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Abstract

Background: Several groups have shown that the performance of motor neuroprostheses can be significantly 

improved by detecting specific sensory events related to the ongoing motor task (e.g., the slippage of an object during 

grasping). Algorithms have been developed to achieve this goal by processing electroneurographic (ENG) afferent 

signals recorded by using single-channel cuff electrodes. However, no efforts have been made so far to understand the 

number and type of detectable sensory events that can be differentiated from whole nerve recordings using this 

approach.

Methods: To this aim, ENG afferent signals, evoked by different sensory stimuli were recorded using single-channel cuff 

electrodes placed around the sciatic nerve of anesthetized rats. The ENG signals were digitally processed and several 

features were extracted and used as inputs for the classification. The work was performed on integral datasets, without 

eliminating any noisy parts, in order to be as close as possible to real application.

Results: The results obtained showed that single-channel cuff electrodes are able to provide information on two to 

three different afferent (proprioceptive, mechanical and nociceptive) stimuli, with reasonably good discrimination 

ability. The classification performances are affected by the SNR of the signal, which in turn is related to the diameter of 

the fibers encoding a particular type of neurophysiological stimulus.

Conclusions: Our findings indicate that signals of acceptable SNR and corresponding to different physiological 

modalities (e.g. mediated by different types of nerve fibers) may be distinguished.

Background
In the recent past, several groups have worked on the

development of neuroprostheses to restore sensory-

motor functions lost in patients affected by spinal cord

injury or stroke [1-3]. A number of these neuroprostheses

use functional electrical stimulation (FES) to elicit the

contraction of different muscles that are no longer con-

trolled by the central nervous system in order to obtain

functional movements. Although interesting results have

been achieved in the activation of lower extremity motion

and control of hand movements [4-7], various problems

still exist since, in most cases, FES is delivered in open

loop and does not take into account factors such as the

dynamic time-variant properties of the musculo-skeletal

system. This issue can be addressed by developing closed-

loop control algorithms based on the extraction of sen-

sory information, and its use for correcting deviations

caused by unexpected changes and non-linearities. Feed-

back information can be gathered by using implantable

[8,9] or external [10,11] artificial sensors or by processing

electroneurographic (ENG) signals recorded by means of

implanted interfaces with the peripheral nerves of the

subject [12]. In the latter case, the choice of the electrode

will make a difference on the type of processing available

based on the selectivity of the electrode and its place-

ment. For example, by using cuff electrodes only the

superposition of action potentials belonging to many dif-

ferent axons activated in the same nerve can be identified.
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Thus, the contribution of single axons could be difficultly

extracted because of the low signal to noise ratio (SNR)

and of the possible overlapping between signal frequency

ranges (few hundred Hz to a few kHz) and noise [12].

In most cases the use of recorded neural activity has

been limited to sensory event onset detection for the

closed-loop control of FES systems [13-15] and for the

control of hand prostheses [16,17]. These limits can be

partly overcome by using multi-site cuff electrodes [18],

but it would still be important to enable strategies for dis-

criminating sensory information that can be extracted

from ENG signals recorded in a whole nerve using simple

cuff electrodes.

Cuff electrodes have been used for more than thirty

years [19] to stimulate peripheral nerves and also to

record electroneurographic (ENG) signals. Interestingly,

Haugland and coworkers [13-16] demonstrated that sen-

sory events, such as skin contacts or slip information,

could be recognized with respect to the background rest-

noise from cuff recorded neural signals in cats as well as

in humans. However, the main goal of these studies was

to identify the onset (and offset) of a specific neural activ-

ity, with the aim of triggering stimulation. The aim of our

work was to investigate the ability to discriminate differ-

ent types of sensory stimuli from the nerve signals

recorded by using a cuff electrode [20], and to propose an

optimal signal processing scheme. In particular, artificial

intelligence classifiers were used to discriminate different

features extracted from afferent signals, evoked by differ-

ent types of sensory stimuli and recorded with a cuff elec-

trode placed around the rat sciatic nerve. Our hypothesis

is that at least two stimuli can be discriminated with good

performance, and that classification performance

depends on the quality of neural signals recorded, which

in turn is related to the diameter of the fibers encoding a

particular type of neurophysiological stimulus.

For such purpose, particular attention must be devoted

to the selection of the features to be extracted. Whereas

several previous works have described the features to be

extracted from electromyographic (EMG) signals and

from intraneurally recorded ENG signals (e.g. using lon-

gitudinal intrafascicular electrodes and multielectrode

arrays), only a few studies have addressed this issue for

extraneurally recorded ENG. In fact, ENG signals

obtained by means of single-channel cuffs can be consid-

ered roughly in between cumulative EMG signals and

highly selective intraneural ENG signals.

