-date
state-of-the-art of possible alternatives to solve the Gaussian
process noise covariance estimation problem. A plethora
of alternatives exists in the literature for the estimation of
a Gaussian noise covariance matrix within the KF frame-
work. The interest of the Signal Processing and Control
community on the covariance estimation problems for linear
dynamic Gaussian systems begins in the mid ’60s. Several
contributions appeared from different points of view. An
old survey paper [29] classified the possible alternatives
into four general classes: Bayesian, maximum likelihood
(ML), covariance matching and correlation methods. All
the traditional on-line state-of-the-art techniques are included
therein. A more general classification (vis-a-vis the Merha’s
paper) is to consider two main groups: on-line and off-
line methods [30]. The four groups introduced by Mehra
(adaptive methods) lie into the on-line methods group. In the
second group we can include subspace and prediction error
estimation methods. [30] provides a good insight of the pros
and cons of the different alternatives. To solve the recursive
Bayesian estimation problem we need on-line noise statistics
estimation methods to be embedded in the filter structure.
That’s the reason why most of the effort in the field has gone
to this direction.

Noise 

Statistics 

Estimation

On-line Off-line
Joint State 
and Noise 
Statistics 

Estimation

Covariance 
Estimation 
(Adaptive 
Filtering)

Subspace 
methods

Prediction 
Error  

Estimation 
methods

Minimax 
methods

Bayesian 
methods

Correlation 
methods

Covariance 
matching 
methods

ML 
methods

Figure 3. Noise statistics estimation state-of-the-art diagram

The ML methods find the estimates that maximize the likeli-
hood function [31–33], following different approaches: joint
state/parameters ML solution, marginal ML solution (only
for the parameters) and conditional mode estimates [29].
In general the ML estimates may not accept an analytic
expression and simulation based solutions are needed. An
interesting tool is the Expectation-Maximization (EM) al-
gorithm [34] which gives an iterative solution to compute
the ML estimates. Covariance matching methods compute
the process and measurement noise covariances from the
residuals of the state estimation problem. The idea is to make
these residuals consistent with their theoretical covariances
[35]. This method was corrected by Leathrum [36], and
compared to Maybeck’s ML estimator [32] in [37], showing
that both are equivalent if the system noise is zero-mean. The
correlation methods, pioneered by Mehra [29] and Bélanger
[38], are the most popular for the estimation of Gaussian
noise covariance matrices. These methods are based on
the correlation function of the innovation sequence and the
derivation of a set of equations which relate this function to
the unknown parameters [39].

Within the correlation methods, Odelson et al. [40] derived
the Autocovariance Least Square (ALS) method, being one of
the most promising covariance estimation techniques derived
in the last decade. This method has been extended to consider
correlated process and measurement noises in [41], time-
varying nonlinear systems using an EKF-type linearization
approach [42], and optimal weighting of the least-squares
solution [43]. Concerning the ML estimation and the EM
solution, some interesting contributions are [44,45] and [46].
Other new approaches include robust M-estimation least-
squares [47, 48], variational Bayesian approximations [49],
robust generalized ML [50] and generalized multiple model
adaptive estimation [51]. In [28], the authors compare the
ALS method [40] and the method introduced in [52], which
is a joint state and parameters estimation method taking
into account the propagation of third order cross-covariance
within the KF.

Adaptive KF design architecture

From the previous discussion, all the necessary elements
to come up with a powerful AKF design framework are
available. The general architecture is based on three main
blocks: i) the core of the filter follows the standard KF-based
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carrier tracking architecture introduced in Section 3, ii) the
measurement noise variance is adjusted from the receiver
carrier to noise density estimator, and iii) the KF process
noise covariance matrix is adjusted using one of the methods
presented in Section 5.

In a more general case where the loss of Gaussianity caused
by the discriminator needs to be avoided, the same design
framework also applies. In this case, the standard KF core
must be replaced by an EKF directly operating with the re-
ceived signal complex samples and the carrier to noise density
estimator is used to tune the measurement noise variance at
the input of the carrier tracking stage. The proposed AKF
design architecture is sketched in Figure 4.

KF-based carrier tracking 

archiecture 

yk

Covariance estimation 

techniques

estimator

C/N0

Q̂k

x̂k|k

σ̂
2

nθ

(carrier phase + 

Doppler terms 

estimate)

Figure 4. Adaptive KF design framework graph.

6. COMPUTER SIMULATIONS

The main target scenarios of using advanced signal process-
ing techniques for carrier tracking are the harsh propagation
environments. As already pointed out, in these cases the
signal may be affected by high dynamics, strong fadings,
urban multipath effects or ionospheric scintillation. Among
these propagation conditions, the ionospheric scintillation is
certainly the most challenging one due to the combination
of both fading and rapid phase changes. Moreover, the fact
that scintillation effects are typically unnoticed for mass-
market GNSS receivers has led this effect to receive rather
little attention in the signal processing literature. These are
the reasons for considering the following numerical example
of carrier tracking under scintillation conditions as a perfor-
mance benchmark for the AKF design.