In this paper, the features proposed in previous works

using single-channel cuff electrodes [21-24], as well as

those proposed in studies on EMG [25-27] signals were

analyzed in order to find the most informative feature

combination to feed into the classifiers. Finally, in order

to explore eventual presence of bursting nerve activity

(superposed to the background signal and not detectable

by visual perception) a wavelet denoising method, which

allowed the classification of spikes from neural signals

recorded using invasive intraneural electrodes [28,29],

was also tested.

Materials and methods
A. Experimental setup

Tripolar polyimide cuff electrodes (with three parallel

ring Pt electrodes), with an inner diameter of 1.2 mm and

a length of 12 mm were used. The fabrication process and

in vivo use have been described in detail previously [20].

The polyimide-based microstructure consists of a flat

rectangular piece (12 × 6.75 mm) - containing the elec-

trode contacts and rolled into a cylinder spiral shape -

and an interconnect ribbon (2 mm wide, 26 mm long)

with integrated contacts attached to a ceramic connector.

Experiments were performed in five Sprague-Dawley

rats. Under general anesthesia with ketamine/xylazine

(90/10 mg/kg i.p.), and with the aid of a dissecting micro-

scope and microsurgery tools, the sciatic nerve was

exposed at mid-thigh and carefully freed from surround-

ing tissues. The cuff was opened and placed around the

sciatic nerve avoiding compression and stretch. After

release, the spiral cuff was closed covering the whole

nerve perimeter (Figure 1).

Since the animals were under anesthesia during the

study, the problems related to the presence of movements

previously experienced [13,14] were mainly avoided.

Therefore, this represents an "optimal" condition for

detecting solely afferent activities, with minimal or absent

muscle artifacts.

All experiments were performed inside a Faraday cage,

in order to minimize the amount of electromagnetic

Figure 1 Polyimide tripolar cuff electrode used in the study. Cuff 

electrode and connector (A), and its implantation around the sciatic 

nerve of a rat before performing the experimental study (B).
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noise interfering with the recordings. The experimental

procedures adhered to the recommendations of the Euro-

pean Union and the NIH Guide for Care and Use of Lab-

oratory Animals, and were approved by the Ethical

Committee of the Universitat Autònoma de Barcelona,

where the animal work was performed.

B. Stimuli application and signal recording

Different sensory stimuli were applied to discrete areas of

the hindpaw and the evoked neural activity was continu-

ously recorded. Three different types of stimuli were

sequentially applied, ten times each, to each animal: (1)

mechanical stimulus ("VF") of regulated intensity by

touching the plantar skin with a von Frey filament

(Stoelting Co, Illinois) (2) proprioceptive stimulus ("Pro-

prio") provoked by means of complete passive flexion of

the toes, and (3) nociceptive stimulus ("Nocio") provoked

by pinching the toes. These three types of stimuli were

selected because they elicit impulses conducted by three

different functional classes of afferent nerve fibers (Aβ

tactile mechanoreceptive, Aα proprioceptive, and Aδ/C

nociceptive, respectively).

Efforts were made to standardize the intensity of stim-

uli across trials: the same Von Frey filament was used in

all the tests, thus providing the same contact pressure;

passive flexion was produced by bending the toes from

the horizontal plane to about maximal flexion by means

of small wood sticks that were glued to the dorsum of the

nails, to avoid tactile stimulation; pinching the toe was

made using the same fine forceps (Dumont #5), aiming to

elicit pinching pain, with minimal touch.

Onset and duration of stimuli were identified by exper-

imenter's bottom pressure in synchrony with start and

end of stimulus application, while VF touch stimulation

was also recorded by means of a pressure sensor located

under the animal hindpaw, confirming good timing given

by means of bottom pressure. The duration of different

stimulus applications were not statistically different, and

had small standard deviation (touch stimulus (mean ±

standard deviation): 0.96 ± 0.11 sec; proprioceptive: 1.17

± 0.18 sec; nociceptive: 0.97 ± 0.25 sec).

Neural signals (Figure 2) were differentially amplified

(at 10,000X; Isolated Microamplifier, FHC Inc.), analogi-

cally filtered (band pass filter with cutoff frequencies of

10 Hz and 5 kHz), digitized at 20 kHz (PowerLab) and fed

into a PC running Chart v5.5 (AD Instruments). Datasets

consisted of ten applications of every type of stimuli dur-

ing the experiment. Noisy parts of the recordings - corre-

sponding to stochastic nerve and muscle discharges -

were not eliminated since they would be present also in

any real prosthetic applications. In this way, the experi-

ments should be able to indicate the real limits of this

approach.

C. Signal processing steps

Figure 3 shows a block diagram of the proposed classifi-

cation scheme. Panel A describes the steps implemented

during the training phase. pre-processing, feature extrac-

tion, training of the classifiers using a supervised

approach. Panel B illustrates the steps performed during

the test phase: pre-processing, feature extraction (both

the same as during the training), identification of the

stimulus using the trained classifier, and a majority voting

technique. The different steps are described in detail in

this section.
Signal Pre-processing

Initially, a preliminary spectral analysis was performed in

order to impose correct filtering. Consistent with previ-

ous results [13], a neural signal peak between 1.0 and 2.0

kHz was observed for all the stimuli-evoked responses

analyzed. In a previous study [22], the nerve cuff signals

were found to be independently distributed Gaussian sig-

nals with zero mean and modulated in variance. Conse-

quently, the ENG signals recorded during the different

experimental conditions were digitally filtered using a

FIR bandpass filter with 0.8 KHz and 2.2 KHz cutoff fre-

quencies in order to reduce the presence of undesired sig-

nals (e.g. low frequency EMG signals and high frequency

amplifier noise). In fact, about 95% of the power spec-

trum of the EMG is accounted for by a band up to 400 Hz

- although there are some harmonics up to 800 Hz [25] -

while amplifier noise makes an important contribution

only at higher frequencies [21].
Length of running observation window and overlap

In this kind of signal processing paradigm, one of the

parameters to choose is the optimal length of the running

observation window (ROW), and possible overlap. In

EMG studies, the plateau in classification performance

for observation windows starts from 100 ms [30,31].

Since there are no indications in the literature either for

optimal window length with ENG signals or for overlap

(allowing a greater amount of samples for post-process-

ing rule [30,31]), the identification of these parameters

was analyzed first. Therefore, different observation win-

dow lengths were studied [25, 50, 75, 100, 125, 150, 200,

and 300 ms], and for the best performing lengths, differ-

ent overlaps [1/4, 1/2, 3/4] were tested.

Feature extraction. Several features were extracted

from the ENG signals (see Table 1 for mathematical defi-

nitions and references), in an attempt to enhance the

ENG signals conveying different sensory information

with respect to the resting-state ENG.

First, standard, time domain features used to process

EMG signals were estimated from the ROW: mean abso-

lute value (MAV), variance unbiased estimator (VAR),

and wave length (WL) [25].

Then, the features proposed in the few previous studies

on single-channel cuff ENG processing were tested. In
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Figure 2 Examples of raw ENG recordings. In black is presented raw voltage; green labeled steps represents application of Touch stimulus; red la-

beled steps represent Proprioceptive stimulus application; in both cases the label with value 0 represents absence of stimulus (A). In black is presented 

raw voltage; red labeled steps represents application of Proprioceptive stimulus; blue labeled steps represent Nociceptive stimulus application; in 

both cases the label with value 0 represents absence of stimulus (B).
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[21] a higher order statistics approach was proposed,

which is able to separate the space of the noise with

respect to the space of the signal of interest. Briefly, this

means: a) constructing the Toeplitz matrix based on sec-

ond order estimation (autocorrelation) (HOS2) or third

order statistics (HOS3); b) transforming it into the eigen-

values matrix, by means of singular values decomposi-

tion, and c) taking the values higher than an empirical

threshold.

On another hand, [23,24] proposed to use the autocor-

relation function to distinguish different activities by ana-

lyzing whole nerve signals recorded with cuff electrodes,

based on the differences in fiber conduction velocity. Five

possible factors may be extracted from this feature

(ACORR): zero-cross time, time of minimum, minimum

value, time of maximum, and maximum value. We tested

these five parameters and found that the first minimum

value showed the greatest difference between noise and

elicited ENG activity.

Energy based on Discrete Fourier Transformation

(DFT) of the signal was used to understand whether our

ENG signals are more separable in the frequency domain

[25].

Features based on time-series analysis have already

shown to be useful in EMG signal processing, hence cep-

stral (CEPS) [26], and autoregressive (AR) [27] coeffi-

cients were included in the present study.