Harsh propagation scenario: ionospheric scintillation

Ionospheric scintillation refers to the disturbances caused
by electron density irregularities along the propagation path
through the ionosphere. In particular, these harsh propagation
conditions affect GNSS signals with amplitude fades and
carrier phase variations, that usually happen in a simultaneous
and random manner. But in some cases there exists a cor-
relation between both disturbances, the so-called canonical
fades [53], which is a very challenging scenario from a
carrier tracking point of view. In the sequel, a parsimonious
signal model to represent the behavior of scintillation onto the
GNSS received signal samples is briefly introduced. Refer
to [24] for a detailed description. In terms of the complex-
valued baseband received signal, x(t), the scintillation can be

modeled as a multiplicative channel,

x(t) = ξs(t)s(t) + w(t), (16)

where s(t) is the complex-valued baseband equivalent of the
transmitted signal, w(t) is the noise term, and the complex-
valued stochastic process representing the presence of scintil-
lation is defined as

ξs(t) = ρs(t)e
jθs(t), (17)

with the corresponding envelope and phase components,
ρs(t) and θs(t). Some recent contributions [54, 55] have
introduced a method called the Cornell Scintillation Model
(CSM) to synthesize realistic scintillation, embedded in the
so-called Cornell Scintillation Simulation Matlab toolkit2.
Notice that for the simulation of a scintillation data set only
two parameters must be specified, {S4, τ0}, which determine
the intensity and correlation of the scintillation complex gain
components, respectively. Generally speaking, higher S4 and
lower τ0 lead to more severe scintillation, where the ranges
of possible values are 0 < S4 ≤ 1 and 0.1 ≤ τ0 < 2
seconds, respectively [54]. Three main scintillation regions
are considered: weak (S4 ≤ 0.3), moderate (0.3 < S4 ≤ 0.6)
and strong/severe (0.6 < S4).

Numerical results

In order to show the need of fully adaptive solutions illustra-
tive numerical results are given for a carrier phase tracking
example where the signal of interest is corrupted by severe
scintillation. The following parameters were used: simulation
time Tsim = 10s, integration time Ts = 1ms, C/N0 = 35

dB-Hz, fd,0 = 10 Hz (Doppler) and ḟd,0 = 1 Hz/s (Doppler
rate). To obtain statistically significant results, the root mean
square error (RMSE) was used as a measure of performance,
and obtained from 200 Monte Carlo runs.

In order to show the importance of correctly adjusting in a
time-varying manner the process noise statistics, a trajectory
with a time-varying process noise covariance matrix Qk

(varying between Qmax and Qmin) was considered for two
different scenarios: the first one taking into account only
the phase evolution due to the receiver dynamics, and the
second one using the same dynamics but affected by severe
scintillation in the period 5s < t ≤ 8s, with S4 = 0.8 and
τ0 = 0.1.

The RMSE obtained with a standard KF considering different
values of Q, for both scenarios, is given in Fig. 5. It is clear
from the results obtained in the dynamics-only case (Fig. 5
- top) that the optimum is to consider the correct covariance
matrix. To be robust against unexpected phase variations it
is always better to overestimate the noise covariance, while
underestimating usually leads the filter to loss of lock (diver-
gence). Considering that a part of the signal is affected by
severe scintillation (Fig. 5 - bottom), both the performance
and adaptability of the filter also depend on the value given
to the process noise covariance, and the optimum may not be
the same as for the dynamics-only case.

Using the same dynamics, Fig. 6 compares the RMSE
obtained with a standard KF (with fixed Q and underesti-
mated σ2

n), and an AKF only estimating the measurement
noise variance and considering different values of Q. In this
scenario, a strong fading in [2− 4]s was considered.

2This software was used in the computer simulations to
generate the desired scintillation effect and then assess the
performance of the proposed methods. The toolkit is available at
http://gps.ece.cornell.edu/tools.php
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The results show the expected behavior of the AKF, always
performing slightly better than the KF, but again prove the
need of correctly adjusting the process noise covariance ma-
trix. These results suggest that the fully adaptive KF design
detailed in this paper must be adopted. The general AKF
design framework is an appealing solution, not only to deal
with scintillation but also for more general robust carrier
tracking applications in harsh propagation conditions.

7. CONCLUSIONS

This paper presented a filter design framework/methodology
to deal with robust carrier phase tracking under harsh prop-

agation conditions. A discussion on the identifiability of the
noise statistics parameters motivated the design choice. The
adaptive KF-based approach is based on a filter that sequen-
tially adjusts both process and measurement noise statistics.
The key point being the use of two parallel noise statis-
tics estimation strategies coupled with the standard KF. The
need of estimating both statistics was supported by computer
simulation in a GNSS carrier phase tracking application,
using a simulated trajectory with different scenarios. Future
work goes towards analyzing the impact of using different
covariance estimation methods and carrier to noise density
estimators.
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