Finally, a wavelet-denoise with hard-thresholding and

Symmlet 7 mother wavelet (WDEN) was implemented

[28,29], in order to extract the bursting activity, possibly

superimposed to compound signals and not identifiable

visually. All these features were extracted from the ROW,

and were used as inputs to the classification systems.
Classification algorithms

The above features were normalized with respect to the

corresponding maximal values, and were used as inputs

to two non-linear classifiers applied in this study:

1. An artificial neural network (ANN) [32]: a feed-for-

ward neural classifier, trained by back-propagation rule,

comprising two hidden layers with 10 neurons was used.

Since there is no standard way to define the appropriate

topology of a neural network nor the number of neurons,

the parameters were determined by means of iterative

search. The numbers of hidden layers (from 1 to 3) and

neurons (from 1 to 11), and the optimal topology and

number were found with respect to the peak of classifica-

tion accuracy (this is not shown in the manuscript for the

sake of brevity). The optimal configuration used had two

hidden layers with 10 neurons each. The input layer was

composed of neurons corresponding to the number of

features used during simulations (from one to four), while

in the output layer there were four neurons, related to the

possible states-classes of the problem (rest, mechanical

stimulus, nociceptive stimulus and proprioceptive stimu-

lus).

2. Support vector machine (SVM) classifier [33] maps

input data into the feature space where they may become

linearly separable. Due to its superiority in terms of good

generalization derived from minimizing structure risk,

SVM has been applied successfully in bio-information

and pattern recognition [29,31,34]. The SVM network

was investigated using Gaussian Radial Basis function

(RBF) kernel, which yielded the best results during pre-

liminary investigations. A grid-search was employed as a

method of model selection to adjust SVM parameters, as

proposed in [31,34]. In this method, the performance of a

Figure 3 Block diagram of the proposed classification system for 

ENG signals. Training is performed on the first and testing on the sec-

ond half of the data. (A) Training procedure consisting of: Filtering (in 

order to eliminate the EMG low band, and amplifiers high band noise); 

Feature extraction from running observation window (ROW); Training 

of the classifier with stimuli type knowledge (VF, Proprioceptive, Rest as 

labeled); recorded during the experimentation. (B) Test procedure: fil-

tering and feature extraction are first steps (both the same as during 

the training); then the classifiers (trained in A) answer is post-processed 

by means of majority vote rule. Evaluation is carried out by report be-

tween correctly classified instances and all samples in each test set.
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Table 1: Mathematical definitions of the features used in this study

Feature Name Definition Description and references

Mean absolute value (MAV) [25]

Variance (VAR) [25]

Wave length (WL) [25]

Wavelet denoise (WDEN) θ = σ (0.3936 + 0.1829log2(N)), σ-standard 

deviation of noise

Symmlet 7 mother wavelet, and hard threshold (θ).

[28,29]. Finally the feature is MAV of denoised signal.

Energy based on discrete 

Fourier transformation (DFT)
,

where X [k] is DFT of x [n]

[25]

Autoregressive coefficients 

(AR)

The forward-backward approach. The sum of a least 

squares criterion for a forward model and the 

analogous criterion for a time-reversed model is 

minimized [27].

Cepstral coefficients (CEPS) c1 = -a1 The cepstrum coefficients (ci), are calculated from AR 

coefficients (AR model with order P), as proposed in 

Kang's work [26].

Autocorrelation-based, 

second order processing 

(HOS2)
,

H0-noise only (null hypotesis), H1-presence 

of signal

Toepliz matrix creation, based on estimate of 

autocorrelation; singular value decomposition; 

difference among maximum and minimum 

eigenvalue (σ) [21].

Cumulant-based third order 

processing (HOS3)
,

H0-noise only, H1-presence of signal

Toepliz matrix creation, based on estimate of third 

order cumulant of a data frame; singular value 

decomposition; the largest eigenvalue (λ) [21].

Autocorrelation minimum 

value (ACORR) ,

L-length of ROW

First negative peak value of r(τ) [23,24].

References are also provided for further explanation. N is the number of samples in ROW and xi is the single sample.
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SVM was examined based on a wide range of parameters;

then the fitter grid-search was implemented close to

parameters yielding best results. A four fold random

cross validation scheme was used to evaluate the parame-

ters. Recently, this kind of classifier was used in EMG sig-

nals classification [31] (further details on SVM theory

may be found here).

The training process for the ANN was not repeatable

since it was initiated from random initial weights, and

sought local minimum errors rather than global ones.

Instead, for the SVM it was repeatable and fast. The SVM

can settle to a global minimum error after training.
Majority vote post-processing

As the last step, majority vote (MV) post-processing

[30,31] was applied. The MV is a post-processing that

eliminates transient jumps, and produces a smooth out-

put. It counts the estimated classes in the 2 k + 1 estima-

tions about a considered estimation (k-estimations before

and k-estimations after), and outputs the value that

occurs most as a corresponding estimation. Thus, the

value of the final output is the class with the greatest

number of occurrences in this point window of the deci-

sion stream. The number of samples (k), that can be used

in the majority vote was determined by the processing

time, overlap used and acceptable delay. Processing time

is the time needed to make a decision after the observa-

tion window (e.g. filtering, feature calculation and pattern

classification) and depends on the type of microcon-

troller or digital signal processor used in the real time

prosthetics system. This time should be within a few mil-

liseconds. Overlap is the time of the overlap between two

ROWs. Acceptable delay (i.e. not perceivable by the user)

would roughly be between 175 and 300 ms [30,31,35].

Since MV uses the next k-estimation to produce the cur-

rent output and avoid any failure in real-time control, it is

possible to determine the maximum number of decisions

to use within the MV rule. Hence, real-time constraints

impose (considering 0 ms processing time):

where ROW is the length of the running observation

window (ms), and Olap is the overlap between two con-

secutive running observation windows.

D. Evaluation

In order to validate the results of the classification mod-

els, the first half of the signals was used to train the

parameters of the classifiers; their performance was then

assessed on the second half of the data. The performance

of the classifiers was measured by comparing the number

of correctly classified instances with the total number of

instances within the test set.

Statistical analyses were applied to interpret the experi-

mental results. The purpose of statistical analysis was to

find statistically meaningful differences between observa-

tions with a certain significance. Due to the relatively low

rate of observations and their unknown distribution,

nonparametric approaches were applied. Kruskal-Wallis

is an extension of the Wilcoxon rank-sum for data with

more than two groups, and is suited for this type of analy-

sis. The critical p-value, which determines whether a

result is statistically significant, was 0.05.

Results
For all the datasets, the SNR was calculated as the ratio

between the mean MAV amplitude of the ENG signals

recorded whilst stimulating the animal hindpaw and the

mean MAV amplitude recorded during absence of any

stimulation (resting period), [21]:

The results, for the Rat1 dataset, can be seen in Figure

4. The results shown in Table 2 indicate a relatively low

SNR (only a few decibels), ranging from 1.2 to 3.8 dB.

Proprioceptive stimulation provided the best SNR levels

among the three stimuli, and tactile stimulus had better

SNR compared to pain stimulation. These SNR values are

proportional to the diameters of fibers conducting the

corresponding stimuli.

For the complete datasets of the five rats, signal pro-

cessing was performed with the aim of identifying the

median and upper limits of afferent stimuli discriminable,

and the optimal values for the data-processing scheme

(e.g. ROW, overlap, features and classifier choice). The

pattern classification ability to discriminate the different

stimuli was tested starting from only one stimulus w.r.t.

rest state, and progressively increasing the number of

stimuli to be identified on groups of two and three, until

finding an acceptable percentage of classification. The

influence of different parts of the proposed signal pro-

cessing scheme, and recommendations on optimal

choices are given below.

Running observation window (ROW), overlap length and 

majority vote rule

For all stimuli and stimuli combinations, feature combi-

nations and different window lengths were tested, in

order to define the optimal length for this kind of signals

(Figure 5).

The trend for different features and for different stimuli

was found to be similar: as expected, the information

contained in features is not stable enough (too biased) for

short windows (e.g. 25, 50 ms), while, in contrast to

k ROW Olap 3 ROW× ( ) < −− 00 , (1)

SNR
mean MAV ENGstimuli applied

mean MAV ENGno s
dB = 20 10log

( ( _ ))

( ( _ ttimuli))
,
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EMG-studies [30,31], a decline in performance was

observed for excessively long windows (e.g. 300 ms). Peak

performance was in the 100 ms window in most cases

(Figure 5). While for almost all combinations of stimuli,

the median of performances had a 100 ms length peak,

for VF versus rest stimulus the 100 ms ROW was also sig-

nificantly different w.r.t. the 25 ms and 300 ms ROW (p <

0.05). These results indicated that the 100 ms ROW was

optimal for the next processing steps.

Therefore, with this ROW length, different overlaps

were tested to find the appropriate decisions stream den-

sity, and majority vote with respect to quality of classifi-

cation and permitted delay (Figure 6).

The results indicate that the majority vote post-pro-

cessing rule enhances performance in every tested case.

The most stable results were observed using disjoint win-

dows, with majority vote based on five samples (MV5).

Thus, this combination was used for studying the next,

best features and classifier selection.

Feature selection and classifier choice

The statistical analysis was applied to the results of the

classification for every single feature and for feature com-

binations tested, obtained using the optimal ROW (100

ms) and majority vote (MV5). The best performing fea-

tures were combined so as to test whether the results

could be improved: MULTI1 = MAV + WL; MULTI2 =

MAV + VAR + WL and MULTI3 = MAV + VAR + WL +

DFT. Moreover, we tried to combine good-performing

features with other best-performing features (HOS3), in

order to determine if they carried complementary infor-

mation that would permit to obtain the best generaliza-

tion: MULTI4 = MAV + WL + HOS3 (Figure 7).

The results indicate that "power-based" features (MAV,

VAR, WL, DFT, and their combinations) performed sig-

nificantly better w.r.t. others (p < 0.05). This trend was

found for every stimuli and stimuli combinations. When,

as a second step, the worst-performing features were

eliminated, no statistical differences were observed

between the good-performing features. The use of any

"power-based" features, or any MULTI combination, gave

similar results, but since they had slightly better median

results, MULTI3 and MULTI4 are shown in the last step,

aimed at finding the applicability of single-channel cuff

electrodes for afferent discrimination.

Although the SVM classifier performed slightly better,

no significant difference between the two classifiers was

observed (p ≥ 0.05). The repeatability and speed of the

training process, together with the better mean percent-

age of classification obtained indicate that SVM could be

the optimal choice.

Analysis of the median and maximal discrimination ability

After the identification of the most promising values for

the different parameters of the classification algorithm,

the ability of discriminating the different stimuli was

investigated. In particular, the median and the maximum

of the classification performance were extracted to ana-

lyze the robustness and the upper limit of the discrimina-

tion, respectively.

The results (Figure 8) clearly indicate that single-chan-

nel cuffs could possibly be used for robust separation of

proprioceptive, and touch-based, VF stimuli, from back-

ground rest-noise ENG, with above 90% median (and

best performance of 97% and 95%, respectively, in the

best dataset). Also their combination w.r.t. rest, could be

discriminated reasonably well, with median performance

Figure 4 MAV of three types of stimuli, used for SNR calculation 

for Rat1 dataset. A) VF stimuli, B) Proprioceptive stimuli and C) Noci-

ceptive stimuli. In red are presented the labels, corresponding to time 

of stimulus application, used for supervised training.
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above 80% (reaching 88%, in the best dataset). Nocicep-

tive stimulus - conveyed by small pain fibers and featur-

ing very small SNR - are not easy to recognize in a

repetitive way.

As for the upper limit of discriminability, the maximal

values in Figure 8., corresponding to the Rat1 dataset,

should be observed. They indicate that, in case of good

(repetitive) nociceptive stimulus (implant position and

electrode coupling with the nerve were optimal), 80%

could also possibly be achieved for three stimuli discrimi-

nation.

Discussion
The technological improvement of motor neuroprosthe-

ses has led to an increased demand for fine control of

devices. Providing sensory feedback of the controlled

action is mandatory to improve the use of neuroprosthe-

ses in disabled subjects. However, due to the complexity

of natural sensory systems, multiple artificial sensors

should be needed to supply such information, needing for

calibration and introducing bulkiness, with decrease of

reliability [12,36]. The use of natural peripheral nerve

afferents seems a better alternative, therefore, since they

are available and functional in most patients affected by

central nervous system injuries, who can benefit from the

use of a neuroprosthesis [36]. The use of natural afferent

neural activity requires a system capable of recording and

differentiating the signals conveyed in a peripheral nerve

in response to different types of stimuli. Due to their rela-

tively low invasiveness, cuff electrodes seem well suited

for implantation in the intact peripheral nerves of sub-

jects [12]. Moreover, they can also be used to perform

stimulation in FES systems, therefore the utility of their

implant could possibly be double. However, neural activ-

ity recorded from peripheral nerves with a cuff electrode

is usually of small amplitude and difficult to interpret. In

this study, several processing methods were tested in

order to optimize the classification (with acceptable pro-

cessing delay) of ENG afferent signals recorded from the

rat sciatic nerve using single-channel cuff electrodes.

Firstly, in the proposed signal processing paradigm,

optimal factors for filtering, ROW length and majority

vote use were found, indicating that 100 ms ROW with

MV5 post-processing should be used. Then we addressed

the problem of identifying optimal features in order to

discriminate the sensory information from the ENG sig-

nals. Very few studies have been performed with this pur-

pose. The autocorrelation method proposed by [23] can

give good results when ENG has good SNR, but, as found

in [24], it does not perform well in low SNR signals, gen-

erally encountered in this experimental study. Higher

order statistics [21] are good for on/off detection [13-15]

but not for the discrimination of different types of signals,

while the wavelet denoise method, successfully used in

intraneural recordings [28,29], was not able to find some

specific, underlying data; these were the worst perform-

ing features. Other, basically "power-based" features per-

formed similarly, without significant differences. Besides

good performance in classification, they are easily imple-

mentable and do not imply excessive computer load.

The limiting factor for classification performance was

found to be the SNR. It depends on many stochastic fac-

tors, such as positioning of the electrode, micro-damages

and nerve orientation w.r.t. electrode, and also on the

neurophysiological nature of signals (see Table 2).

An additional difficulty of the present study lied on the

fact that inter-trial time (between two stimuli) was short

compared to the duration of the stimulus application.

This is a difficult situation for analysis, since it has been

shown [37], that the amplitude of the afferent activity

(and in consequence of SNR) increases with increasing

inter-trial delay. Probably, with longer inter-trial time

better results could be achieved, but we chose to study a

situation close to real prosthetic use (in which stimuli

may appear with little intervals in between), and also to

obtain unbiased results for classification (e.g., not to

obtain the high classification just by recognition of signal

versus rest).

Signals recorded from single-channel cuff electrodes

could be used to discriminate sensory stimuli depending

on their physiological nature. The pain fibers are of Aδ

Table 2: Calculated signal to noise ratio (SNR) of ENG signals corresponding to the different stimuli

Animal SNR (VF) [dB] SNR (Proprioceptive) [dB] SNR (Nociceptive) [dB]

Rat 1 2.4380 3.8230 1.4292

Rat 2 2.1937 3.6601 1.8584

Rat 3 1.9592 2.2802 1.6879

Rat 4 2.0592 3.0752 2.0530

Rat 5 1.5140 2.2923 1.1692

Mean ± Standard Deviation 2.0328 ± 0.3411 3.0262 ± 0.7305 1.6395 ± 0.3488

Stimuli (Von Frey (VF), Proprioceptive, Nociceptive) applied in the five rats used in the study.
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Figure 5 The influence of Running Observation Window length (ROW) on the quality of classification. The case of: A) VF versus rest stimuli, 

(MULTI1 = (MAV + WL) features set), ANN classifier, B) Proprioceptive versus rest stimuli (MAV feature), SVM classifier, and C) VF versus Proprioceptive 

versus rest, (MULTI2 = (MAV + VAR + WL) feature set), ANN classifier. The peak of performance can be observed for 100 ms, indicating that this is the 

optimal value.
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Figure 6 The influence of overlap between ROW and general improvement of the performance when Majority Vote (MV) rule is used. The 

case of: A) VF versus rest stimuli (MULTI2 feature), ANN classifier B) Proprioceptive versus rest stimuli (MULTI2 feature set), SVM classifier and C) VF versus 

Proprioceptive versus rest (MULTI2 features), SVM classifier. For 100 ms ROW, considering 0 ms processing time, the maximal permitted values of 

points to consider in majority vote (MV) are 5, 7, 9 and 17 for respectively: no overlap, 1/4 overlap, 1/2 overlap, and 3/4 overlap. Results are present in 

pairs showing median improvement when using MV: No overlap and No overlap with MV 5 applied (MV5); 1/4 ROW overlap (1/4) and 1/4 ROW overlap 

with MV 7 applied (MV7); 1/2 ROW overlap (1/2) and 1/2 ROW overlap with MV 9 applied (MV9); 3/4 ROW overlap (3/4) and 3/4 ROW overlap with MV 

17 applied (MV17).
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(diameter 2-5 μm) and C (0.3-1.3 μm) types, and do not

overlap in size and conduction velocity with fibers con-

veying the other stimuli tested. Cutaneous low-threshold

mechanoreceptors (touch perception) use Aβ fibers (6-12

μm) for conduction, whereas proprioceptive fibers corre-

spond to Aα (12-22 μm) and Aβ types. Nerve fiber diam-

Figure 7 The influence of different features on the performance of classification when using the 100 ms ROW, MV with 5 samples, and SVM 

classifier. The case of: A) Proprioceptive versus rest; B) VF versus Proprioceptive versus rest. The "power-based" (MAV, VAR, WL, DFT) features and their 

combinations (MULTI1, MULTI2, MULTI3, MULTI4) are significantly better than the other tested (p < 0.05, Kruskal Wallis test). Among the best features 

there is not significant difference.
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eter is proportional to conduction velocity and signal

strength, hence it would be expected that the best dis-

crimination should be obtained among the stimuli that

use different types of fibers for conduction, and that dis-

tinction between stimuli conducted by the same type of

fibers would be difficult, due to the summing nature of

cuff electrode recordings. However, in our classifications

it was possible to distinguish proprioceptive and tactile

stimuli, and in less cases nociceptive signals. Propriocep-

tive signals induced by fast toe flexion were likely trans-

mitted by Aα fibers from muscle spindles primary

afferents, thus distinguishable from Aβ touch fibers. On

the other hand, regarding the identification of the three

stimuli, classification errors were mostly due to pain sig-

nals, which are conducted by thin nerve fibers, thus pro-

ducing signals of small amplitude and difficult to visualize

in the raw recordings.

In order to test our hypothesis that stimuli conducted

by the same type of fibers are difficult to discriminate,

two other types of touch stimuli were used during the

experiments: light touch with a hair brush and fast

scratch with a plastic probe. When performing the analy-

sis between two and three types of tactile stimuli (results

not shown), the performance became very poor, in accor-

dance to our hypothesis that it is possible to distinguish

different types of stimuli only if they correspond to differ-

ent sensory modalities.

Our results show that it may be possible to develop

robust, although limited, closed-loop control algorithms

for neuroprostheses by means of the sensory information

extracted with single-channel cuff electrodes from the

peripheral nerve. Better results could be eventually

achieved by using multi-polar epineural [38,39] and

intraneural [40,41] electrodes, the latter being also more

Figure 8 Different stimuli and stimuli combination recognition achieved with the optimal proposed approach. The values of different param-

eters used: ROW = 100 ms, MV5, SVM classifier, MULTI 3 set of features (in the case of VF vs proprioceptive, the MULTI4). VF and proprioceptive stimuli, 

as well their combination can be recognized from background rest-noise. The nociceptive stimuli conveyed by thin fibers, are difficult to recognize 

from background rest-nosy activity. In some cases (Rat1 dataset), corresponding to the maximal values, the three types of stimuli could be recognized.

	' #�$#�($ &$)($ 	'���������$��, �	�
�����$��, 
�������������$��, �
����%�������$��,

��

��

��

��

��

��

��

��

��

���

�
�
�
*
$�

�
�
��

�
�

%, !*" ��#!$ %�, #%�

�
�



Raspopovic et al. Journal of NeuroEngineering and Rehabilitation 2010, 7:17

http://www.jneuroengrehab.com/content/7/1/17

Page 14 of 15

invasive. A limitation of our experimental procedure is

that the experiments were performed in anesthetized ani-

mals, therefore we prevented problems regarding EMG

signals due to animal movements and neural efferent sig-

nals, which, in real prostheses, would be mixed with

afferent signals. While the EMG signal can be suppressed

by digital filters (as in the present work) or by passive net-

works [42], the discrimination among efferent and affer-

ent signals is more challenging, and should be tested in

freely moving animals or in human implants.

An interesting aspect is that the analyses were per-

formed on integral datasets, with training on first half

and testing on second half of data, attempting to under-

stand the real-life applicability of the single-channel cuffs.

Since an important feature for the correct classification

of neural signals is a significant difference in terms of

SNR for the different stimuli - this depending on implant

position that is a relatively blind procedure - systems for

navigation, which search for the best SNR achievable dur-

ing implantation, may improve the results of this

approach, similarly to the suggestions made for intraneu-

ral electrodes [43].

Conclusions
This paper aimed at understanding the potential applica-

tion of nerve signals recorded by means of single-channel

cuff tripolar electrodes for identifying natural sensory

information, in continuous-time applications, on integral

datasets obtained from acute rat experiments. The sig-

nals from rat nerves were processed (obtaining optimal

values for different signal processing parameters), and the

results indicate that signals of acceptable SNR and corre-

sponding to different physiological modalities (e.g. medi-

ated by different types of nerve fibers) may be

distinguished. By means of power-based features and an

artificial classifier, proprioceptive and touch signals con-

ducted by different fiber types were distinguished;

instead, although conducted by other fibers, pain signals,

due to their low SNR, were difficult to discriminate con-

sistently.
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